(19)
(11)EP 2 446 682 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 09846426.6

(22)Date of filing:  25.06.2009
(51)Int. Cl.: 
H04W 72/02  (2009.01)
G01R 23/00  (2006.01)
H04W 24/00  (2009.01)
H04B 1/00  (2006.01)
H04B 17/00  (2015.01)
H04W 74/08  (2009.01)
(86)International application number:
PCT/FI2009/050564
(87)International publication number:
WO 2010/149825 (29.12.2010 Gazette  2010/52)

(54)

SPECTRUM SENSING

SPEKTRUMERFASSUNG

DÉTECTION DE SPECTRE


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(43)Date of publication of application:
02.05.2012 Bulletin 2012/18

(73)Proprietor: Nokia Technologies Oy
02610 Espoo (FI)

(72)Inventors:
  • AHTIAINEN, Ari
    FI-04300 Tuusula (FI)
  • RINNE-RAHKOLA, Pasi
    FI-00980 Helsinki (FI)
  • JUNELL, Jari
    FI-02720 Espoo (FI)

(74)Representative: Espatent Oy 
Kaivokatu 10 D
00100 Helsinki
00100 Helsinki (FI)


(56)References cited: : 
EP-A2- 1 944 996
US-A1- 2009 016 293
US-A1- 2009 149 208
GB-A- 2 447 148
US-A1- 2009 046 625
  
  • SUN C. ET AL: 'Cognitive radio sensing architecture and a sensor selection case study' 2009 IEEE 69TH VEHICULAR TECHNOLOGY CONFERENCE 26 April 2009 - 29 April 2009, BARCELONA, SPAIN, pages 1 - 5, XP031474396
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention generally relates to spectrum sensing. The invention relates particularly, though not exclusively, to spectrum sensing in cognitive radio systems.

BACKGROUND ART



[0002] Spectrum sensing is a technology used to identify unused or underutilized radio resources. For example, wide-band spectrum sensors are currently being developed.

[0003] One technology in which spectrum sensing is needed is cognitive radio.

[0004] The main emphasis on the development of spectrum sensing technology has been on algorithmic level.

[0005] Danijela Cabric, Artem Tkachenko, Robert W. Brodersen, "Experimental Study of Spectrum Sensing based on Energy Detection and Network Cooperation", The 2nd Annual International Wireless Internet Conference (WICON), TAPAS Workshop, August, 2006, discusses feasibility of an energy detector in spectrum sensing.

[0006] Also collaborative or distributed spectrum sensing solutions have been proposed. Anu Huttunen, Juha Pihlaja, Visa Koivunen, Jari Junell and Kari Kalliojärvi, "Collaborative distributed spectrum sensing for cognitive radio", Wireless World Research Forum Meeting 21, Stockholm, Sweden, 13-15 Oct. 2008, discusses one such solution.

[0007] US2009/046625 discloses system and method for management of a shared frequency band. The solved problem relates to wireless communications on unlicensed frequency bands and need for a technology to obtain and use knowledge of what is happening in a shared radio frequency band, such as an unlicensed band, to enable devices to act intelligently with respect to their use of the frequency thereby maintaining the performance of devices and networks of devices operating in that frequency band.

SUMMARY



[0008] Example aspects of the invention are disclosed in enclosed independent claims. In an example implementation, there is provided a communication apparatus, comprising:

at least one user data communication block configured to transport user data, the user data communication block comprising two or more logical sub blocks configured to process user data on different protocol layers, wherein

at least one of said sub blocks is configured to perform spectrum sensing.



[0009] In an embodiment the communication apparatus further comprises at least one dedicated spectrum sensor configured to perform spectrum sensing.

[0010] In an embodiment the communication apparatus further comprises a control block configured to control spectrum sensing performed by said sub blocks.

[0011] In an embodiment the control block is configured
to select one or more sources of spectrum sensing data among sources available in said communication apparatus, said sources comprising at least said user data communication block, and
to request the selected sources to perform spectrum sensing and to provide sensing data to the control block.

[0012] In an embodiment the control block is configured to request sensing data from the selected sources in parallel or sequentially.

[0013] In an embodiment the control block is configured to combine sensing data provided by the selected sources to achieve sensing results.

[0014] In an embodiment the at least one sub block of the user data communication block is configured to provide sensing data responsive to a request.

[0015] In an embodiment the sub block is configured to perform spectrum sensing by detecting one or more network conditions.

[0016] In an embodiment the communication apparatus comprises a cognitive radio.

[0017] In an example implementation, there is provided a method comprising
allowing transport and processing of user data on different protocol layers in logical sub blocks of a user data communication block of a communication apparatus, and
performing spectrum sensing at least in one of said sub blocks.

[0018] In an example implementation, there is provided a computer program executable in an apparatus, the computer program comprising:

program code for transporting and processing user data on different protocol layers in logical sub blocks of a user data communication block of a communication apparatus, and

program code for performing spectrum sensing at least in one of said sub blocks.



[0019] The computer program may be stored on a computer readable memory medium. The memory medium may be a digital data storage such as a data disc or diskette, optical storage, magnetic storage, holographic storage, phase-change storage (PCM) or opto-magnetic storage. The memory medium may be formed into a device without other substantial functions than storing memory or it may be formed as part of a device with other functions, including but not limited to a memory of a computer, a chip set, and a sub assembly of an electronic device.

[0020] Various example embodiments of the present invention are illustrated hereinafter in the detailed description of the invention as well as in the dependent claims appended hereto. The embodiments are illustrated with reference to selected aspects of the invention. A person skilled in the art appreciates that any embodiment of the invention may be combined with other embodiment(s) within the same aspect. Furthermore, any embodiment may apply to other aspects as well either alone or in combination with other embodiment(s).

BRIEF DESCRIPTION OF THE DRAWINGS



[0021] The invention will be described, by way of example only, with reference to the accompanying drawings, in which:
Fig. 1
illustrates a dedicated spectrum sensor;
Fig. 2
illustrates a general level block diagram of a user data radio;
Fig. 3
illustrates a block diagram of a user data radio according to an embodiment;
Fig. 4
illustrates a block diagram of an implementation according to an embodiment;
Fig. 5A
illustrates a block diagram of an implementation according to another embodiment;
Fig. 5B
illustrates a block diagram of an implementation according to yet another embodiment;
Fig. 6
illustrates a flow diagram of an example method; and
Fig. 7
shows a block diagram of an apparatus in accordance with certain embodiments.

DETAILED DESCRIPTION



[0022] Mobile devices have at least one and often multiple radios for transport of user data. Multiple user data radios are needed for example for enabling use of different communication technologies in one device. Possible communication technologies include e.g. WLAN, Bluetooth, GSM/GPRS, CDMA, and WCDMA technologies. In an embodiment of the invention those user data radios are used for spectrum sensing to supplement sensing done by dedicated spectrum sensors. In another embodiment dedicated spectrum sensors are not necessarily needed at all. In this way, one may achieve more efficient utilization of the hardware and software resources existing in devices.

[0023] In an embodiment, sensing by means of user data radio is used for purposes of a cognitive radio. Cognitive radio is a form of wireless communication in which radios alter the radio resources they use based on surrounding radio network conditions. Radio resources with a locally low utilization ratio are identified and taken into use. That is, a transceiver can detect which communication channels are in use and which are not, and use the vacant channels while avoiding occupied ones. In this way better spectrum efficiency can be achieved as compared to static allocation of channels.

[0024] In IEEE Journal on Selected Areas in Communications, VOL. 23, NO. 2, pp. 201-220 February 2005, Cognitive Radio: Brain-Empowered Wireless Communications, Simon Haykin offered the following definition of cognitive radio: "Cognitive radio is an intelligent wireless communication system that is aware of its surrounding environment (i.e., outside world), and uses the methodology of understanding-by-building to learn from the environment and adapt its internal states to statistical variations in the incoming RF stimuli by making corresponding changes in certain operating parameters (e.g., transmit-power, carrier-frequency, and modulation strategy) in real-time, with two primary objectives in mind: highly reliable communications whenever and wherever needed; efficient utilization of the radio spectrum."

[0025] In cognitive radio spectrum sensing is a functionality used for identifying surrounding radio network conditions. Spectrum sensing can be used for detecting primary users and finding unoccupied or underutilized spectrum. Also, spectrum sensing can be used to measure utilization degree and dynamics of frequency bands of interest.

[0026] One should note that various embodiments of the invention are not limited to cognitive radio but can be used in connection with other technologies as well.

[0027] Figure 1 illustrates a dedicated spectrum sensor 10. The sensor comprises an antenna 15, a radio frequency (RF) block 14, a baseband (BB) block 13, an L2/L3 protocol layer block, and a spectrum sensing control block 11. One needs to note that, the blocks 11-14 are logical blocks depicting different protocol layers, i.e. the blocks are not necessarily separate physical components.

[0028] The RF block 14 may comprise or operate as a sensor detecting existence of RF energy on a selected radio band. The baseband block 13 can process the detected energy and detect existence of certain radio technology. The L2/L3 protocol block 12 performs OSI layer 2 and 3 protocol processing. The L2/L3 protocol block can further decode messages of a detected radio technology and detect for example identity of a network and/or communicating entities. Conventional, dedicated spectrum sensors although do not typically decode the content detected by the sensor and therefore are not able to detect e.g. the identity of the network. The spectrum sensing control block 11 at top manages the spectrum sensing process for example by defining what frequency band is sensed and deciding whether all levels of detection are used (sometimes, for example, just detecting energy on a certain frequency band is enough). The spectrum sensing control block receives requests for information about current radio spectrum usage and eventually outputs the requested information.

[0029] Figure 2 illustrates a general level block diagram of a user data radio 20 comprising an antenna 25, a RF block 24, a baseband block 23 and an L2/L3 protocol block 22. The RF block performs radio frequency processing of user data communications, the baseband block performs base band processing of user data communications, and the L2/L3 block performs OSI layer 2 and 3 protocol processing of user data communications.

[0030] A difference between the sensor 10 of Figure 1 and the user data radio 20 of Figure 2 is that the user data radio is typically dedicated for specific radio technology and associated frequency band and the purpose of the user data radio 20 is to convey user communications. Whereas the sensor 10 may cover a wider spectrum range and the purpose of the sensor 10 is to detect traffic on a number of different radio frequency bands possibly covering multiple different radio technologies.

[0031] For the purposes of certain embodiments of the invention user data radio can be defined as a combination of logical processing blocks needed for enabling wireless data transport in accordance with certain communication technology. The primary purpose of the processing blocks is to transport (send and receive) data between physical layer and application layer or other upper layers of the OSI model. The exact implementation and functionality as well as number of the processing blocks may vary depending on the associated communication technology.

[0032] In an embodiment the user data radio of Figure 2 is used for spectrum sensing purposes. For example, the existence of a radio network can be detected or tested by executing radio access procedures in the network associated with the user data radio. I.e. it is tested if access to the network in a normal way succeeds. This may cause unnecessary use of resources, though, as access to the network might not be actually needed. This type of testing may cause unwanted radio transmissions, as well.

[0033] Figure 3 illustrates a block diagram of a user data radio 30 according to an embodiment. Herein, the conventional user data radio of Figure 2 has been modified to enable the user data radio to supplement or replace spectrum sensing conducted by a dedicated spectrum sensor (e.g. sensor 10 of Figure 1).

[0034] The structure of the user data radio 30 is similar to that of user data radio 20 of Figure 2. A difference between the Figures is that the RF block 34, baseband block 33 and L2/L3 block of Figure 3 respectively comprise interfaces 36-38 for enabling interaction with spectrum sensing equipment e.g. for providing information (sensing data) from each block 32-34 for the purposes of spectrum sensing.

[0035] In an embodiment, the functionality in the blocks 32-34 is modified to support a spectrum sensing mode or a receive-only sensing mode that is controlled through the new interface 36-38. The result is that the blocks of the user data radio can provide through the new interfaces 36-38 sensing data such as information about energy on a certain frequency band, radio technology used and network/node identities detected from RF, BB and L2/L3 blocks, respectively. Also other information about network conditions can be conveyed as sensing data from the blocks 32-34. With respect to performing network access in order to detect existence of a network, resources can be saved by using such receive-only mode as no there is no need to perform unnecessary transmission to the network. In such receive-only mode only relevant parts of the full user data radio implementation are used instead of using the full implementation for sensing purposes.

[0036] As an example, legacy cellular implementations (e.g. GSM/GPRS, WCDMA) can be modified such that receiver detects and decodes the broadcast messages from the network without starting the full protocol stack and without connecting to the network. If the user data radio is a WLAN radio, the radio may be set to decode the beacon message without authentication to the network to identify the network (to get SSID (Service Set Identifier) of the network).

[0037] One should note that the primary purpose of the user data radio of Figure 3 remains transmission of user data, i.e. enabling radio communications. In addition to this primary purpose the user data radio is modified to provide sensing data.

[0038] Figure 4 illustrates a block diagram of an implementation according to an embodiment. The implementation comprises a dedicated spectrum sensor 10 (similar to the spectrum sensor of Figure 1) and two user data radios 30a and 30b modified for spectrum sensing purposes (similar to the user data radio of Figure 3). The user data radios may be for example radios operating according to different technology. One may be for example a GSM radio and another may be a WLAN radio. A spectrum sensing control block 41 is now controlling the dedicated spectrum sensor 10 and spectrum sensing performed by the user data radios 30a and 30b. The spectrum sensing control block 41 requests information (sensing data) from the blocks of the spectrum sensor and/or the user data radios as necessary and combines the results to obtain sensing results.

[0039] Figure 5A illustrates a block diagram of an implementation according to another embodiment. The structure shown in the Figure comprises 1-n dedicated spectrum sensors 10a, 10n and 1-n user data radios 30a, 30n. The spectrum sensors 10a and 10n comprise L2/L3, baseband and RF blocks 12a-14a and 12n-14n, respectively. The user data radios 30a and 30n comprise L2/L3, baseband and RF blocks 32a-34a and 32n-34n, respectively. In principle, the implementation is similar to the implementation of Figure 4.

[0040] Spectrum sensing control block 41 has access to interfaces in the spectrum sensors 10a, 10n and the user data radios 30a, 30n for obtaining sensing data. The spectrum sensing block requests data from the sensors and/or user data radios as necessary and combines the data to obtain overall sensing results.

[0041] The number of spectrum sensors and modified user data radios in Figures 4 and 5 may vary. For example, all the user data radios that are otherwise needed in the device for transport of user data may be modified for sensing purposes or only some of those radios may be modified. For example, it may suffice to modify only one or two user data radios for enhancing the sensing performance. Also the number of the spectrum sensors may vary. The number of sensors may depend on number of available sensor types and the intended operating environment of the device, for example.

[0042] Figure 5B illustrates a block diagram of an implementation according to yet another embodiment. The structure is similar to that of Figure 5A, but now there are no dedicated spectrum sensors. The implementation comprises 1-n user data radios 30a, 30n controlled by a spectrum sensing control block 41. Now all data that is needed for spectrum sensing purposes is obtained from the user data radios.

[0043] The implementations shown in Figures 4, 5A and 5B show a spectrum sensing control block that is coordinating the spectrum sensing conducted by dedicated spectrum sensors and/or modified user data radios. At least in some implementations such solution is likely to be beneficial. It must be noted that such control block is not mandatory, though. Instead of having a centralized control block, each element needing spectrum sensing results may be configured to directly contact individual blocks of modified user data radios (e.g. blocks 32a-34a and 32n-34n) that act as spectrum sensors. Furthermore it is possible that there is a separate control block for each modified user data radio (e.g. one control block for blocks 32a-34a and another one for block 32n-34n).

[0044] Figure 6 illustrates a flow diagram of an example method that may be performed in the spectrum sensing block 41 of Figures 4 and 5.

[0045] In phase 601 a request for sensing results is received at a spectrum sensing control. The control requests sensing data from one or more dedicated spectrum sensors, phase 602, and from one or more modified user data radios, phase 603. The sensing data can be requested from different sources in parallel or sequentially or a combination of these can be used. The spectrum sensing control decides what level of sensing is necessary, what sensors and/or modified radios are used for sensing, and how much of the sensing should be done in parallel. The spectrum sensing control may also select which protocol levels of the user data radio should provide the sensing data. The spectrum sensing control commands the spectrum sensors and/or modified user data radios to perform the sensing as needed.

[0046] In phase 604, the control combines the sensing data obtained from the sensor(s) and user data radio(s) to obtain overall sensing results. The sensing results are then output in phase 605 to the entity that requested the results.

[0047] Like mentioned above, the tasks conducted in spectrum sensing control in Figure 6 or a portion of those tasks can be conducted by the entity requesting the spectrum sensing results.

[0048] Figure 7 presents an example block diagram of an apparatus 700 in which various embodiments of the invention may be applied. This may be a user device or apparatus, such as a mobile terminal or other communication device.

[0049] The general structure of the apparatus 700 comprises a communication interface module 750, a processor 710 coupled to the communication interface module 750, and a memory 720 coupled to the processor 710. The apparatus further comprises software 730 stored in the memory 720 and operable to be loaded into and executed in the processor 710. The software 730 may comprise one or more software modules and can be in the form of a computer program product. The apparatus 700 further comprises a user interface controller 760 coupled to the processor 710. Still further there is a sensor module 770 coupled to the processor 710.

[0050] The communication interface module 750 implements at least part of the user data radio discussed in connection with various embodiments of the invention. The communication interface module 750 may be, e.g., a radio interface module, such as a WLAN, Bluetooth, GSM/GPRS, CDMA, WCDMA, or LTE (Long Term Evolution) radio module. The communication interface module 750 may be integrated into the apparatus 700 or into an adapter, card or the like that may be inserted into a suitable slot or port of the apparatus 700. The communication interface module 750 may support one radio interface technology or a plurality of technologies. Figure 7 shows one communication interface module 750, but the apparatus 700 may comprise a plurality of communication interface modules 750.

[0051] The processor 710 may be, e.g., a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a graphics processing unit, or the like. Figure 7 shows one processor 710, but the apparatus 700 may comprise a plurality of processors.

[0052] The memory 720 may be for example a non-volatile or a volatile memory, such as a read-only memory (ROM), a programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), a random-access memory (RAM), a flash memory, a data disk, an optical storage, a magnetic storage, a smart card, or the like. The apparatus 700 may comprise a plurality of memories. The memory 720 may be constructed as a part of the apparatus 700 or it may be inserted into a slot, port, or the like of the apparatus 700 by a user. The memory 720 may serve the sole purpose of storing data, or it may be constructed as a part of an apparatus serving other purposes, such as processing data.

[0053] The user interface controller 760 may comprise circuitry for receiving input from a user of the apparatus 700, e.g., via a keyboard, graphical user interface shown on the display of the apparatus 700, speech recognition circuitry, or an accessory device, such as a headset, and for providing output to the user via, e.g., a graphical user interface or a loudspeaker.

[0054] A skilled person appreciates that in addition to the elements shown in Figure 7, the apparatus 700 may comprise other elements, such as microphones, displays, as well as additional circuitry such as input/output (I/O) circuitry, memory chips, application-specific integrated circuits (ASIC), processing circuitry for specific purposes such as source coding/decoding circuitry, channel coding/decoding circuitry, ciphering/deciphering circuitry, and the like. Additionally, the apparatus 700 may comprise a disposable or rechargeable battery (not shown) for powering the apparatus 700 when external power if external power supply is not available.

[0055] A benefit achieved by means of certain embodiments of the invention is that one may obtain a spectrum sensing arrangement that operates on a wide-frequency range without excessive hardware. A dedicated spectrum sensor in a device according to certain embodiments does not necessarily have to cover the frequencies of the user data radios existing in the device. Parallel operation of the modified user data radios and the dedicated spectrum sensor(s) in spectrum analysis may provide insight on the spectrum conditions faster. Implementation of the same functionality without using the existing user data radios to supplement spectrum sensing performed by dedicated sensor(s), is likely to require more dedicated spectrum sensors and/or spectrum sensors operating on a wider frequency band, and is therefore likely to consume more power.

[0056] The radio hardware and software of certain user data radio are optimized for their specific radio network technology. Whereas, dedicated, general purpose spectrum sensors typically are not dedicated to a specific network technology. For this reason e.g. finding out network identity of a surrounding network can be effected more power efficiently by using a modified user data radio than using a dedicated spectrum sensor.

[0057] By using dedicated sensor(s) and modified user data radio(s) in parallel one may achieve parallel processing of the same channel for different technologies. It is for example possible to detect (by means of a user data radio) network identity of radio technology A (maybe a primary user) and to detect (by means of a spectrum sensor) technology of radio technology B in use (maybe a secondary user) simultaneously. Also possibilities to sense multiple frequency bands in parallel are increased when sensing with dedicated spectrum sensor and sensing with user data radios are executed at the same time.

[0058] Various embodiments have been presented. It should be appreciated that in this document, words comprise, include and contain are each used as open-ended expressions with no intended exclusivity.

[0059] The foregoing description has provided by way of non-limiting examples of particular implementations and embodiments of the invention a full and informative description of the best mode presently contemplated by the inventors for carrying out the invention. It is however clear to a person skilled in the art that the invention is not restricted to details of the embodiments presented above, but that it can be implemented in other embodiments using equivalent means or in different combinations of embodiments without deviating from the characteristics of the invention.

[0060] Furthermore, some of the features of the above-disclosed embodiments of this invention may be used to advantage without the corresponding use of other features. As such, the foregoing description should be considered as merely illustrative of the principles of the present invention, and not in limitation thereof. Hence, the scope of the invention is only restricted by the appended patent claims.


Claims

1. A mobile terminal (700), comprising:

at least one user data communication block (30, 30a, 30b, 30n) and a spectrum sensing control block (41),

wherein the user data communication block (30, 30a, 30b, 30n) is configured to transport user data, the user data communication block comprising two or more logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n), wherein each of the logical sub blocks is configured to process user data on different protocol layer, and wherein the logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n) comprise a user data interface for transporting the user data to and from a sub block of an upper protocol layer and a sensing data interface (36-38) for outputting sensing data to a spectrum sensing control block (41);

and wherein the spectrum sensing control block (41) is configured to request spectrum sensing data from at least one of the logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n), and to control, through the sensing data interface (36-38), spectrum sensing performed by the at least one of the logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n) and to receive the sensing data from the at least one of the logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n).


 
2. The mobile terminal according to claim 1, further comprising
at least one dedicated spectrum sensor (770) configured to perform spectrum sensing.
 
3. The mobile terminal according to claims 1 or 2, wherein said spectrum sensing control block (41) is configured

to select one or more sources of the sensing data among sources available in said communication apparatus, said sources comprising at least said user data communication block, and

to request the selected sources to perform spectrum sensing and to provide the sensing data to the spectrum sensing control block (41).


 
4. The mobile terminal according to claim 3, wherein said spectrum sensing control block (41) is configured
to request the sensing data from the selected sources in parallel or sequentially.
 
5. The mobile terminal according to any one of claims 3-4, wherein said spectrum sensing control block (41) is configured to combine the sensing data provided by the selected sources to achieve sensing results.
 
6. The mobile terminal according to any one of claims 1-5, wherein said at least one of the logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n) of said user data communication block is configured to provide the sensing data responsive to a request.
 
7. The mobile terminal according to any one of claims 1-6, wherein said at least one of the logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n) is configured to perform spectrum sensing by detecting one or more network conditions.
 
8. A method in a mobile terminal, the method comprising:

allowing transport and processing of user data on different protocol layers in logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n) of a user data communication block (30, 30a, 30b, 30n), wherein each of the logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n) is configured to process user data on a different protocol layer and wherein the logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n) comprise a user data interface for transporting the user data to a sub block of an upper protocol layer, and a sensing data interface (36-38) for outputting sensing data to a spectrum sensing control block (41); and

requesting (603), by the spectrum sensing control block (41), through the sensing data interface, spectrum sensing data from at least one of the logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n); and

controlling, by the spectrum sensing control block (41), through the sensing data interface (36-38), spectrum sensing performed by the at least one of the logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n); and

receiving the sensing data to the spectrum sensing control block (41) from the at least one of the logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n).


 
9. A method according to claim 8, further comprising
performing (602) spectrum sensing at least in one dedicated spectrum sensor.
 
10. A method according to claim 8 or 9, further comprising

selecting one or more sources of the sensing data among sources available, said sources comprising at least said user data communication block (30, 30a, 30b, 30n), and

requesting the selected sources to perform spectrum sensing and to provide the sensing data.


 
11. A method according to claim 10, further comprising
requesting the sensing data from the selected sources in parallel or sequentially.
 
12. A method according to any one of claims 10-11, further comprising
combining (604) the sensing data provided by the selected sources to achieve sensing results.
 
13. A method according to any one of claims 8-12, further comprising

receiving a request for sensing at the at least one of the logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n), and

providing the sensing data responsive to said request.


 
14. A method according to any one of claims 8-13, further comprising
performing spectrum sensing in said logical sub block (32-34, 32a-43a, 32b-34b, 32n-34n) by detecting one or more network conditions.
 
15. A method according to any one of claims 8-14, further comprising
using results of spectrum sensing performed at least in one of said logical sub blocks (32-34, 32a-43a, 32b-34b, 32n-34n) for purposes of cognitive radio.
 


Ansprüche

1. Mobiles Endgerät (700), das Folgendes umfasst:

mindestens einen Anwenderdatenkommunikationsblock (30, 30a, 30b, 30n) und einen Spektrumerfassungssteuerblock (41), wobei

der Anwenderdatenkommunikationsblock (30, 30a, 30b, 30n) konfiguriert ist, Anwenderdaten zu transportieren, wobei der Anwenderdatenkommunikationsblock zwei oder mehr logische Unterblöcke (32-34, 32a-43a, 32b-34b, 32n-34n) umfasst, jeder der logischen Unterblöcke konfiguriert ist, Anwenderdaten in einer verschiedenen Protokollschicht zu verarbeiten, und die logischen Unterblöcke (32-34, 32a-43a, 32b-34b, 32n-34n) eine Anwenderdatenschnittstelle zum Transportieren der Anwenderdaten zu und von einem Unterblock einer oberen Protokollschicht und eine Erfassungsdatenschnittstelle (36-38) zum Ausgeben von Erfassungsdaten zu einem Spektrumerfassungssteuerblock (41) umfassen; und

der Spektrumerfassungssteuerblock (41) konfiguriert ist zum Anfordern von Spektrumerfassungsdaten von mindestens einem der logischen Unterblöcke (32-34, 32a-43a, 32b-34b, 32n-34n) und zum Steuern über die Erfassungsdatenschnittstelle (36-38) einer Spektrumerfassung, die durch den mindestens einen der logischen Unterblöcke (32-34, 32a-43a, 32b-34b, 32n-34n) durchgeführt wird, und zum Empfangen der Erfassungsdaten von dem mindestens einen der logischen Unterblöcke (32-34, 32a-43a, 32b-34b, 32n-34n).


 
2. Mobiles Endgerät nach Anspruch 1, das ferner Folgendes umfasst:
mindestens einen fest zugeordneten Spektrumsensor (770), der konfiguriert ist, eine Spektrumerfassung durchzuführen.
 
3. Mobiles Endgerät nach Anspruch 1 oder 2, wobei der Spektrumerfassungssteuerblock (41) konfiguriert ist zum
Wählen einer oder mehrerer Quellen der Erfassungsdaten zwischen Quellen, die in der Kommunikationsvorrichtung verfügbar sind, wobei die Quellen mindestens den Anwenderdatenkommunikationsblock umfassen, und
Anfordern, dass die gewählten Quellen eine Spektrumerfassung durchführen und die Erfassungsdaten zum Spektrumerfassungssteuerblock (41) liefern.
 
4. Mobiles Endgerät nach Anspruch 3, wobei der Spektrumerfassungssteuerblock (41) konfiguriert ist zum
Anfordern der Erfassungsdaten von den gewählten Quellen parallel oder sequenziell.
 
5. Mobiles Endgerät nach einem der Ansprüche 3-4, wobei der Spektrumerfassungssteuerblock (41) konfiguriert ist zum Kombinieren der Erfassungsdaten, die durch die gewählten Quellen geliefert werden, um Erfassungsergebnisse zu erhalten.
 
6. Mobiles Endgerät nach einem der Ansprüche 1-5, wobei der mindestens eine der logischen Unterblöcke (32-34, 32a-43a, 32b-34b, 32n-34n) des Anwenderdatenkommunikationsblocks konfiguriert ist, die Erfassungsdaten in Reaktion auf eine Anforderung zu liefern.
 
7. Mobiles Endgerät nach einem der Ansprüche 1-6, wobei der mindestens eine der logischen Unterblöcke (32-34, 32a-43a, 32b-34b, 32n-34n) konfiguriert ist, eine Spektrumerfassung durch Detektieren eines oder mehrerer Netzzustände durchzuführen.
 
8. Verfahren in einem mobilen Endgerät, wobei das Verfahren Folgendes umfasst:

Ermöglichen eines Transports und einer Verarbeitung von Anwenderdaten in verschiedenen Protokollschichten in logischen Unterblöcken (32-34, 32a-43a, 32b-34b, 32n-34n) eines Anwenderdatenkommunikationsblocks (30, 30a, 30b, 30n), wobei jeder der logischen Unterblöcke (32-34, 32a-43a, 32b-34b, 32n-34n) konfiguriert ist, Anwenderdaten in einer unterschiedlichen Protokollschicht zu verarbeiten, und die logischen Unterblöcke (32-34, 32a-43a, 32b-34b, 32n-34n) eine Anwenderdatenschnittstelle zum Transportieren der Anwenderdaten zu einem Unterblock einer oberen Protokollschicht und eine Erfassungsdatenschnittstelle (36-38) zum Ausgeben von Erfassungsdaten zu einem Spektrumerfassungssteuerblock (41) umfassen;

Anfordern (603) durch den Spektrumerfassungssteuerblock (41) über die Erfassungsdatenschnittstelle von Spektrumerfassungsdaten von mindestens einem der logischen Unterblöcke (32-34, 32a-43a, 32b-34b, 32n-34n);

Steuern durch den Spektrumerfassungssteuerblock (41) über die Erfassungsdatenschnittstelle (36-38) einer Spektrumerfassung, die durch den mindestens einen der logischen Unterblöcke (32-34, 32a-43a, 32b-34b, 32n-34n) durchgeführt wird; und

Empfangen der Erfassungsdaten zum Spektrumerfassungssteuerblock (41) von dem mindestens einen der logischen Unterblöcke (32-34, 32a-43a, 32b-34b, 32n-34n) .


 
9. Verfahren nach Anspruch 8, das ferner Folgendes umfasst:
Durchführen (602) einer Spektrumerfassung mindestens in einem fest zugeordneten Spektrumsensor.
 
10. Verfahren nach Anspruch 8 oder 9, das ferner Folgendes umfasst:

Wählen einer oder mehrerer Quellen der Erfassungsdaten zwischen Quellen, die verfügbar sind, wobei die Quellen mindestens den Anwenderdatenkommunikationsblock (30, 30a, 30b, 30n) umfassen, und

Anfordern, dass die gewählten Quellen eine Spektrumerfassung durchführen und die Erfassungsdaten liefern.


 
11. Verfahren nach Anspruch 10, das ferner Folgendes umfasst:
Anfordern der Erfassungsdaten von den gewählten Quellen parallel oder sequenziell.
 
12. Verfahren nach einem der Ansprüche 10-11, das ferner Folgendes umfasst:
Kombinieren (604) der Erfassungsdaten, die durch die gewählten Quellen geliefert werden, um Erfassungsergebnisse zu erhalten.
 
13. Verfahren nach einem der Ansprüche 8-12, das ferner Folgendes umfasst:

Empfangen einer Anforderung zum Erfassen bei dem mindestens einen der logischen Unterblöcke (32-34, 32a-43a, 32b-34b, 32n-34n) und

Liefern der Erfassungsdaten in Reaktion auf die Anforderung.


 
14. Verfahren nach einem der Ansprüche 8-13, das ferner Folgendes umfasst:
Durchführen einer Spektrumerfassung in dem logischen Unterblock (32-34, 32a-43a, 32b-34b, 32n-34n) durch Detektieren eines oder mehrerer Netzzustände.
 
15. Verfahren nach einem der Ansprüche 8-14, das ferner Folgendes umfasst:
Verwenden von Ergebnissen einer Spektrumerfassung, die in mindestens einem der logischen Unterblöcke (32-34, 32a-43a, 32b-34b, 32n-34n) durchgeführt wurde, zum Zwecke kognitiver Funktechnik.
 


Revendications

1. Terminal mobile (700), comprenant :

au moins un bloc de communication de données d'utilisateur (30, 30a, 30b, 30n) et un bloc de contrôle de détection de spectre (41),

le bloc de communication de données d'utilisateur (30, 30a, 30b, 30n) étant configuré pour transporter des données d'utilisateur, le bloc de communication de données d'utilisateur comprenant au moins deux sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n), chacun des sous-blocs logiques étant configuré pour traiter des données d'utilisateur sur une couche de protocole différente, et les sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n) comprenant une interface de données d'utilisateur pour transporter les données d'utilisateur vers et depuis un sous-bloc d'une couche de protocole supérieure et une interface de données de détection (36-38) pour délivrer des données de détection à un bloc de contrôle de détection de spectre (41) ; et

le bloc de contrôle de détection de spectre (41) étant configuré pour demander des données de détection de spectre auprès d'au moins un des sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n) et pour contrôler, par l'intermédiaire de l'interface de données de détection (36-38), une détection de spectre réalisée par l'au moins un des sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n) et pour recevoir les données de détection en provenance de l'au moins un des sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n).


 
2. Terminal mobile selon la revendication 1, comprenant en outre :
au moins un capteur de spectre dédié (770) configuré pour réaliser une détection de spectre.
 
3. Terminal mobile selon la revendication 1 ou 2, dans lequel ledit bloc de contrôle de détection de spectre (41) est configuré pour :

sélectionner une ou plusieurs sources des données de détection parmi des sources disponibles dans ledit appareil de communication, lesdites sources comprenant au moins ledit bloc de communication de données d'utilisateur ; et

demander les sources sélectionnées pour réaliser une détection de spectre et pour fournir les données de détection au bloc de contrôle de détection de spectre (41).


 
4. Terminal mobile selon la revendication 3, dans lequel ledit bloc de contrôle de détection de spectre (41) est configuré pour :
demander les données de détection auprès des sources sélectionnées en parallèle ou séquentiellement.
 
5. Terminal mobile selon l'une quelconque des revendications 3 et 4, dans lequel ledit bloc de contrôle de détection de spectre (41) est configuré pour combiner les données de détection fournies par les sources sélectionnées pour obtenir des résultats de détection.
 
6. Terminal mobile selon l'une quelconque des revendications 1 à 5, dans lequel ledit au moins un des sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n) dudit bloc de communication de données d'utilisateur est configuré pour fournir les données de détection en réponse à une demande.
 
7. Terminal mobile selon l'une quelconque des revendications 1 à 6, dans lequel ledit au moins un des sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n) est configuré pour réaliser une détection de spectre en détectant une ou plusieurs conditions de réseau.
 
8. Procédé dans un terminal mobile, le procédé comprenant :

l'autorisation d'un transport et d'un traitement de données d'utilisateur sur des couches de protocole différentes dans des sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n) d'un bloc de communication de données d'utilisateur (30, 30a, 30b, 30n), chacun des sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n) étant configuré pour traiter des données d'utilisateur sur une couche de protocole différente, et les sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n) comprenant une interface de données d'utilisateur pour transporter les données d'utilisateur vers un sous-bloc d'une couche de protocole supérieure et une interface de données de détection (36-38) pour délivrer des données de détection à un bloc de contrôle de détection de spectre (41) ; et

la demande (603), par le bloc de contrôle de détection de spectre (41), par l'intermédiaire de l'interface de données de détection, de données de détection de spectre auprès d'au moins un des sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n) ; et

le contrôle, par le bloc de contrôle de détection de spectre (41), par l'intermédiaire de l'interface de données de détection (36-38), d'une détection de spectre réalisée par l'au moins un des sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n) ; et

la réception des données de détection sur le bloc de contrôle de détection de spectre (41) en provenance de l'au moins un des sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n).


 
9. Procédé selon la revendication 8, comprenant en outre :
la réalisation (602) d'une détection de spectre au moins dans un capteur de spectre dédié.
 
10. Procédé selon la revendication 8 ou 9, comprenant en outre :

la sélection d'une ou plusieurs sources des données de détection parmi des sources disponibles, lesdites sources comprenant au moins ledit bloc de communication de données d'utilisateur (30, 30a, 30b, 30n) ; et

la demande des sources sélectionnées pour réaliser une détection de spectre et pour fournir les données de détection.


 
11. Procédé selon la revendication 10, comprenant en outre:
la demande des données de détection auprès des sources sélectionnées en parallèle ou séquentiellement.
 
12. Procédé selon l'une quelconque des revendications 10 à 11, comprenant en outre :
la combinaison (604) des données de détection fournies par les sources sélectionnées pour obtenir des résultats de détection.
 
13. Procédé selon l'une quelconque des revendications 8 à 12, comprenant en outre :

la réception d'une demande de détection au niveau de l'au moins un des sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n) ; et

la fourniture des données de détection en réponse à ladite demande.


 
14. Procédé selon l'une quelconque des revendications 8 à 13, comprenant en outre :
la réalisation d'une détection de spectre dans ledit sous-bloc logique (32-34, 32a-43a, 32b-34b, 32n-34n) en détectant une ou plusieurs conditions de réseau.
 
15. Procédé selon l'une quelconque des revendications 8 à 14, comprenant en outre :
l'utilisation de résultats d'une détection de spectre réalisée au moins dans un desdits sous-blocs logiques (32-34, 32a-43a, 32b-34b, 32n-34n) à des fins de radio cognitive.
 




Drawing
























REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description