(19)
(11)EP 2 449 213 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.10.2021 Bulletin 2021/41

(21)Application number: 10793426.7

(22)Date of filing:  30.06.2010
(51)International Patent Classification (IPC): 
E21C 41/16(2006.01)
E21D 1/06(2006.01)
E21D 5/04(2006.01)
E21D 7/00(2006.01)
E21D 9/12(2006.01)
E21D 7/02(2006.01)
(52)Cooperative Patent Classification (CPC):
E21D 7/02; E21D 5/04; E21D 9/12; E21D 9/00; E21D 1/08; E21D 1/06
(86)International application number:
PCT/AU2010/000821
(87)International publication number:
WO 2011/000038 (06.01.2011 Gazette  2011/01)

(54)

UNDERGROUND MINING

UNTERIRDISCHER BERGBAU

EXPLOITATION MINIÈRE SOUTERRAINE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 30.06.2009 AU 2009903057

(43)Date of publication of application:
09.05.2012 Bulletin 2012/19

(73)Proprietor: Technological Resources PTY. Limited
Melbourne, VIC 3000 (AU)

(72)Inventors:
  • DELABBIO, Fredric Christopher
    Samford, Queensland 4520 (AU)
  • ODDIE, Max Edward
    Sorrento, Victoria 3943 (AU)

(74)Representative: Kador & Partner PartG mbB 
Corneliusstraße 15
80469 München
80469 München (DE)


(56)References cited: : 
GB-A- 2 260 350
JP-A- 2006 249 793
US-A- 3 582 138
US-A- 4 646 853
US-A- 5 746 540
JP-A- 2001 159 293
US-A- 2 937 773
US-A- 3 965 995
US-A- 4 725 164
US-A1- 2005 004 416
  
  • None
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the Invention



[0001] This invention relates to underground mining and in particular, to the activity which needs to be carried out in the early stages of developing an underground mine.

Background of the Invention



[0002] Modern large block cave mines require a significant time to develop and a very significant early investment. Both of these factors make their financial success in terms of net present value extremely sensitive to the speed at which they can be brought on stream. Deep cave mines require shaft access and the development of this shaft access forms the initial part of the mine development and therefore is directly on the project critical path i.e. until the initial shafts are completed no other underground development activity can be commenced.

[0003] After the initial shafts have been sunk, tunnels can be launched from the shafts in an appropriate pattern for block cave mining and the material excavated in the tunnelling operation transported to the surface through the shafts. The shafts must be equipped with a material handling unit capable of removing material excavated during tunnelling and subsequently from the operating mine. Conventionally this system is installed after the shaft sinking operation and before tunnel launch which causes significant delay in the mine development project. By the present invention, such delay can be avoided or much reduced by establishing a material handling unit within the shaft during formation of the shaft and using that system for transport of material excavated during the subsequent tunnelling operation.

[0004] Document JP 2001159293 relates to a shield excavating machine and a method of excavating that allows changing the direction of excavation in an economic, quick and safe manner, the shield excavating machine comprising a parent shield tunnelling machine and a child shield tunnelling machine that is housed in a spherical rotating body.

[0005] Document US 3,582,138 relates to a system for forming an excavation in rock in the form of a doughnut-shaped generally cylindrical annulus or toroid having a core of substantial size within which are located one or more access shafts.

[0006] Document US 2005/0004416 relates to a method of constructing a stratum disposal site of radioactive waste matter and underground galleries such as mountain tunnels by using a pneumatic transfer system, and to a method of performing stratum disposal of radioactive waste matter.

[0007] Document US 2,937,773 discloses skip hoists adapted primarily for shaft-sinking purposes in connection with mining operations. A skip hoist and cable guides are provided that allow mechanically guiding the skip and ensuring protection against dropping of the skip should a hoisting cable break during descent or raising of the skip.

[0008] Document GB 2260350 relates to a method of sinking a mine shaft comprising the steps of excavating and lining the shaft from a sinking stage and, at substantially the same time, simultaneously equipping previously excavated and lined zones of the shaft with an equipping stage which is located above the sinking stage and which follows the sinking stage down the shaft.

[0009] Document US 4,725,164 discloses a method of excavating a storage complex in rock for storing radioactive material or other harmful material.

Summary of the Invention



[0010] The invention provides a method of developing an underground mine according to claim 1.

[0011] The tunnel launching may be carried out by firstly excavating a cavern at the bottom part of the shaft and then excavating a tunnel or tunnels from the cavern.

[0012] The cavern may be excavated to extend to opposite sides of the shaft.

[0013] The cavern may be excavated by drilling and blasting and removing excavated material.

[0014] Tunnel boring machine components may be lowered down the shaft and assembled within the cavern into a tunnel boring machine operable to bore outwardly from the cavern to form the tunnel or tunnels.

[0015] The excavation of earth to form the shaft may be carried out by an excavator disposed below the material handling unit for transporting excavated material to the surface region. In that case the excavator may be an earth boring machine comprising a rotary cutting head.

[0016] On completion of the shaft formation and prior to the tunnel launch the excavator may be wholly or partly salvaged by removing parts and hoisting the removed parts up the shaft to the earth surface region. However, the excavator or part of the excavator could be buried at the bottom of the shaft prior to the tunnel launch.

[0017] The material handling unit may comprise one or more skips moveable up and down on skip guides within the hole and a transfer station at which material excavated in the formation of the shaft is transferred into the skip or skips for transport to the surface region and the transfer station is moved downwardly as excavation progresses.

[0018] On completion of the shaft formation, the transfer station may be located at or near the bottom of the shaft and the tunnel excavation material may be fed to the transfer station for transfer into the skip or skips.

[0019] There may be a pair of said skips movable up and down within the shaft along adjacent pathways to in turn receive excavated material and transport that material to the surface region for discharge at the surface region and to then return downwardly to the transfer station and a pair of bins at the transfer station to receive excavated material and to discharge discrete loads of that material intermittently into the skips.

[0020] The excavation of earth to form the shaft may be carried out by an earth boring machine comprising a rotary cutting head disposed below the material transport system for transporting excavated material to the surface region. The earth boring machine may be fitted above the cutting head with rock drills operable to drill outwardly extending holes about the periphery of the shaft hole and excavation of the cavern may be initiated by operating the rock drills to form outwardly extending blast holes about the periphery of the shaft hole at the bottom part of the shaft hole, setting and detonating explosive charges within the blast holes to excavate an initial station from which the cavern and tunnel or tunnels may be developed.

Brief Description of the Drawings



[0021] In order that the invention may be more fully explained, one particular embodiment will be described in detail with reference to the accompanying drawings in which:

Figure 1 illustrates a shaft sinking system;

Figure 2 is a vertical cross-section through the shaft sinking system;

Figure 3 is a vertical section through an upper part of the system;

Figures 4 and 5 are horizontal cross-sections through the upper part of the system shown in Figure 3;

Figures 6 and 7 illustrate the construction of a pair of skips incorporated in the system; and

Figures 8 to 16 illustrate diagrammatically the manner in which a tunnel or tunnels may be launched outwardly from a shaft.


Detailed Description of the Preferred Embodiment



[0022] Figures 1 to 5 illustrate a mine shaft boring apparatus denoted generally as 20 located in a shaft hole 19. This apparatus comprises a boring machine 21 and an excavated material handling unit 22 disposed above the boring machine and operable to receive excavated material from the boring machine and to transfer it to skips for transport to ground level and discharge at ground level to appropriate conveying equipment or other transport for disposal.

[0023] Earth boring machine 21 has a rotary cutting head 23 fitted with cutters 25 and is mounted at the lower end of a main machine frame 26. The cutter head is rotatable about a vertical axis so that the machine is operable to bore a generally cylindrically shaped hole. A bucket conveyor 29 transports the excavated material from the cutter head upwardly to the material handling unit 22 disposed above the boring machine.

[0024] The main machine frame 26 can be stabilised or locked into position within the bored hole by operation of hydraulically actuated stabilising jacks 27, 28 which operate upper and lower grippers 29, 30 to grip the sidewalls of the shaft to stabilise the position of the boring machine in the shaft. The boring machine can be advanced downwardly by incremental advancement of the main frame 26 by operation of the stabilising jacks 27, 28 and grippers 29, 30 in known fashion.

[0025] The material handling unit 22 is mounted on a galloway or main frame 31 formed by a series of platforms or decks 31a interconnected by circumferentially spaced vertical studs 32. The cutter head is fitted with cutters 25 and is carried on a rotatable column 30 mounted in a main machine frame 26.

[0026] Galloway 31 may be lowered into the shaft on cables and supported independently of boring machine 21 although in an alternative arrangement as described below the galloway may be supported on the body of the boring machine.

[0027] Material handling unit 22 comprises a material transfer station 33 including a pair of storage bins in the form of hoppers 34 mounted side by side on galloway 31. The galloway also supports a bucket conveyor 46 which transports excavated material from boring machine 21 upwardly through the shaft to a location above the transfer station from which it discharges the excavated material onto discharge ramps 35 and into the bins 34. Conveyor 46 operates continuously to feed excavated material into the bins and the material is discharged sequentially from the bins into a pair of skips 36 hoisted on cables 40 from ground level and fitted with wheels 37 which run on vertical guides 38 fitted to the shaft in the manner to be described below.

[0028] Skips 36 may be arc gate bottom dump skips as shown in Figures 6 and 7. The top and bottom of each skip is fitted with two sets of wheels 37 to run on three sides of the respective vertical guides 38. Each skip is also fitted with open channel runners 50 lined with wear blocks to run along the guide.

[0029] Skips 36 are operated in tandem so that as one skip is hoisted from the transfer station 33 to ground level, the other skip is lowered to the transfer station. When a skip 36 reaches the transfer station the bottom floor of the respective bin 34 is moved to discharge material stored in the bin through discharge opening 39 into the skip. The contents of the bin empties quickly into the skip and the bottom door of the bin is closed. Each bin has sufficient capacity to accumulate material continuously from conveyor 46 as the skip is hoisted to the surface, its contents discharged by opening the bottom arc gate and the skip relowered to the transfer station.

[0030] Skips 36 are formed as long rectangular containers which are disposed so as to extend vertically along a side section or segment 52 of the shaft. This section of the shaft, which occupies considerably less than 50% of the shaft cross-section may be divided from the remainder of the shaft space by steel formwork carrying the skip guides 38 and set into a shaft lining 42 installed within the shaft as boring progresses. Typically the maximum width side segment 52 of the shaft may be no more than about one third of the shaft diameter.

[0031] As shown in Figure 4, the shaft may be fitted with air ducts 43 and a delivery bucket or lift 44 for delivery of men and materials to the decks of galloway 34 and the mainframe of the boring machine, a central region 51 of the shaft remaining available as a heave lift compartment.

[0032] Because skips 36 are constrained to run on guides which are firmly anchored to the shaft lining through the formwork 41 they can be of very robust construction and can be raised and lowered along the guides and within the protective formwork much more rapidly than the receptacles previously used for transmitting excavated material to the surface. The lining 42 may be formed of concrete and to enable progressive extension of the lining and the guides for the skips the shaft lining and strip guides may be extended by installation of successive lining and skip guide extensions below the transfer station 33 while material is being conveyed and transferred in advance of movements of the skips into the extensions of the lining as shaft sinking proceeds.

[0033] As shaft boring operations proceed the boring machine may be advanced in successive increments by alternate operation of the stabilising jacks 27, 28 to allow the machine to move down the hole. The bottom end of conveyor is vertically extensible by movement of a bottom loop 46a of the conveyor with compensating movement of an upper loop 46b to allow continued transport of excavated material by the conveyor to the transfer station and discharge into hoppers 34 without moving the transfer station as the cutter head of the boring machine and the conveyor 29 moves through a limited distance. During this time, an extension of the shaft lining 34 can be installed below the transfer station, more specifically, immediately below the lowermost positions of the skips 36 during the then current material transfer and hoisting operations.

[0034] The lining may be installed by spraying concrete directly onto the bored hole through a slick line extending from the surface and supplying concrete through a distributor to one or more, typically two, manually operated application hoses. Alternatively, the lining can be assembled from precast components and attached to the wall by bolting or other convenient means. Extensions of the skip guides and skip guide formwork can then be installed so as to be firmly anchored to the lining. The unit 22 can then be lowered so that the transfer station is lowered and the skips 36 allowed to run onto the extended guides within the extended lining. If the lining is applied in wet form to the bore hole by spraying or other means, sufficient time will need to be allowed for the concrete to cure before the transfer station is lowered.

[0035] Although in the illustrated embodiment the material handling unit 22 is supported independently of the boring machine 21, this is not essential and in an alternative arrangement the galloway carrying the transfer station may be supported directly on the main frame of the boring machine. In such an arrangement the transfer station will be supported and firmly held in position with the main frame of the boring machine when that frame is anchored to the bore hole by operation of the stabilising jacks. The head of the boring machine will move downwardly as boring progresses to enable extension of the shaft lining and the skip guides before the main frame of the boring machine and the transfer station are next moved downwardly. In the arrangement where the transfer station is supported independently of the boring machine it can be moved in incremental steps or substantially continuous movements which may or may not be coupled to the movements of the boring machine.

[0036] The invention enables the development of a material transfer and hoisting system as the hole progresses using skips which can be robust and can be hoisted and lowered more rapidly than kibbles and other unguided receptacles. The illustrated system is capable of moving excavated material at a rate equal to that required for removal of material in an operating mine. Typically, using two skips each of 24 tonnes capacity, it is possible to move 10,000 tonnes of excavated material per day. Accordingly, the transfer station and skip hoisting equipment as installed during the shaft sinking operation may be left in position and subsequently used for retrieving material during tunnelling operations and from a subsequently developed operating mine.

[0037] The main frame 61 of boring machine 21 includes a bolting deck 62 fitted with four high capacity hydraulic rock drills 63 arranged to drill radially. These are operated during shaft sinking to drill bolt holes for the installation of rock bolts to stabilise the shaft walls.

[0038] A dust shield 70 is located between the cutter head 23 and the bolting deck 62. Concrete is also applied to the walls by shotcreting through equipment which may also be provided at the bolting deck.

[0039] Figures 8 to 16 illustrate the manner in which tunnels 82 may be launched from the shaft and material excavated during the tunnelling operations transported to the surface using the material handling unit developed during shaft sinking operations. Figures 8 and 9 show diagrammatically the bottom part 80 of a shaft from which a cavern 81 has been excavated to extend to opposite sides of the shaft. Cavern 81 may be formed by drilling and blasting and removing material up the shaft using the existing material handling unit 22. The cavern is formed so as to have a length and volume sufficient to accommodate a tunnel boring machine 83 which is assembled within the cavern from components lowered down the heavy lifting compartment within the shaft and operated to launch the tunnels 82. Tunnel boring machine 83 may be of a kind conventionally used in civil engineering tunnelling such as in the formation of road and railway tunnels or water pipe tunnels. It may comprise a central body 84 mounted on crawler tracks 85 and provided with a boring head 86 with rotary cutters. The boring machine may include an elongate conveyor such as a chain conveyor 88 extending backwardly from the rotary cutting head to a further extendable conveyor 87 trailed behind the boring machine to deliver excavated material back to the bottom part of the shaft.

[0040] In order to form the cavern 81 a shaft station may initially be formed using the rock drills 63 or the bolting deck 62 of the boring machine to drill blast holes in which explosive charges are detonated in stages. After forming a station by this technique further staged drilling and blasting can be carried out to form the enlarged cavern.

[0041] Figures 10 to 16 illustrate the formation of a shaft station by a sequence of steps or stages as discussed below.

Stage 1



[0042] As the shaft boring machine 21 sinks down and approaches the level at which a station is to be formed pilot drills mounted below the bolting deck 62 drill off a brow for the station as shown in Figure 10.

Stage 2



[0043] The shaft boring machine 21 continues sinking slowly through the station area with the four bolting drills 63 employed to ring-drill the circular station with holes 64 as shown in Figure 11. The ring is based on a bolting pattern arranged with a number of "wedge cut" sections to provide free face for blasting. The drills are fitted with "front clamps" for extension drilling and rods are added by hand. The station area may have been shotcreted in the normal way although more shotcrete may have been applied as the station area will not be bolted or, if bolts are required "shell bolts" can be set in some of the ring drill holes and removed for blasting.

[0044] The bolting drills 63 are operated as the shaft boring machine sinks to drill the blast holes in successive planes through the depth of the proposed station so that the station can subsequently be formed in slices by staged blasting. The shaft boring machine then sinks on for approximately 3 meters while additional holes 65 for blasting waste bypass slots or channels are drilled out as shown in Figure 12. These bypass slots will later be used to drop waste from the station mining to the shaft boring machine cutting wheel for transport as discussed below. The concreting process carried out on the galloway above is held during this process to allow the shaft boring machine to climb above the station during stage blasting operations.

Stage 3



[0045] The holes 65 for the waste bypass channels are charged and blasted to form the channels 66 and then a top slice 67 of the station is blasted in stages. The shaft boring machine is climbed out above the station level after each charging as shown in Figure 13 and the blasting is carried out employing electronic detonators to minimise the maximum instantaneous charge and thereby concussion. The station is divided vertically into approximately 2.5m high slices 67 for ease of support with handheld equipment.

Stage 4



[0046] The shaft boring machine 21 is lowered to bring the bolting deck 62 level with the first excavated station slice as shown in Figure 12. The backs and walls of the first slice 67 are shotcreted and bolted and waste is removed by means of slushers 71 mounted on the bolting deck as shown in Figure 15, scraping back into the waste bypass channels to bypass the dust shield 70. The shaft boring machine cutter head 23 is run intermittently to load out waste via the skip system.

Stage 5



[0047] Successive station slices 67 are blasted out and the walls shotcreted and bolted as shown in figure 16.

Stage 6



[0048] The shaft boring machine carries on sinking below the excavated station. More specifically, the bottom of the shaft may be extended downwardly below the floor of cavern 81 to form a well 89 (Figure 8) in which the transfer station 33 of the material handling unit can be located. The bins or hoppers 34 of the material handling unit can thus be located in the well below the floor of the cavern and the skips 36 lowered into the well to receive material dropped into the bins from the conveyor 67.

[0049] The boring head 21 of the shaft boring apparatus may be completely or partially salvaged by removing parts and hoisting them through the heavy lift compartment of the shaft prior to the tunnel launching operations. However, this equipment is very large, typically weighing in the order of 1800 tonnes, and salvage may be uneconomical in a project in which the operating costs may exceed $1,000,000 per day. In these circumstances part or the whole of the boring head may be left at the bottom of the hole and buried prior to tunnel launching operations.

[0050] The illustrated equipment enables very significant savings in mine development time. However, this equipment has been advanced by way of example only and it may be modified considerably. For example, although maximum benefits can be achieved by assembling and operating a tunnel boring machine for tunnelling operations, this is not essential and it would be possible to launch tunnels by conventional drilling and blasting techniques. Similarly, it would also be possible to modify the shaft boring equipment or to employ a drill and blast technique instead of a mechanical cutting head.


Claims

1. A method of developing an underground mine, comprising:

forming a mine shaft by excavating earth from beneath a galloway to form a hole (19) extending downwardly from an earth surface region;

removing excavated material from the hole (19) during the formation of the mine shaft by a material handling unit (22) operable to transport the excavated material upwardly through the hole (19) to the earth surface region for discharge at the surface region;

wherein the material handling unit (22) comprises one or more skips (36) moveable up and down on skip guides within the hole (19), and

wherein the material handling unit (22) comprises a transfer station (33) at which material excavated in the formation of the shaft is transferred into the skip (36) or skips (36) for transport to the surface region and the transfer station is moved downwardly as excavation progresses,

characterised by the steps of:

forming said mine shaft by excavating earth from beneath a galloway (31) and said material transfer station (33) is mounted on the galloway (31),

locating the galloway (31) and the material transfer station (33) at a bottom part (80) of the mine shaft;

launching one or more tunnels (82) from the bottom part (80) of the mine shaft, and

removing material excavated in the tunnel excavation by transporting that material from the tunnel to the material handling unit (22) and operating that system (22) to transport the material to the surface region,

wherein on completion of the shaft formation, the material transfer station (33) is at or near the bottom of the mine shaft and the tunnel excavation material is fed to the material transfer station (33) into the skip (36) or skips (36).


 
2. The method as claimed in claim 1, wherein the tunnel launching is carried out by firstly excavating a cavern (81) at the bottom part (80) of the mine shaft and then excavating a tunnel or tunnels (82) from the cavern (81) .
 
3. The method as claimed in claim 2, wherein the cavern (81) is excavated by drilling and blasting and removing excavated material.
 
4. The method as claimed in claim 2 or 3, wherein tunnel boring machine components are lowered down the mine shaft and assembled within the cavern (81) into a tunnel boring machine (83) operable to bore outwardly from the cavern (81) to form the tunnel or tunnels (82).
 
5. The method as claimed in any one of the preceding claims, wherein the excavation of earth to form the shaft is carried out by an excavator disposed below the material handling unit (22) for transporting excavated material to the surface region.
 
6. The method as claimed in claim 5, wherein the excavator is an earth boring machine (21) comprising a rotary cutting head (23).
 
7. The method as claimed in claim 5 or claim 6, wherein on completion of the mine shaft formation and prior to the tunnel launch the excavator is wholly or partly salvaged by removing parts and hoisting the removed parts up the mine shaft to the earth surface region.
 
8. The method as claimed in any one of the preceding claims, wherein there is a pair of said skips (36) movable up and down within the shaft along adjacent pathways to in turn receive excavated material and transport that material to the surface region for discharge at the surface region and to then return downwardly to the transfer station (33) and there is a pair of bins (34) at the transfer station (33) to receive excavated material and to discharge discrete loads of that material intermittently into the skips (36).
 
9. The method as claimed in claim 2, wherein the excavation of earth to form the mine shaft is carried out by an earth boring machine (21) comprising a rotary cutting head (23) disposed below the material transport system (22) for transporting excavated material to the surface region, the earth boring machine (21) is fitted above the cutting head (23) with rock drills (63) operable to drill outwardly extending rock holes about the periphery of the mine shaft and excavation of the cavern (81) is initiated by operating the rock drills (63) to form outwardly extending blast holes about the periphery of the mine shaft at the bottom part (80) of the mine shaft, setting and detonating explosive charges within the blast holes to excavate an initial shaft station from which the cavern (81) and tunnel or tunnels (82) are developed.
 
10. The method as claimed in claim 9, wherein the blast holes are blasted in stages and the earth boring machine (21) is raised above the blast zone for each stages blast.
 
11. The method as claimed in claim 9 or 10 wherein the material excavated by the blasting is allowed or caused to fall to the bottom (80) of the mine shaft and the earth boring machine (21) is operated to pick up that material and feed it to the material transport system (22) for transport to the surface region.
 
12. The method as claimed in any one of claims 9 to 11 wherein the transfer station (33) is moved downwardly as excavation progresses and after drilling and blasting to form the cavern (81), the earth boring machine (21) is operated to extend the mine shaft downwardly until the transfer station (33) reaches the initial shaft station and can receive excavated material directly from the initial shaft station and the tunnel or tunnels (82) extended from it.
 


Ansprüche

1. Verfahren zum Erschließen eines Untertagebergwerks, umfassend:

Ausbilden eines Bergwerksschachtes durch Ausheben von Erde unterhalb eines Galloways (einer mehretagigen Arbeitsbühne), um eine Ausnehmung (19) zu bilden, die sich von einem Erdoberflächenbereich nach unten erstreckt;

Entfernen von ausgehobenem Material aus der Ausnehmung (19) während des Ausbildens des Bergwerksschachtes durch eine Materialhandhabungseinheit (22), die betreibbar ist, um das ausgehobene Material durch die Ausnehmung (19) nach oben zu dem Erdoberflächenbereich zu transportieren, um es an dem Oberflächenbereich abzuladen;

wobei die Materialhandhabungseinheit (22) einen oder mehrere Förderkörbe (36) umfasst, die auf Förderkorbführungen innerhalb der Ausnehmung (19) auf und ab bewegbar sind, und

wobei die Materialhandhabungseinheit (22) eine Übergabestation (33) umfasst, an der das beim Ausbilden des Schachts ausgehobene Material in den Förderkorb (36) oder die Förderkörbe (36) zum Transport zu dem Oberflächenbereich übergeben wird und die Übergabestation mit fortschreitendem Aushub nach unten bewegt wird,

gekennzeichnet durch die folgenden Schritte:

Ausbilden des Bergwerksschachtes durch Ausheben von Erde unterhalb eines Galloways (31), wobei die Materialübergabestation (33) an dem Galloway (31) angebracht ist,

Anordnen des Galloways (31) und der Materialübergabestation (33) an einer Sohle (80) des Bergwerksschachtes;

Vortreiben eines oder mehrerer Tunnel (82) von dem unteren Teil (80) des Bergwerksschachtes aus und

Entfernen von in dem Tunnelaushub ausgehobenem Material durch Transportieren dieses Materials von dem Tunnel zu der Materialhandhabungseinheit (22) und Betreiben dieses Systems (22), um das Material zu dem Oberflächenbereich zu transportieren,

wobei sich bei Fertigstellung der Schachtausbildung die Materialübergabestation (33) an oder in der Nähe der Sohle des Bergwerksschachtes befindet und die Materialübergabestation (33) und der Förderkorb (36) oder die Förderkörbe (36) mit dem Tunnelaushubmaterial beschickt werden.


 
2. Verfahren nach Anspruch 1, wobei der Tunnelvortrieb durchgeführt wird, indem zunächst eine Kaverne (81) an der Sohle (80) des Bergwerksschachtes gegraben wird und dann ein Tunnel oder mehrere Tunnel (82) von der Kaverne (81) aus gegraben werden.
 
3. Verfahren nach Anspruch 2, wobei die Kaverne (81) durch Bohren und Sprengen und Entfernen von Aushubmaterial ausgehoben wird.
 
4. Verfahren nach Anspruch 2 oder 3, wobei Tunnelbohrmaschinenkomponenten in den Bergwerksschacht hinabgelassen und innerhalb der Kaverne (81) zu einer Tunnelbohrmaschine (83) zusammengebaut werden, die so betrieben werden kann, dass sie sich von der Kaverne (81) aus nach außen bohrt, um den Tunnel oder die Tunnel (82) auszubilden.
 
5. Verfahren nach einem der vorangegangenen Ansprüche, wobei der Erdaushub zum Ausbilden des Schachtes durch eine Aushubmaschine, die zum Transportieren des ausgehobenen Materials zu dem Oberflächenbereich unterhalb der Materialhandhabungseinheit (22) angeordnet ist, durchgeführt wird.
 
6. Verfahren nach Anspruch 5, wobei die Aushubmaschine ein Erdbohrgerät (21) ist, das einen rotierenden Schneidkopf (23) umfasst.
 
7. Verfahren nach Anspruch 5 oder Anspruch 6, wobei die Aushubmaschine nach Fertigstellung der Bergwerksschachtbildung und vor dem Vortreiben des Tunnels ganz oder teilweise geborgen wird, indem Teile entfernt und die entfernten Teile durch den Schacht an die Erdoberfläche gehoben werden.
 
8. Verfahren nach einem der vorangegangenen Ansprüche, wobei es ein Paar der Förderkörbe (36) gibt, das innerhalb des Schachts entlang benachbarter Bahnen auf- und abwärts bewegbar ist, um abwechselnd ausgehobenes Material aufzunehmen und dieses Material zu dem Oberflächenbereich zu transportieren, um es dort zu entladen und dann nach unten zur Übergabestation (33) zurückzukehren, und wobei es ein Paar von Behältern (34) an der Übergabestation (33) gibt, um ausgehobenes Material aufzunehmen und diskrete Ladungen dieses Materials intermittierend in die Förderkörbe (36) zu entladen.
 
9. Verfahren nach Anspruch 2, wobei der Erdaushub zur Bildung des Bergwerksschachtes durch ein Erdbohrgerät (21) durchgeführt wird, das einen rotierenden Schneidkopf (23) umfasst, der unterhalb des Materialtransportsystems (22) zum Transport von ausgehobenem Material zum Oberflächenbereich angeordnet ist, wobei das Erdbohrgerät (21) oberhalb des Schneidkopfes (23) mit Gesteinsbohrern (63) ausgestattet ist, die betätigbar sind, um sich nach außen erstreckende Gesteinsausnehmungen um den Umfang des Bergwerksschachts zu bohren, und wobei die Ausgrabung der Kaverne (81) durch Betätigung der Gesteinsbohrer (63) eingeleitet wird, um sich nach außen erstreckende Sprenglöcher um den Umfang des Bergwerksschachts an der Sohle (80) des Bergwerksschachts zu bilden, wobei Sprengladungen in den Sprenglöchern gesetzt und gezündet werden, um eine erste Schachtstation auszuheben, von der aus die Kaverne (81) und der Tunnel oder die Tunnel (82) erschlossen werden.
 
10. Verfahren nach Anspruch 9, wobei die Sprenglöcher stufenweise gesprengt werden und wobei die Erdbohrmaschine (21) für jede Sprengstufe über die Sprengzone angehoben wird.
 
11. Verfahren nach Anspruch 9 oder 10, wobei das durch die Sprengung ausgehobene Material auf die Sohle (80) des Bergwerksschachtes fallen gelassen oder geworfen wird und wobei das Erdbohrgerät (21) betrieben wird, um dieses Material aufzunehmen und es dem Materialtransportsystem (22) zum Transport in den Oberflächenbereich zuzuführen.
 
12. Verfahren nach einem der Ansprüche 9 bis 11, wobei die Übergabestation (33) mit fortschreitendem Aushub nach unten bewegt wird und die Erdbohrmaschine (21) nach dem Bohren und Sprengen zur Bildung der Kaverne (81) so betrieben wird, dass sich der Bergwerksschacht nach unten getrieben wird, bis die Übergabestation (33) die erste Schachtstation erreicht und Aushubmaterial direkt von der ersten Schachtstation und dem oder den von ihr ausgehenden Tunneln (82) aufnehmen kann.
 


Revendications

1. Procédé pour développer une mine souterraine, comprenant :

former un puits de mine par excavation de terre sous une potence pour former un trou (19) s'étendant vers le bas depuis une région de surface de la terre ;

enlever le matériau excavé depuis le trou (19) pendant la formation du puits de mine par une unité de manutention (22) de matériau pouvant être utilisée pour transporter le matériau excavé vers le haut à travers le trou (19), vers la région de surface de la terre en vue du déversement dans la région de surface ;

dans lequel l'unité de manutention (22) de matériau comprend une ou plusieurs bennes (36) mobiles vers le haut et vers le bas sur des guides de bennes à l'intérieur du trou (19), et

dans lequel l'unité de manutention (22) de matériau comprend une station de transfert (33) à laquelle le matériau excavé lors de la formation du puits est transféré dans la benne (36) ou les bennes (36) en vue du transport vers la région de surface et la station de transfert est déplacée vers le bas au fur et à mesure que l'excavation avance,

caractérisé par les étapes consistant à :

former ledit puits de mine par excavation de terre depuis le dessous d'une potence (31) et ladite station de transfert (33) de matériau est montée sur la potence (31),

placer la potence (31) et la station de transfert (33) de matériau dans une partie inférieure (80) du puits de mine ;

lancer un ou plusieurs tunnels (82) à partir de la partie inférieure (80) du puits de mine, et

enlever le matériau excavé lors de l'excavation du tunnel en transportant ce matériau du tunnel à l'unité de manutention (22) de matériau et en faisant fonctionner ce système (22) pour transporter le matériau vers la région de surface,

dans lequel, à l'achèvement de la formation du puits, la station de transfert (33) de matériau se trouve au niveau ou à proximité du fond du puits de mine et le matériau d'excavation du tunnel est amené à la station de transfert (33) de matériau dans la benne (36) ou les bennes (36).


 
2. Procédé selon la revendication 1, dans lequel le lancement du tunnel est effectué par excavation, dans un premier temps, d'une caverne (81) au niveau de la partie inférieure (80) du puits de mine et par excavation, ensuite, d'un tunnel ou de plusieurs tunnels (82) à partir de la caverne (81).
 
3. Procédé selon la revendication 2, dans lequel la caverne (81) est excavée par forage et sautage et enlèvement du matériau excavé.
 
4. Procédé selon la revendication 2 ou 3, dans lequel des composants de machine de creusement de tunnels sont descendus dans le puits de mine et assemblés à l'intérieur de la caverne (81) en une machine de creusement (83) de tunnels utilisable pour creuser vers l'extérieur à partir de la caverne (81) afin de former le tunnel ou les tunnels (82).
 
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'excavation de la terre pour former le puits est effectuée par un excavateur disposé en dessous de l'unité de manutention (22) de matériau pour transporter le matériau excavé vers la région de surface.
 
6. Procédé selon la revendication 5, dans lequel l'excavateur est une machine de creusement du sol (21) comprenant une tête de coupe rotative (23).
 
7. Procédé selon la revendication 5 ou la revendication 6, dans lequel, à l'achèvement de la formation du puits de mine et avant le lancement du tunnel, l'excavateur est entièrement ou partiellement récupéré par démontage de pièces et hissage des pièces démontées vers le haut du puits de mine jusqu'à la région de surface de la terre.
 
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel il y a une paire desdites bennes (36) mobiles vers le haut et vers le bas à l'intérieur du puits, le long de trajectoires adjacentes, pour recevoir à tour de rôle un matériau excavé et transporter ce matériau vers la région de surface en vue de le déverser dans la région de surface et pour, ensuite, retourner vers le bas, vers la station de transfert (33), et il y a une paire de bacs (34) à la station de transfert (33) pour recevoir un matériau excavé et pour déverser des charges discrètes de ce matériau par intermittence dans les bennes (36).
 
9. Procédé selon la revendication 2, dans lequel l'excavation de la terre pour former le puits de mine est effectuée par une machine de forage (21) de sol comprenant une tête de coupe rotative (23) disposée sous le système de transport (22) de matériau pour transporter le matériau excavé vers la région de surface, la machine de forage (21) de sol est équipée au-dessus de la tête de coupe (23) de fleurets de roche (63) pouvant être utilisés pour forer des trous de roche s'étendant vers l'extérieur autour de la périphérie du puits de mine, et l'excavation de la caverne (81) est initiée par actionnement des fleurets de roche (63) pour former des trous de mine s'étendant vers l'extérieur autour de la périphérie du puits de mine à la partie inférieure (80) du puits de mine, mise en place et détonation de charges explosives dans les trous de mine afin d'excaver une station de puits initiale à partir de laquelle la caverne (81) et le tunnel ou les tunnels (82) sont développés.
 
10. Procédé selon la revendication 9, dans lequel les trous de mine sont dynamités par étapes et la machine de forage (21) de sol est élevée au-dessus de la zone de sautage pour chaque déflagration d'étape.
 
11. Procédé selon la revendication 9 ou 10, dans lequel le matériau excavé par la déflagration est autorisé ou amené à tomber au fond (80) du puits de mine et la machine de forage (21) de sol est actionnée pour ramasser ce matériau et le délivrer au système de transport (22) de matériau en vue du transport vers la région de surface.
 
12. Procédé selon l'une quelconque des revendications 9 à 11, dans lequel la station de transfert (33) est déplacée vers le bas au fur et à mesure de l'avancement de l'excavation et, après le forage et la déflagration pour former la caverne (81), la machine de forage (21) de sol est actionnée pour étendre le puits de mine vers le bas jusqu'à ce que la station de transfert (33) atteigne la station de puits initiale et puisse recevoir un matériau excavé directement depuis la station de puits initiale et du tunnel ou des tunnels (82) s'étendant à partir de celle-ci.
 




Drawing
































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description