(19)
(11)EP 2 434 774 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
21.03.2018 Bulletin 2018/12

(21)Application number: 09847700.3

(22)Date of filing:  28.07.2009
(51)Int. Cl.: 
H04Q 11/00  (2006.01)
H04J 14/02  (2006.01)
(86)International application number:
PCT/CN2009/072962
(87)International publication number:
WO 2011/011914 (03.02.2011 Gazette  2011/05)

(54)

APPARATUS AND METHOD FOR COLORLESS OPTICAL SWITCH

VORRICHTUNG UND VERFAHREN FÜR EINEN FARBLOSEN OPTISCHEN SCHALTER

APPAREIL ET PROCÉDÉ PERMETTANT UNE COMMUTATION OPTIQUE INCOLORE


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(43)Date of publication of application:
28.03.2012 Bulletin 2012/13

(73)Proprietor: Huawei Technologies Co., Ltd.
Longgang District Shenzhen, Guangdong 518129 (CN)

(72)Inventors:
  • ZHANG, Guangyong
    Shenzhen Guangdong 518129 (CN)
  • SHEN, Shuqiang
    Shenzhen Guangdong 518129 (CN)

(74)Representative: Pfenning, Meinig & Partner mbB 
Patent- und Rechtsanwälte Theresienhöhe 11a
80339 München
80339 München (DE)


(56)References cited: : 
EP-A2- 1 054 572
WO-A2-2004/028197
US-A1- 2003 152 072
WO-A1-00/41430
CN-A- 1 901 416
  
  • SORIN TIBULEAC: "ROADM network design issues", OPTICAL FIBER COMMUNICATION - INCUDES POST DEADLINE PAPERS, 2009. OFC 2009. CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 22 March 2009 (2009-03-22), pages 1-48, XP031467587, ISBN: 978-1-4244-2606-5
  • 'International Conference on Photonics in Switching, Aug. 2008', article MITSUI, SHINICHI ET AL.: 'Hierarchical Optical Path Cross-Connect Node Architecture Using WSS/WBSS', XP031443885
  • ZHANG, YU ET AL.: 'Research on Multi-Granularity Optical Cross-Connect' ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS PEKINENSIS. vol. 43, no. 1, January 2007, pages 72 - 77, XP008150877
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] The present invention relates to optical communications technologies, and more particularly, to a device and a method for colorless optical switching.

BACKGROUND



[0002] Optical networks are evolving to mesh networks. In the existing technology, nodes in the optical networks are below 4 dimensions, whereas in the future, nodes in the optical networks will evolve from 2 - 3 dimensions to 4 - 5 dimensions, or even more dimensions. This requires advanced optical switching technology.

[0003] Currently, granularity in optical switching mainly depends on wavelength exchange, which requires that the optical switching device should have 100% Add/Drop capability. That is, the ratio of the number of Add/Drop wavelengths to the number of the wavelengths input by the optical switching device is required to be 100%. In addition, colorlessness is also required for the optical switch device. Colorlessness indicates that the optical switch device can achieve exchange of light with various wavelengths rather than only light with specific wavelengths.

[0004] FIG 5 shows the structure of an optical switching device provided in the prior art. The working principles of the device are as follows: An optical splitter 31 splits a beam of light into more than one beam of light and drops some beams of light to the local, and a wavelength blocker (WB) 32 selects the wavelengths of other beams of light that needs to pass, and an optical splitter 33 inputs the beams of light, obtained by splitting and dropped to the local, into a tunable filter array 34, where the output port of the tunable filter array 34 can selectively implement the dropping of light with any wavelength. The optical splitter 33 may be a 1 x N optical splitter. That is, a beam of light is split into n beams of light. More than one beam of light to be added is combined, by an optical splitter 35, into one beam of light, input into an optical splitter 36, and converges with the output light that passes through the WB 32. The light split by the optical splitter 36 is combined by an optical combiner 37. FIG. 5 shows an optical switching device featuring colorlessness. An optical multiplexer is provided to implement colorless adding of light with various wavelengths. However, the optical switching device in FIG 5 has the following problems: The tunable filter has high insertion loss, and the costs is high.

[0005] US 2003/0152072 A1 discloses an optical routing device for wavelength division multiplexed (WDM) optical signals includes an optical switch matrix having a first optical switch array and a second optical switch array, the first optical switch array being adapted to couple optical signals to the second optical switch array on the basis of the wavelength of respective optical signals. The second optical switch array includes a number of optical switch devices, each of which is dedicated to route traffic on a respective wavelength. The device includes a drop traffic path and a through traffic path, in which the drop traffic path includes a transponder unit that is selectively reconfigurable to couple signals to a through traffic path and thereby provide a signal regeneration path.

SUMMARY



[0006] To solve the technical problems in the prior art, the present invention provides a device and a method for colorless optical switching to realize colorless optical switching, lower the costs, and reduce the insertion loss.

[0007] A device for colorless optical switching according to embodiments of the present invention includes:

a demultiplexer, configured to demultiplex the input multi-wavelength light into multiple beams of light with single wavelength;

a first optical cross unit, configured to receive the multiple beams of light with single wavelength, obtained by the demultiplexer in the way of demultiplexing, and output the multiple beams of light with single wavelength through target ports, wherein the first optical cross unit is adapted to switch light received by its any input port to its any output port;

an optical switch array, configured to: receive multiple beams of light with single wavelength output by the first optical cross unit, and drop a light that needs to be dropped, from the multiple beams of light with single wavelength output by the first optical cross unit, to the local node; receive a light added by the local node; and output a light that needs to pass, from the multiple beams of light with single wavelength output by the first optical cross unit and the light added by the local node;

a combiner, configured to combine the light output by the optical switch array.



[0008] A method for colorless optical switching according to embodiments of the present invention includes:

demultiplexing, by the demultiplexer, the input multi-wavelength light into multiple beams of light with single wavelength;

receiving, by the first optical cross unit, the multiple beams of light with single wavelength, and outputting the multiple beams of light with single wavelength through target ports of the first optical cross unit, wherein the first optical cross unit is adapted to switch light received by its any input port to its any output port;

receiving, by the optical switch array, multiple beams of light with single wavelength output by the first optical cross unit, dropping a light that needs to be dropped, from the multiple beams of light with single wavelength output by the first optical cross unit, receiving a light added by the local node, and outputting a light that needs to pass, from the multiple beams of light with single wavelength output by the first optical cross unit and the light added by the local node; and

combining, by a combiner, the light output by the optical switch array.



[0009] The device for optical switching according to embodiments of the present invention can output the light with any wavelength through any port of the first optical cross unit by using the first optical cross unit and the optical switch array, featuring colorlessness, low insertion loss, and low costs.

[0010] The technical solution of the present invention is further elaborated with reference to the accompanying drawings and embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS



[0011] 

FIG. 1 is a schematic diagram showing the structure of an optical switching device according to a first embodiment of the present invention;

FIG. 2 is a schematic diagram showing transmission paths through which the light with various wavelengths is transmitted;

FIG. 3 is a schematic diagram showing the structure of an optical switching device according to a second embodiment of the present invention;

FIG. 4 is a flowchart of a method for colorless optical switching according to a first embodiment of the present invention; and

FIG. 5 is a schematic diagram showing the structure of an optical switching device in the prior art.


DETAILED DESCRIPTION OF THE EMBODIMENTS



[0012] FIG. 1 is a schematic diagram showing the structure of an optical switching device according to a first embodiment of the present invention. The optical switching device includes a demultiplexer 11, a first optical cross unit 12, an optical switch array 13, and a combiner 14, where the first optical cross unit 12 is respectively connected to the demultiplexer 11 and the optical switch array 13, and the optical switch array 13 is connected to the combiner 14. The demultiplexer 11 is configured to demultiplex the input multi-wavelength light into multiple beams of light with single wavelength; the first optical cross unit 12 is configured to receive the multiple beams of light with single wavelength, obtained by the demultiplexer 11 in the way of demultiplexing, and output the multiple beams of light with single wavelength through target ports; the optical switch array 13 is configured to receive multiple beams of light with single wavelength output by the first optical cross unit 12, drop the light that needs to be dropped, from the multiple beams of light with single wavelength output by the first optical cross unit 12, to the local node, receive a light added by the local node, and output a light that needs to pass, from the multiple beams of light with single wavelength output by the first optical cross unit 12 and the light added by the local node; the combiner 14 is configured to combine the light output by the optical switch array 13.

[0013] In the field of optical communications, it is a common means that multiple beams of light with wavelength are combined by a multiplexer and transmitted through one optical fiber, and then demultiplexed by the demultiplexer into multiple beams of light with single wavelength.

[0014] The optical cross unit is a non-blocking switch. It can realize switching of light at any input port and any output port, featuring transparency for bit, protocol, and wavelength. The optical cross unit according to embodiments of the present invention may be a 3-dimensional (3D) Micro-Electro-Mechanical Systems (MEMS) optical switch.

[0015] The optical switch array is composed of multiple optical switches. The optical switch may be a 2 x 2 optical switch, or a 4 x 4 optical switch, which depends on the actual condition of the optical communication network.

[0016] The optical switch device shown in FIG. 1 may further include a first control unit 15 respectively connected to the first optical cross unit 12 and the optical switch array 13, and configured to send a first control information to the first optical cross unit 12, and send a second control information to optical switch array 13, where:

the first control information is information about the target porst through which the first optical cross unit 12 outputs the multiple beams of light with single wavelength;

the second control information includes: information about a light that needs to be dropped, from the multiple beams of light with single wavelength; information about the port through which the optical switch array 13 drops the light that needs to be dropped, from the multiple beams of light with single wavelength, to the local node; information about the port through which the optical switch array 13 receives the light added by the local node, information about the port through which the optical switch array 13 outputs the light that needs to pass, from the multiple beams of light with single wavelength, and information about the port through which the optical switch array 13 outputs the light added by the local node.



[0017] The first control unit 15 sends the first control information to the first optical cross unit 12, and sends the second control information to the optical switch array 13, thereby controlling transmission of multi-wavelength light in the first optical cross unit 12 and the optical switch array 13.

[0018] The working principles of the optical switching device as shown in FIG. 1 are as follows: The demultiplexer demultiplexes the multi-wavelength light into multiple beams of light with single wavelength, and the first optical cross unit receives the multiple beams of light with single wavelength output by the demultiplexer, and outputs the multiple beams of light with single wavelength through the target ports under the control of the first control unit, where the target ports are the ports through which the first optical cross unit outputs the multiple beams of light with single wavelength and the target ports are determined by the first control unit; the optical switch array receives multiple beams of light with single wavelength output by the first optical cross unit under the control of the first control unit, drops the light that needs to be dropped, from the multiple beams of light with single wavelength output by the first optical cross unit, to the local node, receives the light added by the local node, and outputs the light that needs to pass, from the multiple beams of light with single wavelength output by the first optical cross unit and the light added by the local node; the combiner combines the light with various wavelengths output by the optical switch array.

[0019] FIG. 2 is a schematic diagram showing the transmission paths for the light with various wavelengths shown in FIG. 1. In FIG. 2, the light with wavelengths being λ1 and λ2 that are obtained through demultiplexing by the demultiplexer emits from the target ports in the first optical cross unit. The light with wavelength being λ3 is light added by the local node, the light with wavelength being λ2 is light that needs to pass, the light with wavelength being λ1 is light that needs to be dropped to the local node, and the light with wavelengths being λ2 and λ3 is output from the optical switch array and combined by the combiner.

[0020] When the number of wavelengths of the light to be added or dropped increases, the optical switches in the optical switch array shown in FIG. 2 may be added. For example, when 8 wavelengths are to be added or dropped, eight 2 x 2 optical switches are needed; if 16 wavelengths are to be added or dropped, it is only necessary to add another eight 2 x 2 optical switches. The optical switch array provided in the embodiment of the present invention features reconstruction and easy extension.

[0021] The optical switching device according to a first embodiment of the present invention can output the light with any wavelength through any port of the first optical cross unit by using the first optical cross unit and the optical switch array, add light with any wavelength through any port of the optical switch array, and drop light with any wavelength from any port of the optical switch array, featuring colorlessness, low insertion loss, and low costs compared with the tunable filter in the prior art. In the first embodiment of the present invention, the ports in the optical switch array are taken as the ports through which light is added and dropped. It is unnecessary to add the port in the first optical cross unit to add and drop light, thereby reducing the number of ports in the first optical cross unit and reducing costs, featuring reconstruction and easy extension.

[0022] FIG. 3 is a schematic diagram showing the structure of the optical switching device according to a second embodiment of the present invention. The second embodiment differs from the embodiment shown in FIG. 1 in the following: In the second embodiment, the optical switch array 13 includes a first sub-array 131, a second sub-array 132, and a second optical cross unit 133, where the first sub-array 131 is configured to receive multiple beams of light with single wavelength output by the first optical cross unit 12, drop the light that needs to be dropped, from the multiple beams of light with single wavelength output by the first optical cross unit 12, and input the light that needs to pass, from the multiple beams of light with single wavelength output by the first optical cross unit 12, into the second sub-array 132; the second sub-array 132 is configured to receive the light that needs to pass, from multiple beams of light with single wavelength output by the first sub-array 131, receive the light added by the local node, and output the light that needs to pass, from the multiple beams of light with single wavelength and the light that is added by the local node; the second optical cross unit 133 is configured to receive the light output by the second sub-array 132, where the light output by the second sub-array 132 includes the light that needs to pass, from the multiple beams of light with single wavelength and the light added by the local node, and output the light that needs to pass, from the light with multiple single wavelengths and the light added by the local node from target ports.

[0023] The optical switch device shown in FIG. 3 further includes a second control unit 16 respectively connected to a first optical cross unit 12, a first sub-array 131, a second sub-array 132, and a second optical cross unit 133, and configured to send third control information to the first optical cross unit 12, send fourth control information to the first sub-array 131, send fifth control information to the second sub-array 132, and send sixth control information to the second optical cross unit 133, where:

the third control information is information about the target ports through which the first optical cross unit 12 outputs multiple beams of light with single wavelength;

the fourth control information includes information about the light to be dropped, from the multiple beams of light with single wavelength, information about the port through which the first sub-array 131 drops light to be dropped, from the multiple beams of light with single wavelength, and information about the port through which the first sub-array 131 outputs the light that needs to pass, from the multiple beams of light with single wavelength;

the fifth control information includes information about the port through which the second sub-array 132 outputs the light that needs to pass, from the multiple beams of light with single wavelength, information about the port through which the second sub-array 132 receives the light added by the local node, and information about the port through which the second sub-array 132 outputs the light added by the local node;

the sixth control information includes information about the port through which the second optical cross unit 133 outputs the light that needs to pass, from the multiple beams of light with single wavelength, and information about the port through which the second optical cross unit 133 outputs the light added by the local node.



[0024] The first sub-array 131 may be an array including multiple 1 × 2 optical switches, and the second sub-array 132 may be an array including multiple 2 × 1 optical switches.

[0025] The working principles of the optical switch device shown in FIG. 3 are as follows: The input light after being demultiplexed by the demultiplexer is called multiple beams of light with single wavelength. For example, with reference to the light with wavelengths being λ1, λ2, λ3, ..., and λn, under the control of the second control unit, the first sub-array drops beams of light that needs to be dropped (such as light with the wavelength being λ2), to the local node, and input other beams of light that needs to pass into the second sub-array; the second sub-array receives the light added by the local node (such as light with the wavelength being λ2), and output the light added by the local node and light that needs to pass (such as light with the wavelength being λ1) to the second optical cross unit; light with various wavelengths can be re-selected in the second optical cross unit, for example, can selectively be output through different target ports; the combiner combines the light output by the second optical cross unit.

[0026] In the embodiments of the present invention, the combiner may be a coupler or a multiplexer. The ports of the coupler have no requirement on the wavelength, that is, ports of the coupler accept light with any wavelength within the acceptable range. The ports of the multiplexer, however, give limitation to the wavelength, that is, ports of the multiplexer accept only light with specific wavelengths. In the optical switching device shown in FIG. 2, the combiner may be a coupler. The light output from 2 × 2 optical switches may be directly input into the optical multiplexer. The combiner in FIG. 3 may be a multiplexer. The second optical cross unit is placed between the second sub-array and the combiner. The port can be selected via the second optical cross unit, where light output from the second sub-array is output through the selected port, so that the wavelengths of light output by the second optical cross unit correspond to ports of the combiner, thereby realizing optical switching.

[0027] The optical switching device shown in FIG. 3 uses the second optical cross unit and multiplexer in combination to output the light output by the second sub-array, thereby featuring low insertion loss, in comparison with the technical solution that the optical switching device shown in FIG. 2 directly uses the coupler to output the light output from 2 × 2 optical switches.

[0028] With reference to the optical switching device shown in FIG. 3, when the number of wavelengths to be added or dropped increases, the first sub-array and the second sub-array can be expand to meet the demands.

[0029] The local nodes in embodiments of the present invention refer to the nodes equipped with the optical switching device in the optical network. Such nodes can realize the adding and dropping of light with various wavelengths.

[0030] FIG. 4 is a flowchart of a method for colorless optical switching according to a first embodiment of the present invention.

[0031] Step 101: The demultiplexer demultiplexes the input multi-wavelength light into multiple beams of light with single wavelength.

[0032] Step 102: The first optical cross unit receives the multiple beams of light with single wavelength, and outputs the multiple beams of light with single wavelength through the target ports of the first optical cross unit.

[0033] Step 103: The optical switch array receives multiple beams of light with single wavelength output by the first optical cross unit, drops the light that needs to be dropped, from the multiple beams of light with single wavelength output by the first optical cross unit, to the local node, receives the light added by the local node, and outputs the light that needs to pass, from the multiple beams of light with single wavelength output by the first optical cross unit and the light added by the local node.

[0034] Step 104: The combiner combines the light output by the optical switch array.

[0035] Specifically, step 103 may further include the following:

Step 1031: The first sub-array in the optical switch array receives the multiple beams of light with single wavelength output by the first optical cross unit, drops the light that needs to be dropped, from the multiple beams of light with single wavelength output by the first optical cross unit, to the local node, and inputs the light that needs to pass, from the multiple beams of light with single wavelength output by the first optical cross unit, into the second sub-array of the optical switch array.



[0036] Step 1032: The second sub-array receives the light that needs to pass, from the multiple beams of light with single wavelength output by the first sub-array, receives the light added by the local node, and outputs the light that needs to pass, from multiple beams of light with single wavelength and the light added by the local node.

[0037] Step 1033: The second optical cross unit in the optical switch array receives the light output by the second sub-array, where the light output by the second sub-array includes the light that needs to pass, from the multiple beams of light with single wavelength output by the second sub-array and the light added by the local node, and outputs the light that needs to pass and the light added by the local node through the target ports in the second optical cross unit.

[0038] It is to be noted that the above descriptions are merely some exemplary embodiments of the present invention, but not intended to limit the scope of the present invention. Those skilled in the art should understand that: Any modification, equivalent replacement, or improvement made without departing from the principle of the present invention should fall within the scope of the present invention, which is solely defined by the appended claims.


Claims

1. A device for colorless optical switching, comprising:

a demultiplexer (11), configured to demultiplex input multi-wavelength light into multiple beams of light with single wavelength;

a first optical cross unit (12), configured to receive the multiple beams of light with single wavelength, obtained by the demultiplexer (12) in the way of demultiplexing, and output the multiple beams of light with single wavelength through target ports, wherein the first optical cross unit (12) is adapted to switch light received by its any input port to its any output port;

an optical switch array (13), configured to receive multiple beams of light with single wavelength output by the first optical cross unit (12), drop light that needs to be dropped, from the multiple beams of light with single wavelength output by the first optical cross unit (12), to a local node, receive light added by the local node, and output light that needs to pass, from the multiple beams of light with single wavelength output by the first optical cross unit (12) and the light added by the local node; and

a combiner (14), configured to combine the light output by the optical switch array (13).


 
2. The device according to claim 1, further comprising a first control unit (15), connected to the first optical cross unit (12) and the optical switch array (13) and configured to send a first control information to the first optical cross unit (12), and a send second control information to the optical switch array (13), wherein the first control information is information about target ports through which the first optical cross unit (12) outputs the multiple beams of light with single wavelength, and the second control information comprises information about light to be dropped, from the multiple beams of light with single wavelength, information about a port through which the optical switch array (13) drops light that needs to be dropped, from the multiple beams of light with single wavelength, to a local node, information about a port through which the optical switch array (13) receives the light added by the local node, and information about a port through which the optical switch array (13) outputs the light that needs to pass, from the multiple beams of light with single wavelength, and information about a port through which the optical switch array (13) outputs the light added by the local node.
 
3. The device according to claim 1 or 2, wherein the combiner (14) is a coupler.
 
4. The device according to claim 1, wherein the optical switch array (13) comprises a first sub-array (131), a second sub-array (132), and a second optical cross unit (133);
the first sub-array (131) is configured to receive the multiple beams of light with single wavelength output by the first optical cross unit (12), drop the light that needs to be dropped, from the multiple beams of light with single wavelength output by the first optical cross unit (12), to the local node, and input the light that needs to pass, from the multiple beams of light with single wavelength output by the first optical cross unit (12), into the second sub-array (132);
the second sub-array (132) is configured to receive the light that needs to pass, from the multiple beams of light with single wavelength output by the first sub-array (131), receive the light added by the local node, and output the light that needs to pass, from the light with multiple single wavelengths and the light added by the local node; and
the second optical cross unit (133) is configured to receive the light, output by the second sub-array (132), that needs to pass, from the light with multiple single wavelengths and the light added by the local node output by the second sub-array (132), and output the light that needs to pass, from the multiple beams of light with single wavelength and the light added by the local node from the target ports.
 
5. The device according to claim 4, further comprising a second control unit (16), respectively connected to the first optical cross unit (12), the first sub-array (131), the second sub-array (132), and the second optical cross unit (133), and configured to send third control information to a first optical cross unit (12), send a fourth control information to the first sub-array (131), send a fifth control information to the second sub-array (132), send a sixth control information to the second optical cross unit (133), wherein:

the third control information is information about target ports through which the first optical cross unit (12) outputs the multiple beams of light with single wavelength;

the fourth control information is information about the light that needs to be dropped, from the multiple beams of light with single wavelength, information about a port through which the first sub-array (131) drops the light that needs to be dropped, from the multiple beams of light with single wavelength, to the local node, and information about a port through which the first sub-array (131) outputs light that needs to pass, from the multiple beams of light with single wavelength;

the fifth control information comprises information about a port through which the second sub-array (132) outputs the light that needs to pass, from the multiple beams of light with single wavelength, information about a port through which the second sub-array (132) receives the light added by the local node, and information about a port through which the second sub-array outputs the light added by the local node;

the sixth control information comprises information about a port through which the second optical cross unit (133) outputs the light that needs to pass, from the multiple beams of light with single wavelength, and information about a port through which the second optical cross unit (133) outputs the light added by the local node.


 
6. The device according to claim 5, wherein the combiner (14) is a multiplexer.
 
7. The device according to claim 5 or 6, wherein the first optical cross unit (14) and the second optical cross unit are 3-dimensional (3D) Micro-Electro-Mechanical Systems (MEMS) optical switches.
 
8. A method for colorless optical switching, comprising:

demultiplexing (101), by a demultiplexer, input multi-wavelength light into multiple beams of light with single wavelength;

receiving (102), by a first optical cross unit, the multiple beams of light with single wavelength, and outputting the multiple beams of light with single wavelength through target ports of the first optical cross unit, wherein the first optical cross unit is adapted to switch light received by its any input port to its any output port;

receiving (103), by an optical switch array, the multiple beams of light with single wavelength output by the first optical cross unit, dropping light that needs to be dropped, from the multiple beams of light with single wavelength output by the first optical cross unit, to a local node, receiving light added by the local node, and outputting light that needs to pass, from the multiple beams of light with single wavelength output by the first optical cross unit and the light added by the local node; and

combining (104), by a combiner, the light output by the optical switch array.


 
9. The method according to claim 8, wherein the receiving (104), by an optical switch array, the multiple beams of light with single wavelength output by the first optical cross unit, dropping light that needs to be dropped, from the multiple beams of light with single wavelength output by the first optical cross unit, to the local node, receiving light added by the local node, and outputting light that needs to pass, from the multiple beams of light with single wavelength output by the first optical cross unit and the light added by the local node comprise:

receiving, by a first sub-array in the optical switch array, the multiple beams of light with single wavelength output by the first optical cross unit, dropping the light that needs to be dropped, from the multiple beams of light with single wavelength output by the first optical cross unit, to the local node, and inputting the light that needs to pass, from the multiple beams of light with single wavelength output by the first optical cross unit into a second sub-array of the optical switch array;

receiving, by the second sub-array, the light that needs to pass, from the multiple beams of light with single wavelength output by the first sub-array, receiving the light added by the local node, and outputting the light that needs to pass in the light with multiple single wavelengths and the light added by the local node; and

receiving, by a second optical cross unit in the optical switch array, the light, output by the second sub-array, that needs to pass in the multiple single light and the light, output by the second sub-array, added by the local node, and outputting the light that needs to pass in the multiple beams of light with single wavelength and the light added by the local node through target ports in the second optical cross unit.


 


Ansprüche

1. Einrichtung zum farblosen optischen Schalten, umfassend:

einen Demultiplexer (11), der zum Demultiplexieren von eingegebenem Mehrwellenlängenlicht in mehrere Lichtstrahlen mit einziger Wellenlänge konfiguriert ist;

eine erste optische Kreuzeinheit (12), die konfiguriert ist zum Empfangen der mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von dem Demultiplexer (12) während des Demultiplexens erhalten werden, und zum Ausgeben der mehrfachen Lichtstrahlen mit einziger Wellenlänge durch Zielports, wobei die erste optische Kreuzeinheit (12) dazu ausgelegt ist, Licht, das von einem beliebigen Eingangsport davon empfangen wurde, zu einem beliebigen Ausgangsport davon umzuschalten;

ein optisches Schaltarray (13), das dazu konfiguriert ist, mehrfache Lichtstrahlen mit einziger Wellenlänge, die von der ersten Kreuzeinheit (12) ausgegeben werden, zu empfangen, auszukoppelndes Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von der ersten optischen Kreuzeinheit (12) ausgegeben werden, zu einem lokalen Knoten auszukoppeln, Licht, das von dem lokalen Knoten hinzugefügt wird, zu empfangen, und durchzulassendes Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von der ersten optischen Kreuzeinheit (12) ausgegeben werden, und dem Licht, das von dem lokalen Knoten hinzugefügt wird, auszugeben; und

einen Kombinierer (14), der zum Kombinieren des von dem optischen Schaltarray (13) ausgegebenen Lichts konfiguriert ist.


 
2. Einrichtung nach Anspruch 1, ferner umfassend eine erste Steuereinheit (15), die mit der ersten optischen Kreuzeinheit (12) und dem optischen Schaltarray (13) verbunden ist und konfiguriert ist zum Senden einer ersten Steuerinformation an die erste optische Kreuzeinheit (12) und zum Senden einer zweiten Steuerinformation an das optische Schaltarray (13), wobei die erste Steuerinformation eine Information über Zielports ist, durch die die erste optische Kreuzeinheit (12) die mehrfachen Lichtstrahlen mit einziger Wellenlänge ausgibt, und die zweite Steuerinformation eine Information über auszukoppelndes Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, eine Information über einen Port, durch den das optische Schaltarray (13) auszukoppelndes Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, zu einem lokalen Knoten auskoppelt, eine Information über einen Port, durch den das optische Schaltarray (13) das von dem lokalen Knoten hinzugefügte Licht empfängt, und eine Information über einen Port, durch den das optische Schaltarray (13) durchzulassendes Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, ausgibt, und eine Information über einen Port, durch den das optische Schaltarray (13) das von dem lokalen Knoten hinzugefügte Licht ausgibt, umfasst.
 
3. Einrichtung nach Anspruch 1 oder 2, wobei der Kombinierer (14) ein Koppler ist.
 
4. Einrichtung nach Anspruch 1, wobei das optische Schaltarray (13) ein erstes Unterarray (131), ein zweites Unterarray (132) und eine zweite optische Kreuzeinheit (133) umfasst;
das erste Unterarray (131) dazu konfiguriert ist, die mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von der ersten optischen Kreuzeinheit (12) ausgegeben werden, zu empfangen, auszukoppelndes Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von der ersten optischen Kreuzeinheit (12) ausgegeben werden, an den lokalen Knoten auszukoppeln und das durchzulassende Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von der ersten optischen Kreuzeinheit (12) ausgegeben werden, in das zweite Unterarray (132) einzukoppeln; das zweite Unterarray (132) dazu konfiguriert ist, das durchzulassende Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von dem ersten Unterarray (131) ausgegeben werden, zu empfangen, das von dem lokalen Knoten hinzugefügte Licht zu empfangen, und das durchzulassende Licht, aus dem Licht mit mehrfachen einzigen Wellenlängen und dem Licht, das von dem lokalen Knoten hinzugefügt wird, auszugeben; und
die zweite optische Kreuzeinheit (133) dazu konfiguriert ist, das von dem zweiten Unterarray (132) ausgegebene Licht, das durchzulassen ist, aus dem Licht mit mehrfachen einzigen Wellenlängen und dem von dem lokalen Knoten hinzugefügten Licht, das von dem zweiten Unterarray (132) ausgegeben wird, zu empfangen, und das durchzulassende Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge und dem von dem lokalen Knoten hinzugefügten Licht, aus den Zielports auszugeben.
 
5. Einrichtung nach Anspruch 4, ferner umfassend eine zweite Steuereinheit (16), die jeweils mit der ersten optischen Kreuzeinheit (12), dem ersten Unterarray (131), dem zweiten Unterarray (132) und der zweiten optischen Kreuzeinheit (133) verbunden ist und konfiguriert ist zum Senden einer dritten Steuerinformation an eine erste optische Kreuzeinheit (12), Senden einer vierten Steuerinformation an das erste Unterarray (131), Senden einer fünften Steuerinformation an das zweite Unterarray (132), Senden einer sechsten Steuerinformation an die zweite optische Kreuzeinheit (133), wobei:

die dritte Steuerinformation eine Information über Zielports ist, durch die die erste optische Kreuzeinheit (12) die mehrfachen Lichtstrahlen mit einziger Wellenlänge ausgibt;

die vierte Steuerinformation eine Information über das auszukoppelnde Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, eine Information über einen Port, durch den das erste Unterarray (131) das auszukoppelnde Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, zu dem lokalen Knoten auskoppelt, und eine Information über einen Port, durch den das erste Unterarray (131) durchzulassendes Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, ist;

die fünfte Steuerinformation eine Information über einen Port, durch den das zweite Unterarray (132) das durchzulassende Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, ausgibt, eine Information über einen Port, durch den das zweite Unterarray (132) das von dem lokalen Knoten hinzugefügte Licht empfängt, und eine Information über einen Port, durch den das zweite Unterarray das von dem lokalen Knoten hinzugefügte Licht ausgibt, umfasst;

die sechste Steuerinformation eine Information über einen Port, durch den die zweite optische Kreuzeinheit (133) das durchzulassende Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, ausgibt, und eine Information über einen Port, durch den die zweite optische Kreuzeinheit (133) das von dem lokalen Knoten hinzugefügte Licht ausgibt, umfasst.


 
6. Einrichtung nach Anspruch 5, wobei der Kombinierer (14) ein Multiplexer ist.
 
7. Einrichtung nach Anspruch 5 oder 6, wobei die erste optische Kreuzeinheit (14) und die zweite optische Kreuzeinheit 3-dimensionale (3D-) optische MEMS(mikroelektromechanisches System)-Schalter sind.
 
8. Verfahren zum farblosen optischen Schalten, umfassend:

Demultiplexieren (101), durch einen Demultiplexer, von eingegebenem Mehrwellenlängenlicht zu mehrfachen Lichtstrahlen mit einziger Wellenlänge;

Empfangen (102), durch eine erste optische Kreuzeinheit, der mehrfachen Lichtstrahlen mit einziger Wellenlänge und Ausgeben der mehrfachen Lichtstrahlen mit einziger Wellenlänge durch Zielports der ersten optischen Kreuzeinheit, wobei die erste optische Kreuzeinheit dazu ausgelegt ist, von einem beliebigen Eingangsport davon empfangenes Licht zu einem beliebigen Ausgangsport davon umzuschalten;

Empfangen (103), durch ein optisches Schaltarray, der mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von der ersten optischen Kreuzeinheit ausgegeben werden, Auskoppeln von auszukoppelndem Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von der ersten optischen Kreuzeinheit ausgegeben werden, zu einem lokalen Knoten, Empfangen von von dem lokalen Knoten hinzugefügtem Licht und Ausgeben von durchzulassendem Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von der ersten optischen Kreuzeinheit ausgegeben werden, und dem durch den lokalen Knoten hinzugefügtem Licht; und

Kombinieren (104), durch einen Kombinierer, des von dem optischen Schaltarray ausgegebenen Lichts.


 
9. Verfahren nach Anspruch 8, wobei das Empfangen (104) der mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von der ersten optischen Kreuzeinheit ausgegeben werden, das Auskoppeln von auszukoppelndem Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von der optischen Kreuzeinheit ausgegeben werden, zu dem lokalen Knoten, das Empfangen von von dem lokalen Knoten hinzugefügtem Licht und das Ausgeben von durchzulassendem Licht, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von der ersten optischen Kreuzeinheit ausgegeben werden, und dem von dem lokalen Knoten hinzugefügten Licht durch ein optisches Schaltarray Folgendes umfassen:

Empfangen, durch ein erstes Unterarray in dem optischen Schaltarray, der mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von der ersten optischen Kreuzeinheit ausgegeben werden, Auskoppeln des auszukoppelnden Lichts, von den mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von der ersten optischen Kreuzeinheit ausgegeben werden, an den lokalen Knoten und Einkoppeln des durchzulassenden Lichts, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von der ersten optischen Kreuzeinheit ausgegeben werden, in ein zweites Unterarray des optischen Schaltarrays;

Empfangen, durch das zweite Unterarray, des durchzulassenden Lichts, aus den mehrfachen Lichtstrahlen mit einziger Wellenlänge, die von dem ersten Unterarray ausgegeben werden, Empfangen des von dem lokalen Knoten hinzugefügten Lichts und Ausgeben des durchzulassenden Lichts in dem Licht mit mehrfachen einzigen Wellenlängen und dem von dem lokalen Knoten hinzugefügten Licht; und

Empfangen, durch eine zweite optische Kreuzeinheit in dem optischen Schaltarray, des Lichts, das von dem zweiten Unterarray ausgegeben wird und durchzulassen ist, in dem mehrfachen einzigen Licht und dem von dem lokalen Knoten hinzugefügten Licht, das von dem zweiten Unterarray ausgegeben wird, und Ausgeben des Lichts, das durchzulassen ist, in den mehrfachen Lichtstrahlen mit einziger Wellenlänge und dem von dem lokalen Knoten hinzugefügten Licht, durch Zielports in der zweiten optischen Kreuzeinheit.


 


Revendications

1. Dispositif de commutation optique incolore, comprenant :

un démultiplexeur (11) conçu pour démultiplexer une lumière à longueurs d'onde multiples d'entrée en de multiples faisceaux lumineux à longueur d'onde unique ;

une première unité de croisement optique (12) conçue pour recevoir les multiples faisceaux lumineux à longueur d'onde unique obtenus par le démultiplexeur (12) selon le démultiplexage, et émettre les multiples faisceaux lumineux à longueur d'onde unique via des ports cibles, dans lequel la première unité de croisement optique (12) est conçue pour commuter la lumière reçue par l'un quelconque de ses ports d'entrée vers l'un quelconque de ses ports de sortie ;

un réseau de commutation optique (13) conçu pour recevoir les multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique (12), rejeter la lumière qui doit être rejetée depuis les multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique (12), vers un noeud local, recevoir la lumière ajoutée par le noeud local, et émettre la lumière qui doit passer à partir des multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique (12) et de la lumière ajoutée par le noeud local ; et

un combineur (14) conçu pour combiner la lumière émise par le réseau de commutation optique (13).


 
2. Dispositif selon la revendication 1, comprenant en outre une première unité de commande (15) connectée à la première unité de croisement optique (12) et au réseau de commutation optique (13) et conçue pour envoyer des premières informations de commande à la première unité de croisement optique (12) et des secondes informations de commande au réseau de commutation optique (13), dans lequel les premières informations de commande sont des informations sur des ports cibles à travers lesquels la première unité de croisement optique (12) émet les multiples faisceaux lumineux à longueur d'onde unique et les secondes informations de commande comprennent des informations sur la lumière à rejeter, depuis les multiples faisceaux lumineux à longueur d'onde unique, des informations sur un port à travers lequel le réseau de commutation optique (13) rejette la lumière qui doit être rejetée depuis les multiples faisceaux lumineux à longueur d'onde unique, vers un noeud local, des informations sur un port à travers lequel le réseau de commutation optique (13) reçoit la lumière ajoutée par le noeud local, et des informations sur un port à travers lequel le réseau de commutation optique (13) émet la lumière qui doit passer à partir des multiples faisceaux lumineux à longueur d'onde unique, et des informations sur un port à travers lequel le réseau de commutation optique (13) émet la lumière ajoutée par le noeud local.
 
3. Dispositif selon la revendication 1 ou 2, dans lequel le combineur (14) est un coupleur.
 
4. Dispositif selon la revendication 1, dans lequel le réseau de commutation optique (13) comprend un premier sous-réseau (131), un second sous-réseau (132), et une seconde unité de croisement optique (133) ;
le premier sous-réseau (131) est conçu pour recevoir les multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique (12), rejeter la lumière qui doit être rejetée, depuis les multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique (12), vers le noeud local, et entrer la lumière qui doit passer à partir des multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique (12) dans le second sous-réseau (132) ;
le second sous-réseau (132) est conçu pour recevoir la lumière qui doit passer à partir des multiples faisceaux lumineux à longueur d'onde unique émis par le premier sous-réseau (131), recevoir la lumière ajoutée par le noeud local, et émettre la lumière qui doit passer à partir des multiples faisceaux lumineux à longueur d'onde unique et de la lumière ajoutée par le noeud local ; et
la seconde unité de croisement optique (133) est conçue pour recevoir la lumière émise par le second sous-réseau (132) qui doit passer, à partir de la lumière à multiples longueurs d'onde uniques et de la lumière ajoutée par le noeud local émise par le second sous-réseau (132), et émettre la lumière qui doit passer, à partir des multiples faisceaux lumineux à longueur d'onde unique et de la lumière ajoutée par le noeud local depuis les ports cibles.
 
5. Dispositif selon la revendication 4, comprenant en outre une seconde unité de commande (16) respectivement connectée à la première unité de croisement optique (12), au premier sous-réseau (131), au second sous-réseau (132) et à la seconde unité de croisement optique (133), et conçue pour envoyer des troisièmes informations de commande à une première unité de croisement optique (12), envoyer des quatrièmes informations de commande au premier sous-réseau (131), envoyer des cinquièmes informations de commande au second sous-réseau (132), et envoyer des sixièmes informations de commande à la seconde unité de croisement optique (133), dans lequel :

les troisièmes informations de commande sont des informations sur les ports cibles à travers lesquels la première unité de croisement optique (12) émet les multiples faisceaux lumineux à longueur d'onde unique ;

les quatrièmes informations de commande sont des informations concernant la lumière qui doit être rejetée à partir des multiples faisceaux lumineux à longueur d'onde unique, des informations sur un port à travers lequel le premier sous-réseau (131) rejette la lumière qui doit être rejetée depuis les multiples faisceaux lumineux à longueur d'onde unique, vers le noeud local, et des informations sur un port à travers lequel le premier sous-réseau (131) émet la lumière qui doit passer à partir des multiples faisceaux lumineux à longueur d'onde unique ;

les cinquièmes informations de commande comprennent des informations sur un port à travers lequel le second sous-réseau (132) émet la lumière qui doit passer, à partir des multiples faisceaux lumineux à longueur d'onde unique, des informations sur un port à travers lequel le second sous-réseau (132) reçoit la lumière ajoutée par le noeud local, et des informations sur un port à travers lequel le second sous-réseau émet la lumière ajoutée par le noeud local ;

les sixièmes informations de commande comprennent des informations sur un port à travers lequel la seconde unité de croisement optique (133) émet la lumière qui doit passer, à partir des multiples faisceaux lumineux à longueur d'onde unique, et des informations sur un port à travers lequel la seconde unité de croisement optique (133) émet la lumière ajoutée par le noeud local.


 
6. Dispositif selon la revendication 5, dans lequel le combineur (14) est un multiplexeur.
 
7. Dispositif selon la revendication 5 ou 6, dans lequel la première unité de croisement optique (14) et la seconde unité de croisement optique sont des commutateurs optiques à systèmes micro-électro-mécaniques (MEMS) tridimensionnels (3D).
 
8. Procédé de commutation optique incolore, consistant à :

démultiplexer (101), avec un démultiplexeur, une lumière à longueurs d'onde multiples d'entrée en de multiples faisceaux lumineux à longueur d'onde unique ;

recevoir (102), avec une première unité de croisement optique, les multiples faisceaux lumineux à longueur d'onde unique, et émettre les multiples faisceaux lumineux à longueur d'onde unique via des ports cibles de la première unité de croisement optique, dans lequel la première unité de croisement optique est conçue pour commuter la lumière reçue par l'un quelconque de ses ports d'entrée vers l'un quelconque de ses ports de sortie ;

recevoir (103), par un réseau de commutation optique, les multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique, rejeter la lumière qui doit être rejetée depuis les multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique, vers un noeud local, recevoir la lumière ajoutée par le noeud local, et émettre la lumière qui doit passer à partir des multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique et de la lumière ajoutée par le noeud local ; et

combiner (104), avec un combineur, la lumière émise par le réseau de commutation optique.


 
9. Procédé selon la revendication 8, dans lequel la réception (104), avec un réseau de commutation optique, des multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique, le rejet de la lumière qui doit être rejetée depuis les multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique, vers le noeud local, la réception de la lumière ajoutée par le noeud local, et l'émission de la lumière qui doit passer, à partir des multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique et de la lumière ajoutée par le noeud local, consistent à :

recevoir, par un premier sous-réseau dans le réseau de commutation optique, les multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique, rejeter la lumière qui doit être rejetée depuis les multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique, vers le noeud local, et entrer la lumière qui doit passer à partir des multiples faisceaux lumineux à longueur d'onde unique émis par la première unité de croisement optique dans un second sous-réseau du réseau de commutation optique ;

recevoir, avec le second sous-réseau, la lumière qui doit passer, à partir des multiples faisceaux lumineux à longueur d'onde unique émis par le premier sous-réseau, recevoir la lumière ajoutée par le noeud local et émettre la lumière qui doit passer dans la lumière avec de multiples longueurs d'onde uniques et la lumière ajoutée par le noeud local ; et

recevoir, par la seconde unité de croisement optique dans le réseau de commutation optique, la lumière émise par le second sous-réseau, qui doit passer dans la lumière unique multiple et la lumière émise par le second sous-réseau ajoutée par le noeud local, et émettre la lumière qui doit passer dans les multiples faisceaux lumineux à longueur d'onde unique et la lumière ajoutée par le noeud local à travers les ports cibles dans la seconde unité de croisement optique.


 




Drawing


















REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description