(19)
(11)EP 2 434 253 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
24.01.2018 Bulletin 2018/04

(21)Application number: 11181277.2

(22)Date of filing:  14.09.2011
(51)International Patent Classification (IPC): 
G01B 5/008(2006.01)
G01B 5/012(2006.01)

(54)

Coordinates measuring head unit and coordinates measuring machine

Koordinatenmesskopf und Koordinatenmessmaschine

Tête de mesure de coordonnées et machine de mesure de coordonnées


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 27.09.2010 JP 2010215956

(43)Date of publication of application:
28.03.2012 Bulletin 2012/13

(73)Proprietor: Mitutoyo Corporation
Kawasaki-shi, Kanagawa 213 (JP)

(72)Inventors:
  • Matsumiya, Sadayuki
    Kanagawa 213-8533 (JP)
  • Yoshioka, Susumu
    Kanagawa 213-8533 (JP)
  • Kamiyama, Shuichi
    Kanagawa 213-8533 (JP)
  • Miyazaki, Tomoyuki
    Kanagawa 213-8533 (JP)
  • Arai, Masanori
    Kanagawa 213-8533 (JP)

(74)Representative: Gill Jennings & Every LLP 
The Broadgate Tower 20 Primrose Street
London EC2A 2ES
London EC2A 2ES (GB)


(56)References cited: : 
EP-A2- 1 258 700
US-A1- 2001 029 778
US-A1- 2007 266 781
US-A1- 2009 198 472
CN-A- 1 073 521
US-A1- 2002 000 047
US-A1- 2008 148 588
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] Head units for machines that are measuring coordinates or surface profiles and textures are known for example from US 2008/148588 A1, US 2001/029778 A1, US 2009/198472 A1, US 2007/266781 A1, and EP 1 258 700 A2.

    [0002] The present invention relates to a coordinates measuring head unit and a coordinates measuring machine. Morse particularly, the invention relates to a coordinates measuring head unit which is compact, inexpensive, and capable of conducting measurements at high speeds with high precision, and facilitates in-situ measurements such as measurements carried out on machine tools or transport lines. The invention also relates to a coordinates measuring machine which incorporates the coordinates measuring head unit.

    [0003] Three-dimensional coordinates measuring machines (hereinafter also referred to as the CMM) are known as a measuring apparatus for measuring three-dimensional coordinates with high precision.

    [0004] However, the conventional CMM, which has a typical measurement stroke as long as about 500 mm, includes a large base (surface plate) on which a target to be measured (for example, work) is placed, and a large gate-shaped or C-shaped frame for moving a measuring probe relative to the base. For example, the measuring probe may be a contact-type touch probe for generating a touch signal when being brought into contact with the target to be measured (hereafter the measuring target) or a noncontact-type optical probe for capturing the image of the measuring target. The CMM further includes a head which can move the gate-shaped or C-shaped frame relative to the base along one axis (for example, the front-to-rear direction) and which can accomplish a relative movement on the gate-shaped or C-shaped frame along another axis (for example, in the right and left direction) orthogonal to the one axis. The probe is configured to move relative to the head in the vertical direction orthogonal to the two axes. Accordingly, the conventional CMM had to be big enough to cover not the portion to be measured but the entirety of the measuring object, while maintaining the required precision over the whole range of the measurement stroke. For this reason, the conventional CMM was inevitably large in size and footprint, expensive, and thus not suitable for measurements conducted on machines or in-situ measurements.

    [0005] To solve such problems, the present applicant suggested a simple CMM, which could be incorporated into fabrication lines, in JPH0634356 A, and another CMM, which could be incorporated into machining centers, in JPH11325869 A. However, the techniques disclosed in JPH0634356 A and JPH11325869 A were predicated on the use of a large CMM which had a long measurement stroke and was to be incorporated into machine tools or fabrication lines. There were therefore some problems with those techniques that the CMMs were expensive and needed a large footprint.

    [0006] On the other hand, practical applications often show that small works of an outer size of about 40 mm to 100 mm are measured, and even in the case of large works, only the inner diameter thereof or the outer diameter of a shaft portion thereof are measured, so that long measurement strokes are not always required. In such a case, most conventional CMM's of even compact types, which had a measurement stroke of 500 mm or more, needed an extraordinarily increased footprint for the measuring target (portion).

    [0007] Furthermore, to make measurements on a machine tool, the measurements may be conceivably performed with the cutting tool replaced with a measuring sensor (for example, a touch probe). This arrangement raised a problem that a movement error of the machine tool could not be detected because the measuring system (guides or scales) of the machine tool was used.

    [0008] The present invention was developed to solve the conventional problems mentioned above. It is therefore an object of the invention to provide a coordinates measuring head unit which is compact, inexpensive, and capable of making measurements at high speeds with high precision, and which facilitates measurements conducted on machine tools or in-situ measurements on transport lines. It is another object of the invention to provide a coordinates measuring machine, a machine tool, and a transport line, which include the coordinates measuring head unit.

    [0009] The present invention was developed by focusing on the fact that long strokes were not always required to measure a small measuring target or a portion of a large measuring target by the CMM with high precision. The invention provides a coordinates measuring head unit comprising the features of claim 1, to solve the aforementioned problems. The dependent claims further develop the idea of the present invention. According to the present invention, the coordinates measuring head unit is reduced in measurement stroke and separated from the base and the stand. This allows the head unit to be reduced in size and costs, to make measurements at high speeds with high precision, and to facilitate measurements conducted on machine tools and in-situ measurements on transport lines. In particular, since the measurement stroke is reduced, the head unit can simultaneously implement both high-speed and high-precision measurements, which could not be realized by large CMM's. Furthermore, the head unit can be easily incorporated into machine tools and transport lines (including fabrication lines and inspection lines).

    [0010] In particular, high-precision three-dimensional measurements can be realized when the probe is made movable in three-dimensional directions, and the drive means for moving the probe in its axis direction is disposed on the side of the fixture means.

    [0011] It is also possible to provide an extremely compact, inexpensive, and high-precision CMM which requires a very small footprint, when the CMM is provided with a base on which a measuring target is placed and a stand for supporting the coordinates measuring head unit on the base.

    [0012] Furthermore, a cantilever type stand may be disposed in the direction of depth (the Y-axis direction) when viewed from the front. In this case, the X-axis drive axis can be disposed at the lowest layer most advantageously from the viewpoint of precision in order to minimize the load moving in the lateral direction (the X-axis direction) when viewed from the front.

    [0013] Furthermore, the base may also include a table which is to move the measuring target and provided with measuring means for measuring the amount of movement. In this case, works greater than the stroke of the coordinates measuring head unit can also be measured, and thus this can be realized at reduced costs with improved accuracy when compared with the case where the coordinates measuring head unit itself is moved.

    [0014] In particular, when the coordinates measuring head unit is attached to the head portion of a machine tool or the vicinity thereof, measurements on the machine can be carried out in a high-precision measuring system independently of the measuring system of the machine tool.

    [0015] The preferred embodiments will be described with reference to the drawings, wherein like elements have been denoted throughout the figures with like reference numerals, and wherein;

    Fig. 1 is a perspective view illustrating a CMM which is provided with a coordinates measuring head unit according to an exemplary embodiment of the present invention;

    Fig. 2A and 2B show different probes to be exchanged;

    Fig. 3A and 3B are views illustrating the relationship between the arrangement of a drive section and error;

    Fig. 4 shows internal structure of drive section;

    Fig. 5 is a perspective view illustrating the CMM of Fig. 1 which is provided with a table;

    Fig. 6 is a perspective view illustrating an electric discharge machine which is provided with a coordinates measuring head unit according to an exemplary embodiment of the present invention;

    Fig. 7 is a perspective view illustrating the main portion of a transport line which is provided with coordinates measuring head units according to an exemplary embodiment of the present invention;

    Fig. 8 is a perspective view illustrating a robot arm which is provided with coordinates measuring head unit according to an exemplary embodiment of the present invention;

    Fig. 9 is a perspective view illustrating a two-dimensional coordinated measuring system which is provided with coordinates measuring head unit according to an exemplary embodiment of the present invention; and

    Fig. 10 is a perspective view illustrating a transportable CMM which is provided with coordinates measuring head unit according to an exemplary embodiment of the present invention.



    [0016] Now, referring to the drawings, an exemplary embodiment of the present invention will be described in more detail.

    [0017] Fig. 1 illustrates a CMM which is provided with a coordinates measuring head unit according to an exemplary embodiment of the present invention.

    [0018] The coordinates measuring head unit 10 according to this exemplary embodiment includes an X-axis drive section 14 for freely moving a probe 12 in the X-axis direction (the right and left direction in the figure), a Y-axis drive section 16 for freely moving the X-axis drive section 14 in the Y-axis direction (the front-to-rear direction in the figure), and a Z-axis drive section 18 for freely moving the Y-axis drive section 16 in the Z-axis direction (the vertical direction in the figure). The head unit 10 also includes an integrated housing 13 for accommodating these sections, and fixture means (here, fixture surface) 20, provided on one of the side surfaces of the housing 13 (here, on the rear surface thereof), for attaching the Z-axis drive section 18 to a support (here, a support 34 of a stand 32 secured to a base 30). Here, the measurement strokes in the directions of respective axes can be, for example, 40 to 120 mm in the X-axis and Y-axis directions, and 40 mm in the Z-axis direction.

    [0019] The coordinates measuring head unit 10 is connected through a cable 19 with a controller 40 for controlling the drive sections 14, 16, and 18. The controller 40 is connected with a host computer 42 for transmitting measurement commands and receiving measurement data for geometrical computations, data processing software 44, and a joystick box 46 for sending drive commands.

    [0020] The data processing software 44 includes, for example, a probe compensation function for compensating the coordinate position and the diameter of the tip sphere of the probe 12, a temperature compensation function for compensating the measured coordinates and the dimensions of a measuring target (for example, work) depending on the temperature, and a spatial precision compensation function for compensating spatial precision statically or dynamically.

    [0021] The coordinates measuring head unit 10 is attached to the support 34 of the stand 32 secured to the base 30 on which a measuring target (not shown) is placed. The support 34 has a screw portion 34A mated with a feed screw 38 which is rotated by a handle 36 disposed on the top of the stand 32. At the initial stage before starting measurements, the handle 36 can be rotated so that the vertical position of the support 34, that is, the coordinates measuring head unit 10 is manually adjusted to align with the position of a measuring target.

    [0022] In this manner, the coordinates measuring head unit 10 can be attached to a dedicated stand like the stand 32, which is secured onto the base 30 and along which the support 34 moves vertically, thereby realizing a very compact CMM that requires only a limited footprint. The probe 12 is replaceable, so that the touch probe as shown Fig. 1 or a copying probe can be used for the CMM, a micro probe as shown in Fig. 2A can be used for a micro-geometry measuring device, and an image probe as shown in Fig. 2B can be used for an image measuring device.

    [0023] Here, the Z-axis drive section 18 for moving the probe 12 in the axis direction thereof (i.e., along the Z axis) is disposed on the fixture surface 20 side rather than on the X-axis drive section 14 side or the Y-axis drive section 16 side because of the following reasons. That is, as shown in Fig. 3A, the Z-axis drive section 18 may be disposed on the side of the probe 12 (at a lower position in the figure) rather than on the side of the X-axis drive section 14 or the Y-axis drive section 16. In this case, a tilt caused by the X-axis drive section 14 and the Y-axis drive section 16 being moved during measurements is magnified by the Z-axis drive section 18, resulting in an increase in error at the tip of the probe 12 (at the lower end in the figure). In contrast to this, as shown in Fig. 3B, this exemplary embodiment is configured such that the Z-axis drive section 18 is disposed on the side of the fixture surface 20 (at an upper position in the figure) rather than on the side of the X-axis drive section 14 or the Y-axis drive section 16. In this case, a tilt caused by the X-axis drive section 14 and the Y-axis drive section 16 being moved during measurements is not magnified by the Z-axis drive section 18, thus allowing no error to increase at the tip of the probe 12.

    [0024] Note that the drive mechanisms for the X-axis drive section 14, the Y-axis drive section 16, and the Z-axis drive section 18 may be preferably implemented, for example, by a combination of a linear guide 14A, a ball screw 14B, and a motor 14C as shown in Fig. 4 to prevent heat generation. This is because use of a small case for reducing the size of the drive sections would possible cause heat to be confined therein, thereby causing problematic measurement errors to occur due to the heat generation of the drive system. Note that if heat generation would cause no problem, or countermeasures against heat generation, for example, by air or water cooling can be taken, then other drive systems, for example, linear motors can also be used.

    [0025] The example of Fig. 1 is configured such that the measuring target is directly placed on the base 30 to carry out three-dimensional measurements. However, in a modified example shown in Fig. 5, a table 31 for moving a measuring target (work) may be placed on the base 30 so as to extend the measurement stroke for the measuring target (a connection rod 8 in the figure) in the direction(s) of one or two axes (only one axis in the figure, i.e., in the X-axis direction). Here, the table 31 is movable along the one or two axes (only one axis in the figure, i.e., in the X-axis direction), and the amount of movement thereof can be output, for example, by a linear encoder. As such, the measuring target 8 is made movable, thereby allowing for extending the three-dimensional measurement stroke with high accuracy at reduced costs as compared to the case where the coordinates measuring head unit 10 is moved. Although Fig. 5 shows an example of one axis, a two-axis XY table may also be employed.

    [0026] Note that the work can be fed by a carrier to which a computer provides sequential control, or alternatively the work may also be manually moved. Furthermore, a one- or two-axis carrier or a robot arm may also be employed to feed the work.

    [0027] Fig. 6 shows an example of a machine tool (an electric discharge machine 50 in the figure) to which the coordinates measuring head unit 10 has been attached. The compact coordinates measuring head unit 10 can be attached to the machining head portion of the machine tool or the vicinity thereof, thereby allowing measurements to be performed comparatively easily on the machine. Unlike a typical sensor (such as the touch probe), the head unit 10 has independent measuring and drive systems, and is thus not affected by the precision in movement of the machine tool.

    [0028] Note that although the stroke of the coordinates measuring head unit 10 is shorter than that of a typical machine tool, multiple works being machined at a time may be each accommodated in the stroke of the coordinates measuring head unit 10. In such a case, use of only the coordinates measuring head unit 10 may be sufficient for measurements; however, to measure the entirety of the works, the head unit 10 can also be linked to the measuring system 52 of the machine tool.

    [0029] The coordinates measuring head unit 10 may be incorporated not only into the electric discharge machine but also into a machining center as disclosed in Patent Document 2 or other general machine tools.

    [0030] Furthermore, although the coordinates measuring head unit 10 is preferably attached to the machining head portion of the machine tool or the vicinity thereof, the head unit 10 can also be attached to other than the machining head portion or the vicinity thereof so far as the head unit 10 is accessible to the table of the machine tool. Moreover, the head unit 10 can also be separated from the machine tool to make measurements. That is, the compactness of the coordinates measuring head unit 10 can be made available in a variety of flexible arrangements, for example, incorporated into the machine tool, adjoined to the machine tool, disposed as a standalone unit apart from the machine tool, or disposed in plurality on the outlet of the line through which the machine tool provides machined works.

    [0031] Note that the axis direction of the probe 12 is oriented in the vertical direction (i.e., the Z-axis direction) in the exemplary embodiments of vertical type above; however, the axis direction of the probe 12 can also be arranged in the horizontal direction in lateral type.

    [0032] Fig. 7 shows an example in which a plurality of coordinates measuring head units 10 (two in the figure) are disposed in the vicinity of a conveyor 60 of a transport line, with the axis direction of the probe 12 of one unit oriented vertically (vertical type) and that of the other unit oriented horizontally (lateral type).

    [0033] A plurality of coordinates measuring head units 10 can be arranged in this manner, thereby allowing quick online measurements to be carried out on a transport line.

    [0034] Note that the coordinates measuring head unit 10 can be arranged on the fabrication line or the inspection line, regardless of the type of target, and for example, the head unit 10 can be attached to an arm of a robot as shown in Fig. 8.

    [0035] Furthermore, for example, the Z-axis drive section 18 can also be eliminated as shown in Fig. 9 to make two-dimensional coordinates measurements.

    [0036] Furthermore, a transportable CMM as shown in Fig. 10 can also be realized by mounting the very compact CMM illustrated in Fig. 1 onto a hand truck 80 together with a drive battery 82 and a wireless transmitter 84, with measurement signals transmitted tirelessly to a receiver 86, a computing device 88 and a display device 90.

    [0037] The present invention can be preferably used to measure the outer shape of small parts having complicated shapes, for example, the turbo-charger of an internal combustion engine or the shape of a fin of a jet engine by copying, the inner diameter of holes, and the outer diameter of shafts.


    Claims

    1. A coordinates measuring head unit (10) comprising:

    x-axis, y-axis and z-axis drive means for allowing a probe (12) to be moved by computer numerical control along an x-axis, y-axis and z-axis respectively and brought into contact with a measuring target (8) to measure dimensions thereof, the x-axis, y-axis and z-axis being orthogonal to each other;

    an integrated housing (13), accommodating the x-axis, y-axis and z-axis drive means; and

    fixture means (20) provided on one of the side surfaces of the housing (13), and being arranged to attach any one of the drive means to a support (34), wherein the coordinate measuring head unit (10) is adapted to be separate from a base (30) and a stand (32) of the support.


     
    2. The coordinates measuring head unit according to claim 1, wherein the drive means is formed of a combination of a linear guide (14A), a ball screw (14B), and a motor (14C).
     
    3. The coordinates measuring head unit (10) according to claim 1 or 2, wherein the probe (12) is movable in three-dimensional directions, and
    the drive means for moving the probe (12) in a direction of an axis thereof is disposed on the side of the fixture means (20).
     
    4. The coordinates measuring head unit (10) according to claim 1 or 2, wherein the probe (12) is movable in two-dimensional directions orthogonal to an axis direction of the probe (12).
     
    5. The coordinates measuring head unit (10) according to any one of claims 1 to 4, wherein the probe (12) is replaceable.
     
    6. A coordinates measuring machine comprising:

    the coordinates measuring head unit (10) according to any one of claims 1 to 5;

    a base (30) on which a measuring target (8) is placed; and

    a stand (32) for supporting the coordinates measuring head unit (10) on the base (30).


     
    7. The coordinates measuring machine according to claim 6, wherein Z-axis drive means (18) for movements in a vertical direction is attached to the stand (32), Y-axis drive means (16) for movements in a direction of depth is attached to the Z-axis drive means (18), X-axis drive means (14) for movements in the lateral direction is attached to the Y-axis drive means (16), and the probe (12) is attached to the X-axis drive means (14).
     
    8. The coordinates measuring machine according to claim 6, wherein the base (30) is provided with a table (31) which is to move the measuring target (8) and includes means for measuring an amount of movement.
     
    9. The coordinates measuring machine according to any one of claims 6 to 8, wherein a position of the coordinates measuring head unit (10) can be initially manually aligned with a position of the measuring target (8) before starting measurements.
     
    10. The coordinates measuring machine according to any one of claims 6 to 9, wherein the probe (12) is replaced to allow the measuring machine to serve also as a micro-geometry measuring machine or an image measuring apparatus.
     
    11. A machine tool (50) to which the coordinates measuring head unit (10) according to any one of claims 1 to 5 is attached.
     
    12. The machine tool (50) according to claim 11, wherein the probe (12) of the coordinates measuring head unit (10) can measure a machined object, while being machined by the machine tool, without demounting the object from the machine tool.
     
    13. The machine tool (50) according to claim 11 or 12, wherein the coordinates measuring head unit (10) is moved while being linked to a measuring system of the machine tool.
     
    14. A transport line (60) to which the coordinates measuring head unit (10) according to any one of claims 1 to 5 is attached.
     
    15. The transport line (60) according to claim 14, wherein a plurality of the coordinates measuring head units (10) each with a probe having a different axis direction are attached to the transport line (60).
     
    16. A robot arm (70) to which the coordinates measuring head unit (10) according to any one of claims 1 to 5 is attached.
     
    17. A transportable coordinates measuring machine in which the coordinates measuring machine according to any one of claims 6 to 10 is mounted on a hand truck (80) together with a drive battery (82).
     


    Ansprüche

    1. Koordinaten-Messkopfeinheit (10), die Folgendes umfasst:

    Antriebsmittel für die x-Achse, die y-Achse und die z-Achse, um zu ermöglichen, dass ein Messfühler (12) durch numerische Computersteuerung entlang einer x-Achse, einer y-Achse bzw. einer z-Achse bewegt wird und in den Kontakt mit einem Messziel (8) gebracht wird, um Abmessungen desselben zu messen, wobei die x-Achse, die y-Achse und die z-Achse orthogonal zueinander sind;

    ein integriertes Gehäuse (13), das die Antriebsmittel für die x-Achse, die y-Achse und die z-Achse unterbringt; und

    ein Befestigungsmittel (20), das an einer der Seitenflächen des Gehäuses (13) vorgesehen ist und dazu angeordnet ist, ein beliebiges der Antriebsmittel an einer Halterung (34) anzubringen, wobei die Koordinaten-Messkopfeinheit (10) dazu angepasst ist, von einer Basis (30) und einer Säule (32) der Halterung getrennt zu sein.


     
    2. Koordinaten-Messkopfeinheit nach Anspruch 1, wobei die Antriebsmittel aus einer Kombination einer Linearführung (14A), einer Kugelumlaufspindel (14B) und einem Motor (14C) gebildet sind.
     
    3. Koordinaten-Messkopfeinheit (10) nach Anspruch 1 oder 2, wobei der Messfühler (12) in dreidimensionalen Richtungen bewegbar ist, und
    wobei das Antriebsmittel zum Bewegen des Messfühlers (12) in einer Richtung einer Achse desselben an der Seite des Befestigungsmittels (20) angebracht ist.
     
    4. Koordinaten-Messkopfeinheit (10) nach Anspruch 1 oder 2, wobei der Messfühler (12) in zu einer Achsenrichtung des Messfühlers (12) orthogonalen zweidimensionalen Richtungen bewegbar ist.
     
    5. Koordinaten-Messkopfeinheit (10) nach einem der Ansprüche 1 bis 4, wobei der Messfühler (12) auswechselbar ist.
     
    6. Koordinatenmessmaschine, die Folgendes umfasst:

    die Koordinaten-Messkopfeinheit (10) nach einem der Ansprüche 1 bis 5;

    eine Basis (30) auf die ein Messziel (8) platziert wird; und

    eine Säule (32) zum Halten der Koordinaten-Messkopfeinheit (10) an der Basis (30).


     
    7. Koordinatenmessmaschine nach Anspruch 6, wobei ein Z-Achsen-Antriebsmittel (18) für Bewegungen in einer vertikalen Richtung an der Säule (32) angebracht ist, ein Y-Achsen-Antriebsmittel (16) für Bewegungen in einer Tiefenrichtung an dem Z-Achsen-Antriebsmittel (18) angebracht ist und ein X-Achsen-Antriebsmittel (14) für Bewegungen in der Querrichtung an dem Y-Achsen-Antriebsmittel (16) angebracht ist und der Messfühler (12) an dem X-Achsen-Antriebsmittel (14) angebracht ist.
     
    8. Koordinatenmessmaschine nach Anspruch 6, wobei die Basis (30) mit einem Tisch (31) versehen ist, der zum Bewegen des Messziels (8) dient und Mittel zum Messen einer Größe der Bewegung umfasst.
     
    9. Koordinatenmessmaschine nach einem der Ansprüche 6 bis 8, wobei eine Position der Koordinaten-Messkopfeinheit (10) anfänglich manuell auf eine Position des Messziels (8) ausgerichtet werden kann, bevor mit Messungen begonnen wird.
     
    10. Koordinatenmessmaschine nach einem der Ansprüche 6 bis 9, wobei der Messfühler (12) ausgewechselt ist, um zu ermöglichen, dass die Messmaschine auch als Mikrogeometrie-Messmaschine oder eine Bildmessvorrichtung dienen kann.
     
    11. Werkzeugmaschine (50), an der die Koordinaten-Messkopfeinheit (10) nach einem der Ansprüche 1 bis 5 angebracht ist.
     
    12. Werkzeugmaschine (50) nach Anspruch 11, wobei der Messfühler (12) der Koordinaten-Messkopfeinheit (10) einen spanabhebend bearbeiteten Gegenstand messen kann, während er von der Werkzeugmaschine spanabhebend bearbeitet wird, ohne den Gegenstand aus der Werkzeugmaschine auszubauen.
     
    13. Werkzeugmaschine (50) nach Anspruch 11 oder 12, wobei die Koordinaten-Messkopfeinheit (10) bewegt wird, während sie mit einem Messsystem der Werkzeugmaschine verbunden ist.
     
    14. Transportlinie (60), an der die Koordinaten-Messkopfeinheit (10) nach einem der Ansprüche 1 bis 5 angebracht ist.
     
    15. Transportlinie (60) nach Anspruch 14, wobei eine Vielzahl der Koordinaten-Messkopfeinheiten (10) mit jeweils einem Messfühler mit einer anderen Achsenrichtung an der Transportlinie (60) angebracht sind.
     
    16. Roboterarm (70), an dem die Koordinaten-Messkopfeinheit (10) nach einem der Ansprüche 1 bis 5 angebracht ist.
     
    17. Transportierbare Koordinatenmessmaschine, bei der die Koordinatenmessmaschine nach einem der Ansprüche 6 bis 10 zusammen mit einer Antriebsbatterie (82) auf einem Handwagen (80) montiert ist.
     


    Revendications

    1. Unité tête de mesure de coordonnées (10) comprenant :

    des moyens d'entraînement sur l'axe des x, l'axe des y et l'axe des z pour permettre à un palpeur (12) d'être bougé par commande numérique par ordinateur le long d'un axe des x, d'un axe des y et d'un axe des z respectivement et d'être amené en contact avec une cible de mesure (8) pour mesurer les dimensions de celle-ci, l'axe des x, l'axe des y et l'axe des z étant orthogonaux l'un à l'autre ;

    un boîtier intégré (13) dans lequel sont logés les moyens d'entraînement sur l'axe des x, sur l'axe des y et sur l'axe des z ;
    et

    un moyen de fixation (20) prévu sur un côté des surfaces latérales du boîtier (13), et étant agencé de façon à attacher l'un quelconque des moyens d'entraînement à un support (34), l'unité tête de mesure de coordonnées (10) étant adaptée de façon à être séparée d'une base (30) et d'un montant (32) du support.


     
    2. Unité tête de mesure de coordonnées selon la revendication 1, dans laquelle le moyen d'entraînement est formé d'une combinaison d'un guide linéaire (14A), d'une vis sphérique (14B), et d'un moteur (14C).
     
    3. Unité tête de mesure de coordonnées (10) selon la revendication 1 ou 2, dans laquelle le palpeur (12) est capable de bouger dans des directions tridimensionnelles, et le moyen d'entraînement pour bouger le palpeur (12) dans une direction d'un axe de celui-ci est disposé sur le côté du moyen de fixation (20).
     
    4. Unité tête de mesure de coordonnées (10) selon la revendication 1 ou 2, dans laquelle le palpeur (12) est capable de bouger dans des directions bidimensionnelles orthogonales à une direction d'axe du palpeur (12).
     
    5. Unité tête de mesure de coordonnées (10) selon l'une quelconque des revendications 1 à 4, dans laquelle le palpeur (12) est remplaçable.
     
    6. Machine de mesure de coordonnées comprenant :

    l'unité tête de mesure de coordonnées (10) selon l'une quelconque des revendications 1 à 5 ;

    une base (30) sur laquelle une cible de mesure (8) est placée ; et

    un montant (32) pour supporter l'unité tête de mesure de coordonnées (10) sur la base (30).


     
    7. Machine de mesure de coordonnées selon la revendication 6, dans laquelle le moyen d'entraînement sur l'axe des Z (18) pour les mouvements dans une direction verticale est attaché au montant (32), le moyen d'entraînement sur l'axe des Y (16) pour les mouvements dans une direction de profondeur est attaché au moyen d'entraînement sur l'axe des Z (18), le moyen d'entraînement sur l'axe des X (14) pour les mouvements dans la direction latérale est attaché au moyen d'entraînement sur l'axe des Y (16), et le palpeur (12) est attaché au moyen d'entraînement sur l'axe des X (14).
     
    8. Machine de mesure de coordonnées selon la revendication 6, dans laquelle la base (30) est pourvue d'une table (31) qui sert à bouger la cible de mesure (8) et qui comprend un moyen pour mesurer une quantité de mouvement.
     
    9. Machine de mesure de coordonnées selon l'une quelconque des revendications 6 à 8, dans laquelle une position de l'unité tête de mesure de coordonnées (10) peut être initialement alignée manuellement avec une position de la cible de mesure (8) avant de commencer les mesures.
     
    10. Machine de mesure de coordonnées selon l'une quelconque des revendications 6 à 9, dans laquelle le palpeur (12) est remplacé pour permettre à la machine de mesure de servir aussi comme une machine de mesure de micro-géométrie ou comme une machine de mesure d'image.
     
    11. Machine-outil (50) à laquelle est attachée l'unité tête de mesure de coordonnées (10) selon l'une quelconque des revendications 1 à 5.
     
    12. Machine-outil (50) selon la revendication 11, dans lequel le palpeur (12) de l'unité tête de mesure de coordonnées (10) peut mesurer un objet usiné, tandis qu'il est en train d'être usiné par la machine-outil, sans démonter cet objet de la machine-outil.
     
    13. Machine-outil (50) selon la revendication 11 ou 12, dans laquelle l'unité tête de mesure de coordonnées (10) est bougée tandis qu'elle est reliée à un système de mesure de la machine-outil.
     
    14. Ligne de transport (60) à laquelle est attachée l'unité tête de mesure de coordonnées (10) selon l'une quelconque des revendications 1 à 5.
     
    15. Ligne de transport (60) selon la revendication 14, dans laquelle une pluralité des unités têtes de mesure de coordonnées (10), chacune avec un palpeur ayant une direction d'axe différente, sont attachées à la ligne de transport (60).
     
    16. Bras robotisé (70) auquel est attachée l'unité tête de mesure de coordonnées (10) selon l'une quelconque des revendications 1 à 5.
     
    17. Machine de mesure de coordonnées transportable, cette machine de mesure de coordonnées transportable selon l'une quelconque des revendications 6 à 10 étant montée sur un chariot manuel (80) avec une batterie d'entraînement (82).
     




    Drawing



































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description