(19)
(11)EP 2 449 249 B1

(12)EUROPÄISCHE PATENTSCHRIFT

(45)Hinweis auf die Patenterteilung:
23.12.2015  Patentblatt  2015/52

(21)Anmeldenummer: 10737259.1

(22)Anmeldetag:  19.06.2010
(51)Internationale Patentklassifikation (IPC): 
F03B 13/14(2006.01)
G01N 33/574(2006.01)
E02B 9/08(2006.01)
(86)Internationale Anmeldenummer:
PCT/EP2010/003709
(87)Internationale Veröffentlichungsnummer:
WO 2011/000486 (06.01.2011 Gazette  2011/01)

(54)

VERFAHREN ZUR GEWINNUNG VON ELEKTRISCHER ENERGIE AUS DER BEWEGUNGSENERGIE VON WASSERWELLEN

Method for obtaining electrical energy from the movement energy of water waves

Procédé de production d'énergie électrique à partir de l'énergie cinétique d'ondes d'eau


(84)Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priorität: 02.07.2009 EP 09008697

(43)Veröffentlichungstag der Anmeldung:
09.05.2012  Patentblatt  2012/19

(73)Patentinhaber: Covestro Deutschland AG
51373 Leverkusen (DE)

(72)Erfinder:
  • SCHAPELER, Dirk
    50171 Kerpen (DE)
  • GRAF, Christian
    33100 Paderborn (DE)
  • MAAS, Jürgen
    32756 Detmold (DE)

(74)Vertreter: Levpat 
c/o Covestro AG Alfred-Nobel-Straße 10
40789 Monheim am Rhein
40789 Monheim am Rhein (DE)


(56)Entgegenhaltungen: : 
WO-A-96/25769
US-A1- 2004 061 338
WO-A-99/28623
US-A1- 2008 267 712
  
      
    Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäischen Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).


    Beschreibung


    [0001] Die vorliegende Erfindung betrifft ein Verfahren zur Gewinnung von elektrischer Energie aus der Bewegungsenergie von Wasserwellen. In dem Verfahren wird eine Vorrichtung im Wasser bereitgestellt, welche ein durch Einwirkung der Wasserwellen dehnbares elektroaktives Polymer umfasst. Beim Dehnen des elektroaktiven Polymers wird zu einem bestimmten Zeitpunkt für ein bestimmtes Zeitintervall eine elektrische Ladung, eine elektrische Spannung oder eine elektrische Feldstärke beaufschlagt. Diese wird beim Relaxieren des Polymers bis auf eine Restladung entnommen. Im Verfahren werden die für den Betrieb des Verfahrens benötigten Größen der elektrischen Zielladung und der Zeitpunkte für Beginn und Ende des Ladens und Entladens des elektroaktiven Polymers ermittelt.

    [0002] Die Energiegewinnung aus Wasserwellen mittels elektroaktiven Polymergeneratoren (EAP-Generatoren) basiert auf dem Prinzip der Umwandlung von potenzieller Wellenenergie in eine Dehnung des EAP-Generators in einer ersten Stufe, die dann unter Verwendung eines Energiegewinnungszyklus (Energy Harvesting Cycle, EHC) schließlich in elektrische Energie umgewandelt wird.

    [0003] Das Dokument US 2008/267712 A1 wird als nächstliegender Stand der Technik angesehen.

    [0004] Beispiele für elektromechanische Wandler finden sich in WO 2001/06575 A1. Diese Patentanmeldung betrifft Wandler, ihre Verwendung und ihre Herstellung. Solch ein Wandler zur Umwandlung von mechanischer Energie in elektrische Energie umfasst wenigstens zwei Elektroden und ein Polymer. Das Polymer ist so angeordnet, dass als Folge einer Längenänderung eines ersten Abschnittes ein elektrisches Feld verändert wird. Weiterhin ist ein zweiter Abschnitt des Polymers elastisch vorgespannt.

    [0005] WO 2007/130252 A2 offenbart Systeme und Verfahren, welche einen EAP-Wandler zur Umwandlung von ursprünglich in einer oder mehrer Wellen enthaltenen mechanischen Energie einsetzen. Im Meer einsetzbare Vorrichtungen können ein mechanisches Energieumwandlungssystem verwenden, welche mechanische Energie übertragen, welche zum Einwirken auf den EAP-Wandler geeignet ist. Solch eine marine Vorrichtung umfasst einen Körper, wobei ein Teil des Körpers sich oberhalb der Wasseroberfläche befindet, wenn die Vorrichtung im Wasser schwimmt. Die Vorrichtung umfasst weiterhin ein System zur Übertragung mechanischer Energie aus einer Veränderung des Niveaus der Wasseroberfläche in durch das System regulierte mechanische Energie. Ein EAP-Wandler ist an einen Teil des Systems zur Übertragung mechanischer Energie gekoppelt und eingerichtet, um elektrische Energie aus der regulierten mechanischen Energie in dem System zur Übertragung mechanischer Energie zu erzeugen. Der EAP-Wandler weist ein elektroaktives Polymer und wenigstens zwei an das elektroaktive Polymer gekoppelte Elektroden auf.

    [0006] Die Optimierung des Energiegewinnungszyklus stellt neben der mechanisch geeigneten Anordnung eine wesentliche Möglichkeit zur Steigerung der Energieeffizienz von EAP-Generatoren dar. Insbesondere trägt in diesem Zusammenhang das Steuerungs- beziehungsweise Regelungskonzept für die Lade-/Entladevorgänge einen wichtigen Beitrag bei.

    [0007] Unter theoretischen Gesichtspunkten ist zur optimalen Wandlungseffizienz von EAP-Generatoren folgender Zyklus anzustreben, welcher einen theoretischen Grenzzyklus darstellt:
    1. 1. Phase: der EAP-Generator wird auf Grund einer äußeren Krafteinwirkung gedehnt. Diese Kraft wird zum Beispiel durch Ausnutzung der Änderung von potenzieller Energie hervorgerufen, wie sie bei Wellenbewegungen auftritt.
    2. 2. Phase: bei maximaler Dehnung des EAP-Generators wird die Anordnung, die aus einem zwischen zwei nachgiebigen Elektroden eingebrachten Polymer besteht, mit elektrischen Ladungen beaufschlagt. Die unter elektrischen Gesichtspunkten als Kondensator mit veränderlicher Kapazität zu betrachtende Anordnung wird bis zum Erreichen der elektrischen Durchbruchsfeldstärke geladen.
    3. 3. Phase: bei einer Verringerung der äußeren angreifenden Kraft relaxiert das EAP wegen der im Polymer wirkenden elastischen Rückstellkräfte. Bei diesem Vorgang erhöht sich die im EAP-Generator gespeicherte elektrische Energie. Diese Phase beschreibt den Energiewandlungsprozess von mechanischer in elektrische Energie.
    4. 4. Phase: sobald die elastischen Rückstellkräfte innerhalb des Polymers betragsmäßig gleich der entgegengesetzt gerichteten Kraft sind, die durch den elektrostatischen Druck des geladenen Kondensators hervorgerufen werden, zieht sich das EAP nicht weiter zusammen und die Anordnung sollte entladen werden. Nach diesem Prozess hat der EAP-Generator wieder seine Ausgangslänge auf Grund des sich verringernden elektrostatischen Drucks erreicht.


    [0008] Der zuvor beschriebene theoretische Zyklus kann unter praktischen Gesichtspunkten nur annähernd durchlaufen werden. Der theoretisch anzustrebende Betrieb an der elektrischen Durchbruchsfeldstärke kann in der Praxis zur Zerstörung der Anordnung führen. Aus diesem Grund muss die anliegende Feldstärke zu jedem Zeitpunkt des Energiegewinnungszyklus unterhalb der elektrischen Durchbruchsfeldstärke liegen. Je höher allerdings die Feldstärke gewählt werden kann, desto höher ist der Energiegewinn des EAP-Generators.

    [0009] Weiterhin besteht die Möglichkeit den Zyklus des EAP-Generators für die 3. Phase so gestallten, dass anstelle einer Beaufschlagung mit konstanter Ladung der EAP-Generator mit konstanter Spannung bzw. konstantem elektrischen Feld versorgen wird.

    [0010] Damit möglichst viel elektrische Energie gewonnen werden kann, sollte die beaufschlagte Ladung, die elektrische Spannung oder die elektrische Feldstärke folglich möglichst nahe an der Durchbruchfeldstärke liegen. Ein fest vorgegebener Wert für die beaufschlagte Ladung ist jedoch nachteilig, wenn die Amplitude der Wellen sich ändert. Mit einer geringeren Wellenhöhe geht eine geringere Dehnung des elektroaktiven Polymers einher, so dass das Aufladen des Polymers nicht mehr optimal ablaufen kann. Im praktischen Betrieb ist weiterhin zu berücksichtigen, dass der Ladestrom für das Polymer nicht unendlich hoch ist, die Aufladezeit also nicht unendlich klein ist. Vielmehr wird über einen gewissen Zeitraum die Ladung auf das Polymer übertragen. Entsprechendes gilt für das Entladen des Polymers. In der Optimierung der Energiegewinnung müssen auch diese Zeiträume hinsichtlich Beginn, Ende und Dauer mit berücksichtigt werden.

    [0011] Wünschenswert wäre daher eine Verbesserung der Annäherung des praktisch durchführbaren Energiewandlungszyklus an den optimalen Zyklus. Dieses beinhaltet ein Steuerungsbeziehungsweise Regelungskonzept zur Realisierung des Lade-/Entladevorgangs. Die Steuerungs-/Regelungsstrukturen sind in den Bildern 4 für konstante Ladung, 5 für konstante Spannung und 6 für konstantes elektrisches Feld skizziert.

    [0012] Erfindungsgemäß vorgeschlagen wird ein Verfahren zur Gewinnung von elektrischer Energie aus der Bewegungsenergie von Wasserwellen mit konstanter Ladung, umfassend die Schritte:

    Bereitstellen einer Vorrichtung im Wasser, wobei die Vorrichtung so eingerichtet ist, dass ein Teil der Vorrichtung oberhalb der Wasseroberfläche angeordnet ist, wobei die Vorrichtung ein elektroaktives Polymer umfasst, welches zwischen Elektroden angeordnet ist und wobei in der Vorrichtung mechanische Energie aus einer Veränderung des Wasserspiegels auf das elektroaktive Polymer übertragen wird;

    Dehnen des elektroaktiven Polymers von einer minimalen Dehnung εmin bis zu einer maximalen Dehnung εmax als Folge einer mechanischen Einwirkung einer Wasserwelle mit einer Ausbreitungsgeschwindigkeit c und einer Wellenlänge λ,
    wobei während des Dehnens des elektroaktiven Polymers dieses während eines Zeitintervalls Δtload von einem Zeitpunkt t1 bis zu einem Zeitpunkt tload mit einer elektrischen Zielladung Q*load beaufschlagt wird, bei der die elektrische Durchbruchsfeldstärke Emax des elektroaktiven Polymers nicht überschritten wird;

    Relaxieren des gedehnten elektroaktiven Polymers von der maximalen Dehnung εmax bis zu der minimalen Dehnung εmin als Folge einer nachlassenden mechanischen Einwirkung der Wasserwelle, wobei während des Relaxierens des elektroaktiven Polymers dieses während eines Zeitintervalls Δtunload von einem Zeitpunkt t2 bis zu einem Zeitpunkt tunload bis auf eine Restladung Q0 entladen wird; und

    wobei zur Berechnung der elektrischen Zielladung erforderliche Zahlenwert der maximalen Dehnung εmax im Voraus abgeschätzt wird durch:

    Abschätzen der maximalen Wellenhöhe hmax einer Wasserwelle und

    Korrelieren der maximalen Wellenhöhe hmax mit der maximalen Dehnung εmax über eine Zuordnungsvorschrift.



    [0013] Erfindungsgemäß vorgeschlagen wird weiterhin ein Verfahren zur Gewinnung von elektrischer Energie aus der Bewegungsenergie von Wasserwellen mit konstanter Spannung, umfassend die Schritte:

    Bereitstellen einer Vorrichtung im Wasser, wobei die Vorrichtung so eingerichtet ist, dass ein Teil der Vorrichtung oberhalb der Wasseroberfläche angeordnet ist, wobei die Vorrichtung ein elektroaktives Polymer umfasst, welches zwischen Elektroden angeordnet ist und wobei in der Vorrichtung mechanische Energie aus einer Veränderung des Wasserspiegels auf das elektroaktive Polymer übertragen wird;

    Dehnen des elektroaktiven Polymers von einer minimalen Dehnung εmin bis zu einer maximalen Dehnung εmax als Folge einer mechanischen Einwirkung einer Wasserwelle mit einer Ausbreitungsgeschwindigkeit c und einer Wellenlänge λ,
    wobei während des Dehnens des elektroaktiven Polymers dieses während eines Zeitintervalls Δtload von einem Zeitpunkt t1 bis zu einem Zeitpunkt tload mit einer elektrischen Spannnung vEAP beaufschlagt wird, bei der die elektrische Durchbruchsfeldstärke Emax des elektroaktiven Polymers nicht überschritten wird;

    Relaxieren des gedehnten elektroaktiven Polymers von der maximalen Dehnung εmax bis zu der minimalen Dehnung εmin als Folge einer nachlassenden mechanischen Einwirkung der Wasserwelle,
    wobei während des Relaxierens des elektroaktiven Polymers die elektrische Spannung vEAP konstant gehalten wird und das elektroaktive Polymer während eines Zeitintervalls Δtunload von einem Zeitpunkt t2 bis zu einem Zeitpunkt tunload bis auf eine Restladung Q0 entladen wird; und

    wobei zur Berechnung der elektrischen Zielspannung erforderliche Zahlenwert der maximalen Dehnung εmax im Voraus abgeschätzt wird durch:

    Abschätzen der maximalen Wellenhöhe hmax einer Wasserwelle und

    Korrelieren der maximalen Wellenhöhe hmax mit der maximalen Dehnung εmax über eine Zuordnungsvorschrift.



    [0014] Erfindungsgemäß vorgeschlagen wird weiterhin ein Verfahren zur Gewinnung von elektrischer Energie aus der Bewegungsenergie von Wasserwellen mit konstantem elektrischem Feld, umfassend die Schritte:

    Bereitstellen einer Vorrichtung im Wasser, wobei die Vorrichtung so eingerichtet ist, dass ein Teil der Vorrichtung oberhalb der Wasseroberfläche angeordnet ist, wobei die Vorrichtung ein elektroaktives Polymer umfasst, welches zwischen Elektroden angeordnet ist und wobei in der Vorrichtung mechanische Energie aus einer Veränderung des Wasserspiegels auf das elektroaktive Polymer übertragen wird;

    Dehnen des elektroaktiven Polymers von einer minimalen Dehnung εmin bis zu einer maximalen Dehnung εmax als Folge einer mechanischen Einwirkung einer Wasserwelle mit einer Ausbreitungsgeschwindigkeit c und einer Wellenlänge λ,
    wobei während des Dehnens des elektroaktiven Polymers dieses während eines Zeitintervalls Δtload von einem Zeitpunkt t1 bis zu einem Zeitpunkt tload mit einer elektrischen Spannnung vEAP beaufschlagt wird, bei der die elektrische Durchbruchsfeldstärke Emax des elektroaktiven Polymers nicht überschritten wird;

    Relaxieren des gedehnten elektroaktiven Polymers von der maximalen Dehnung εmax bis zu der minimalen Dehnung εmin als Folge einer nachlassenden mechanischen Einwirkung der Wasserwelle,
    wobei während des Relaxierens des elektroaktiven Polymers die elektrische Feldstärke Emax=vEAP(t) · z(t) konstant gehalten wird und das elektroaktive Polymer während eines Zeitintervalls Δtunload von einem Zeitpunkt t2 bis zu einem Zeitpunkt tunload bis auf eine Restladung Q0 entladen wird; und

    wobei zur kontinuierlichen Nachführung der elektrischen Feldstärke erforderlicher Zahlenwert aus dem Plattenabstand z(t) abgeschätzt wird.

    [0015] Elektroaktive Polymere (EAP) im Sinne der vorliegenden Erfindung sind grundsätzlich Polymere, die durch das Anlegen einer elektrischen Spannung ihre Form ändern und insbesondere dielektrische Elastomere. Geeignete Materialien sind insbesondere dielektrische Polyurethan-Elastomere. Das elektroaktive Polymer kann mit zwei oder mehr Elektroden verbunden sein, welche ebenfalls dehnbar sein können. Zweckmäßigerweise wird das erfindungsgemäße Verfahren im Meer durchgeführt, die Vorrichtung also im Meer bereitgestellt. Die Vorrichtung kann allgemein als elektromechanischer Wandler bezeichnet werden.

    [0016] Im erfindungsgemäßen Verfahren wird das gedehnte elektroaktive Polymer mittels einer geeigneten Einheit, welche beispielsweise als Leistungselektronik oder Ladeelektronik bezeichnet werden kann, mit einer elektrischen Ladung, Spannung oder Feldstärke beaufschlagt. Beim Relaxieren oder Entspannen wird diese Ladung wieder entnommen bzw. die elektrische Spannung bzw. Feldstärke konstant gehalten, wodurch elektrische Energie gewonnen wird.

    [0017] Zur Berechnung der möglichst hohen elektrischen Zielladung Q*load bzw. der elektrischen Spannung vEAP bzw. der Feldstärke E ist die Kenntnis über die maximale Dehnung εmax erforderlich, wie weiter unten näher ausgeführt werden wird. Da der Zeitpunkt des Endes des Beaufschlagens der Zielladung, tload, mit dem Maximum der Dehnung εmax und somit mit dem Maximum der Wellenhöhe zusammenfällt, muss der Zeitpunkt des Beginns des Beaufschlagens, t1, zwangsläufig vor dem Maximum liegen. Entsprechendes gilt für das Entladen des Polymeres. Es ist also nötig, vorherzusagen, wann das Maximum der Welle den elektromechanischen Wandler erreicht und wie hoch das Maximum ausfallen wird.

    [0018] Im erfindungsgemäßen Verfahren wird zunächst die zu erwartende maximale Wellenhöhe für die nächste Welle abgeschätzt. Dieses wird ebenfalls weiter unten näher erläutert. Der benötigte Zahlenwert für die maximale Dehnung εmax wird über eine Korrelation mit der maximalen Wellenhöhe hmax erhalten. Die Zuordnungsvorschrift kann beispielsweise eine empirisch ermittelte Korrelationstabelle sein, welche jeder Auslenkung des elektromechanischen Wandlers eine Dehnung zuordnet. Die Vorschrift kann auch eine mathematische Beschreibung der speziellen Wandlermechanik sein, also ein Modellkonzept sein. Eine weitere Möglichkeit basiert auf Messdaten des elektroaktiven Polymers.

    [0019] Die im erfindungsgemäßen Verfahren ermittelten Zeitpunkte für das Laden und Entladen des elektroaktiven Polymers können mit einer internen Zeitmessung korreliert werden, um auf einer absoluten Skala das Polymer ansteuern zu können. Es ist auch möglich, externe Zeitsignale wie beispielsweise die über Langwelle gesendeten Signale von Atomuhren zu verwenden.

    [0020] Das erfindungsgemäße Verfahren bietet insgesamt den Vorteil, dass auf eine Veränderung der Wellenhöhe im Laufe der Zeit reagiert werden kann und somit auch unter wechselnden Bedingungen näher am Optimum der Energiegewinnung gearbeitet werden kann.

    [0021] Die vorliegende Erfindung wird unter Bezugnahme auf die nachfolgenden Zeichnungen näher beschrieben werden. Hierbei zeigen:

    FIG. 1 eine Überlagerung eines Wellenverlaufs mit dem Lade- und Entladestrom des EAP

    FIG. 2 ein Ablaufdiagramm für eine Berechnung gemäß dem erfindungsgemäßen Verfahren (konstante Ladung)

    FIG. 3 ein Blockschaltbild für ein erfindungsgemäßes System (konstante Ladung)



    [0022] Zunächst soll zum besseren Verständnis auf die Theorie der Wasserwellen eingegangen werden. Bei Wasserwellen wird grundsätzlich unterschieden in Flachwasser- und Tiefwasserwellen. Flachwasserwellen treten in Strandnähe beziehungsweise geringer Wassertiefe d auf. Die Wellenlänge ist hier deutlich länger als die Wassertiefe: λ >> d. Tiefwasserwellen entstehen auf dem offenen Meer mit λ << d und eignen sich im besonderen Maße für die Energiegewinnung.

    [0023] In der Regel breiten sich Tiefwasserwellen sinusförmig auf dem Meer aus. Frequenz und Ausbreitungsgeschwindigkeit ändern sich nur sehr langsam. Die Höhe der Wellen ist Rayleighverteilt, das heißt, dass große Wellenhöhen treten selten auf. Die größte Wahrscheinlichkeit liegt bei kleineren Amplituden.

    [0024] Zur Steuerung des Laderzyklus für den EAP-Generator muss lediglich die Grundwelle der Tiefwasserwelle (Transversalwelle) betrachtet werden. Diese wird beschrieben durch die Wellenlänge λ, die Wassertiefe d, mit der orts- und zeitabhängigen Wellenhöhe h(x,t) und ihrer maximalen Wellenhöhe hmax sowie durch die Ausbreitungsgeschwindigkeit c. Die Wellenhöhe ergibt sich wie in Gleichung (1) dargestellt:



    [0025] Bezogen auf eine ganze Welle der Länge λ ergibt sich die auf die Fläche A bezogene kinetische Energie gemäß Gleichung (2):



    [0026] Bezogen auf eine ganze Welle der Länge λ ergibt sich die auf die Fläche A bezogene potenzielle Energie gemäß Gleichung (3):



    [0027] Die auf die Fläche A bezogene potenzielle Energie, die zur Dehnung des EAP-Generators verwendet werden soll, ist abhängig von der maximalen Wellenhöhe hmax, der Erdbeschleunigung g und der Dichte des Wassers ρ.

    [0028] Gegenüber der kinetischen Energie in Gleichung (2) verändert sich die flächenbezogene potenzielle Energie ausschließlich mit der Wellenhöhe, so dass durch Gleichsetzen sich schließlich die Ausbreitungsgeschwindigkeit c der Welle bestimmen lässt:



    [0029] Die Ausbreitungsgeschwindigkeit der Welle ist gemäß Gleichung (4) lediglich eine Funktion der Erdbeschleunigung g und der Wassertiefe d. Letztere ändert sich (bei fester Position des EAP-Generators) nur geringfügig auf Grund der Gezeiten, so dass die Ausbreitungsgeschwindigkeit näherungsweise konstant ist.

    [0030] Mit der in der Wasserwellentheorie begründeten Annahme einer sinusförmigen Ausbreitung von Tiefwasserwellen soll im folgenden Abschnitt die Optimierung des Energiegewinnungszyklus beschrieben werden. Ziel ist hierbei die Bestimmung der zeitlich optimalen Lade- und Entladezyklen und die Bestimmung der jeweils maximal aufzubringenden Ladungsmenge bzw. maximalen Spannung unter Einhaltung von Randbedingungen.

    [0031] Auf Grund des durch die Elektronik begrenzten Laderstroms und der damit endlichen Zeit zum Aufbringen von Ladungen auf den EAP-Generator ist unter Bestimmung der optimalen Lade- und Entladezyklen die Detektierung des optimalen Lade-/Entladezeitintervalls zu verstehen. Unter Berücksichtigung der im Zyklus auftretenden maximalen Dehnung des EAP soll die übertragene Ladungsmenge, die über die Kapazität des EAP mit der elektrischen Spannung in Relation steht, so vorausbestimmt werden, dass die elektrische Durchbruchsfeldstärke Emax des Polymers einerseits zu keinem Zeitpunkt überschritten wird, aber andererseits zu maximaler Energiegewinnung führt.

    [0032] Für die Optimierung des Energiegewinnungszyklus sollen zwei Kriterien für die Extremalberechnung betrachtet werden, nämlich die Maximierung der Energiewandlung von mechanischer in elektrische Energie und die Minimierung elektrischer und mechanischer Verluste.

    [0033] Zunächst sollen die Optimierungsbedingungen für eine maximale Energiegewinnung bei konstanter Ladung allgemein hergeleitet werden.

    [0034] Soll das EAP zum Zeitpunkt t1 mit dem Ladestrom iload(t) in der Ladezeit Δtload = tload - t1 auf eine vorab bestimmte Zielladung Q*load geladen werden, ergibt sich die zeitabhängige Ladungsmenge zu:



    [0035] Mit Vorgabe von Q*load und bei bekanntem iload(t) lässt sich aus Gleichung (5) das Ladezeitintervall Δtload = tload-t1 bestimmen. Die Bestimmung des Entladezeitintervalls folgt analog.

    [0036] Die Kapazität C des EAP-Generators ist lediglich von der Dehnung ε abhängig, die wiederum eine Funktion des Ortes und der Zeit der Wasserwelle ist, aber keine Funktion der EAP-Spannung uEAP ist.

    [0037] Allgemein beträgt die auf den EAP-Generator aufgebrachte Energie nach Abschluss des Ladezyklus:



    [0038] Die vom EAP-Generator entnommene Energie nach Abschluss des Entladevorgangs beträgt:



    [0039] Der Energiegewinn ergibt sich dann zu:



    [0040] Aus dieser allgemeinen Gleichung für den Energiegewinn können die optimalen Startpunkte t1 und t2 durch Lösung der Extremwertaufgabe


    bestimmt werden. Da der Energiegewinn von zwei Variablen abhängt, können Extremwerte nur auftreten, wenn die partiellen Ableitungen nach den Variablen t1, t2 gleichzeitig Null sind:



    [0041] Die Lösung von Gleichung (10) ergibt Wertepaare, die Extremwerte der Flächenfunktion in Gleichung (10) darstellen. Ob es sich hierbei um ein Minimum, Maximum oder Sattelpunkt handelt, kann mit den zweiten Ableitungen bestimmt werden:



    [0042] Liefern die beiden gemischten Ableitungen nach t1, t2 identische Ergebnisse, so liegt ein Maximum vor, wenn die beiden zweiten Ableitungen nach t1 oder t2 negativ sind; ein Minimum liegt vor, wenn die beiden zweiten Ableitungen positiv sind; ein Sattelpunkt liegt vor, wenn die beiden zweiten Ableitungen unterschiedliche Vorzeichen aufweisen.

    [0043] Unabhängig vom Ergebnis der beiden gemischten Ableitungen kann die Entscheidung, welches Extremum vorliegt, allgemein mit Hilfe der Hesse-Matrix vorgenommen werden:



    [0044] Ist die Matrix H positiv definit, liegt ein relatives Minimum vor, ist H negativ definit handelt es sich um ein relatives Maximum, ist H indefinit, so handelt es sich um kein relatives Extremum. Sofern H positiv/negativ semidefinit ist, sind zusätzliche Untersuchungen notwendig, wie sie in üblichen Lehrbüchern der Mathematik näher erläutert werden.

    [0045] In einer Ausführungsform des erfindungsgemäßen Verfahrens wird der Zeitpunkt t1 berechnet gemäß

    und der Zeitpunkt t2 wird gemäß

    berechnet. Weiterhin hat zu dem Zeitpunkt tload das elektroaktive Polymer die maximale Dehnung εmax eingenommen und zu dem Zeitpunkt tunload das elektroaktive Polymer die minimale Dehnung εmin.

    [0046] Unter der Annahme einer sinusförmigen Ausbreitung der Wasserwelle ist bei ideal elastischen Verhältnisses des Polymers auch ein annähernd sinusförmiger Dehnungsverlauf ε des EAP-Generators zu erwarten. Die Kapazität des EAP-Generators wird bei steigender Dehnung einen streng monoton steigenden Verlauf, bei Relaxation einen streng monoton fallenden Verlauf aufweisen und kann in erster Näherung ebenfalls als sinusförmiger Verlauf approximiert werden. Demnach weist die Anordnung bei maximaler Dehnung εmax die maximale Kapazität und Cmax und bei minimaler Dehnung εmin die minimale Kapazität Cmin auf.

    [0047] Ändert sich die Kapazität des EAP-Generators konstant proportional zur Dehnung ε des EAP-Generators


    und sind die Lade- und Entladeströme auf Grund ihres Begrenzungswertes Imax blockförmig, womit auch


    gilt, ergibt sich der maximale Energiegewinn nach Gleichungen (9)-(12) genau dann, wenn bei der maximalen Amplitude der Dehnung der Ladevorgang abgeschlossen ist, was auf den Startzeitpunkt


    führt und wenn der Entladevorgang bei minimaler Amplitude der Dehnung bei


    beginnt. Der Lade- und Entladevorgang wiederholt sich nach einer Periodendauer Tp = λlc. Der Zusammenhang wird nochmals in FIG. 1 dargestellt.

    [0048] FIG. 1 zeigt schematisch die Überlagerung des Verlaufs einer Wasserwelle 100 mit dem Lade- und Entladestrom 110 des elektroaktiven Polymers. Zum Zeitpunkt t1 beginnt das Aufladen des Polymers bis zum Endzeitpunkt tload, welcher mit dem Maximum der Wellenhöhe zusammenfällt. Dieses Ladeintervall ist durch das Bezugszeichen 120 gekennzeichnet. Vom Zeitpunkt t2, welcher mit dem Minimum der Wellenhöhe korrespondiert, bis zum Zeitpunkt tunload wird das Polymer entladen. Dieses ist das Entladeintervall 130. Die Energiewandlung findet jeweils im Intervall 140 statt, wenn das aufgeladene EAP wieder relaxiert.

    [0049] Die Optimierungsbedingungen für Laden und Entladen des EAP-Generators gelten analog auch für konstante Spannung und konstantes elektrisches Feld. Hierbei wird allerdings nicht die Ladungsmenge während des Relaxierens konstant gehalten, sondern die elektrische Spannung bzw. die elektrische Feldstärke.

    [0050] Der Energiegewinn Eharvest durch den EAP-Generator wird durch Verluste reduziert. Es treten neben mechanischen Umwandlungsverlusten EEAP,mech und elektrischen Verlusten im EAP-Generator EEAP,el zusätzliche Verluste Eelec durch die Ladeelektronik während der Lade- und Entladezyklen in Abhängigkeit der EAP-Spannung u(t) und der EAP-Kapazität C(ε(x,t),Q) auf, die bei der Optimierung des maximalen Energiegewinns berücksichtigt werden und einen Einfluss auf die optimalen Schaltzeitpunkte haben. Insofern ist bei der Zeitintervalloptimierung nach den Gleichungen (9)-(12) die nachfolgende Beziehung zu verwenden:



    [0051] Mit einem geeigneten Sensor- und Beobachterkonzept werden die Zeitpunkte minimaler Amplitude t(hmin) und maximaler Amplitude t(hmax) und die Wellenhöhe hmax vorhergesagt. Beispielsweise mit einem Modell des EAP-Generators und des mechanischen Wandlerkonzeptes können dann die entsprechenden Zeitpunkte minimaler und maximaler Dehnung sowie Dehnung des EAP-Generators bestimmt werden. Der Prädiktionshorizont (vorausgeschätzte Zeit testimate) muss dabei zwischen 0 < testimate < Tp = λ/c, das heißt eine Periodedauer, betragen. Durch eine räumlich versetzte Anordnung zwischen Sensorik und EAP-Generator kann sich der Prädiktionshorizont entsprechend verlängern (zum Beispiel, wenn die Welle die verwendete Sensorik erst nach dem EAP-Generator erreicht) oder verkürzen (zum Beispiel, wenn die Welle die verwendete Sensorik vor dem EAP-Generator erreicht).

    [0052] In Abhängigkeit der Wellenlänge und Ausbreitungsgeschwindigkeit ergibt sich die Periodendauer Tp = λ/c der Welle für einen festen Ort x. Wenn sich ein erster EAP-Generator E1, bezogen auf die Ausbreitungsrichtung der Welle, vor einer Sensorik S befindet, erreicht ein Wellenberg den EAP-Generator E1 um die Zeit:


    vor der Sensorik und der Prädiktionshorizont testimate muss um diesen Betrag größer werden. Befindet sich ein zweiter EAP-Generator E2 nach der Sensorik S, kann der Prädiktionshorizont testimate entsprechend kleiner werden.

    [0053] Die Schätzung der Wellenlänge λ kann entweder mit einer zusätzlichen Sensorik erfolgen oder aus den elektrischen Größen des EAP-Generators bestimmt werden.

    [0054] Wird zusätzliche Sensorik eingesetzt, bietet sich der Einsatz von Beschleunigungssensoren an, die die Vertikalbeschleunigung der Wasseroberfläche messen. Die Grundwelle kann zum Beispiel mit einer Phasenregelschleife (phase-locked loop, PLL) oder über Transformationen wie FourierTransformation und insbesondere Fast Fourier Transformationen (FFT) oder Cosinus-Transformation bestimmt werden.

    [0055] Aus der Grundwelle und der Annahme, dass sich die Wellenlänge nur mit geringer Dynamik ändert, können die Zeitpunkte der Extremwerte der Wellenbewegung vorausgeschätzt werden.

    [0056] Ein Beispiel für eine Schrittabfolge, welche noch zusätzliche Schritte umfassen kann, ist:
    1. 1. Schritt: Zunächst wird modell- oder/und sensorgestützt die Dehnung ε und der Zeitpunkt maximaler Dehnung t(εmax) des EAP-Generators geschätzt.
    2. 2. Schritt: Anhand der zu erwartenden Dehnung des EAP-Generators wird modellbasiert die zulässige Zielladung Q*load gemäß Gleichung (20) (oder die zulässige elektrische Spannung) ermittelt, bei der ein Überschreiten der elektrischen Durchbruchsfeldstärke während des Energiegewinnungszyklus vermieden wird.
    3. 3. Schritt: Unter Berücksichtigung der Stromcharakteristik iload(t) kann die Länge der Ladezeit Δtload mit Gleichung (5) bestimmt werden. Analog wird die Länge der Entladezeit Δtunload bestimmt.
    4. 4. Schritt: Mittels der Zielladungsmenge Q*load und der Lade- und Entladezeiten Δtload und Δtunload kann nun unter Berücksichtigung der Verluste Eloss der optimale Zeitpunkt für den Beginn des Ladevorgangs t1 und des Entladevorgangs t2 nach Gleichung (17) bestimmt werden.


    [0057] FIG. 2 zeigt ein Ablaufdiagramm für eine solche Schrittfolge. Hierbei bedeuten die Verweise durch Pfeile auf in Klammern gesetzte Zahlen, dass die Größe anhand der mit der entsprechenden Nummer referenzierten Gleichung in der Beschreibung zur vorliegenden Erfindung erhalten werden kann. Die eigentliche Schrittfolge ist in Gruppe 200 zusammengefasst. Schritt 260 betrifft das Ermitteln der zeitabhängigen Spannung uEAP(t) und des zeitabhängigen Stroms iEAP(t) des elektroaktiven Polymers. Aus diesen Werten können in Schritt 250 die dehnungsabhängige Kapazität C(ε) und der dehnungsabhängige Elektrodenabstand d(ε) bestimmt werden. Diese Werte dienen auch zur Vorhersage des Zeitpunktes der maximalen Dehnung des EAP in Schritt 210.

    [0058] Die Schrittfolge für den Betrieb mit konstanter elektrischer Spannung bzw. mit konstantem elektrischem Feld unterscheidet sich insofern, dass die Berechnung der Zielladungsmenge anders erfolgt. Im Fall eines Betriebs mit konstanter elektrischer Spannung wird die Zielladungsmenge so vorherbestimmt, dass bei maximaler Dehnung die zulässige Feldstärke nicht überschritten wird. Anschließend muss die Ladungsmenge so angepasst werden, dass die elektrische Spannung konstant bleibt. Bei Betrieb mit konstantem elektrischen Feld wird die Zielladungsmenge ebenfalls so vorherbestimmt, dass über den gesamten Wandlungsprozess die zulässige Feldstärke nicht überschritten wird. Hierfür wird modellbasiert die Foliendicke geschätzt, aus der bei Vorgabe der zulässigen Feldstärke dann die erforderliche Spannung berechnet werden kann. Alle weiteren Schritte gelten unverändert.

    [0059] Unter Verwendung der vorhergesagten maximalen Dehnung des EAP werden in Schritt 220 die Zielladung Q*load berechnet und in Schritt 230 die Zeitdauern für die Lade- und Entladeintervalle Δtload und Δtunload. Schließlich können aus den ermittelten Parametern die Zeitpunkte für den Beginn des Ladevorgangs t1 und des Entladevorgangs t2 ermittelt werden.

    [0060] In einer Ausführungsform des erfindungsgemäßen Verfahrens wird die Wellenlänge λ ermittelt, indem mittels eines Beschleunigungssensors die vertikale Beschleunigung der Wasseroberfläche gemessen wird und:

    die Oszillation des erhaltenen Beschleunigungssensor-Signals über eine Phasenregelschleife eine wellenlängenabhängige Spannung ergibt; und/oder

    die Oszillation des erhaltenen Beschleunigungssensor-Signals über eine Fourier- oder Cosinus-Transformation in die Domäne c/λ überführt wird.



    [0061] Bevorzugte Fourier-Transformationen sind hierbei Fast Fourier-Transformationen.

    [0062] In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird die Wellenlänge λ ermittelt, indem die zwischen den Elektroden am elektroaktiven Polymer anliegende Spannung gemessen wird und:

    die Oszillation der Spannung über eine Phasenregelschleife eine wellenlängenabhängige Spannung ergibt; und/oder

    die Oszillation der Spannung über eine Fourier- oder Cosinus-Transformation in die Domäne c/λ überführt wird.



    [0063] Bevorzugte Fourier-Transformationen sind hierbei Fast Fourier-Transformationen. Eine modellgestützte Schätzung ohne Sensorik besteht darin, am EAP-Generator die Spannung uEAP kontinuierlich zu messen, womit auf Basis der seitens der Steuerung bekannten Ladung Q*load + Q0 beziehungsweise Q0 des EAP-Generators über ein mathematisches Modell auf die Kapazität C(ε(x,t),Q) geschlossen werden kann. Damit die dehnungsabhängige EAP-Kapazität erfasst werden können, muss beim Entladevorgang eine geringe Restladung Q0 auf dem EAP verbleiben, um so eine fortlaufende Spannungsmessung während des Zyklus durchführen zu können.



    [0064] Über den formelmäßigen Zusammenhang zwischen EAP-Kapazität und EAP-Dehnung kann die zeitabhängige Dehnung des EAP-Generators bestimmt werden.

    [0065] Bei Betrieb mit konstanter Spannung bzw. konstantem Feld wird die Spannung während des Relaxierens kontinuierlich nachgeführt und die Kapazität kann aus der durch Änderung des Stroms hervorgerufenen Änderung der Ladungsmenge geschätzt werden. Während der Dehnungsphase wird dasselbe Konzept wie bei konstanter Ladung verfolgt, indem eine Ladungsrestmenge auf dem EAP-Generator verbleibt.

    [0066] Die Dehnung des EAP-Generators wird über das mechanische Wandlerkonzept durch die Wellenbewegung hervorgerufen, über den somit aus der EAP-Spannung auf die Wellenbewegung geschlossen werden. Durch Verwendung der Phasenregelschleife beziehungsweise Transformation der Wellenbewegung in den Frequenzbereich (analog zur Messung mit Beschleunigungssensor) kann die Wellenlänge bestimmt werden. Aus Wellenlänge und Ausbreitungsgeschwindigkeit leiten sich die Zeitpunkte minimaler und maximaler Dehnung t(εmin), t(εmax) ab.

    [0067] Die Kenntnis über die Wellenhöhe ist insofern wichtig, damit die optimierte Ladungsmenge auf den EAP-Generator aufgebracht werden kann, die einen maximalen Energiegewinn erzeugt, aber nicht zur Zerstörung des EAP führt. Ist die Dehnung ε des EAP-Generators weitgehend unabhängig von der aufgebrachten Ladung (εf(Q)), wenn der elektrostatische Druck also vernachlässigt werden kann, berechnet sich die maximale Ladungsmenge über die maximal zulässige Feldstärke Emax des EAP-Generators und den Elektrodenabstand d (Polymerdicke). Dabei entsteht bei maximaler Dehnung εmax des EAP-Generators unter Annahme eines konstanten EAP-Volumens die maximale Kapazität Cmax und der minimale Elektrodenabstand dmin, während sich bei minimaler Dehnung εmin des EAP-Generators die minimale Kapazität Cmin und der maximale Elektrodenabstand dmax einstellt. Da sowohl die Kapazität als auch der Elektrodenabstand nichtlineares Verhalten aufweisen, muss der gesamte Dehnungsbereich berücksichtigt werden und die zulässig aufzubringende Ladungsmenge Q*load für den Betrieb mit konstanter Ladung ergibt sich mit:



    [0068] Wird während der Dehnung des EAP-Generators die Kapazität, wie mit Gleichung (18) vorgeschlagen, und in analoger Weise auch der Elektrodenabstand d durch eine Spannungsmessung berechnet, kann aus deren geschätzten Verlauf die Zielladung Q*load nach Gleichung (20) bestimmt werden. Eine Schätzung der Wellenhöhe ist daraus zwar ebenso möglich, allerdings für die optimale Steuerung des EHC nicht erforderlich.

    [0069] Auf Basis der hergeleiteten Beziehungen sollten für jeden Zyklus der Zeitpunkt t(εmax), t(εmin) und die Amplitude der maximalen und minimalen Dehnung des EAP-Generators schon im Voraus ermittelt werden. Da sich jedoch insbesondere die Wellenlänge λ nur langsam und in engen Grenzen ändert, muss lediglich die maximale Dehnung εmax in jedem Zyklus vorausgeschätzt werden.

    [0070] In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird für den Fall, dass die tatsächliche Wellenhöhe sich gegenüber der geschätzten Wellenhöhe um so viel höher ist, dass mit der aufgebrachten Ladung die Durchschlagfeldstärke des elektroaktiven Polymers überschritten wird, aus dem elektroaktiven Polymer Ladung entnommen. Vorzugsweise wird für diesen Fall, dass |E| ≥ Emax ist, während des Energiegewinnungszyklus Ladung entnommen. Durch das Entnehmen der Ladung kann eine Zerstörung des EAP-Generators verhindert werden.

    [0071] Ein weiterer Gegenstand der vorliegenden Erfindung ist ein System zur Gewinnung von elektrischer Energie aus der Bewegungsenergie von Wasserwellen und geeignet zur Durchführung des erfindungsgemäßen Verfahrens, umfassend:

    eine Vorrichtung, welche so eingerichtet ist, dass beim Platzieren der Vorrichtung im Wasser ein Teil der Vorrichtung oberhalb der Wasseroberfläche angeordnet ist, wobei die Vorrichtung ein elektroaktives Polymer umfasst, welches zwischen Elektroden angeordnet ist und wobei in der Vorrichtung mechanische Energie aus einer Veränderung des Wasserspiegels auf das elektroaktive Polymer übertragen wird;

    eine Sensoreinheit zur Gewinnung von Sensordaten über die Wasserwellen und/oder das elektroaktive Polymer;

    eine Leistungseinheit zum Beaufschlagen des elektroaktiven Polymers mit elektrischer Ladung und zum Entladen des elektroaktiven Polymers; und

    eine Steuereinheit, welche eingerichtet ist, um empfangene Daten aus der Sensoreinheit gemäß vorher definierter Datenmodelle in einem Berechnungsalgorithmus zu verarbeiten und als Ergebnis der Berechnung die Leistungselektronik anzusteuern, wobei weiterhin der Berechnungsalgorithmus die Abschätzung der maximalen Wellenhöhe von zukünftigen bei der Vorrichtung eintreffenden Wasserwellen umfasst.



    [0072] Die Vorrichtung, welche ein Teil des erfindungsgemäßen Systems ist, entspricht der Vorrichtung im erfindungsgemäßen Verfahren. Daher wird zur Vermeidung von Wiederholungen auf die Erläuterungen hierzu verwiesen. Dieses gilt ebenfalls in Bezug auf bevorzugte Ausführungsformen der Vorrichtung.

    [0073] Ein erfindungsgemäßes System wird unter Bezugnahme auf FIG. 3 weiter erläutert, ohne jedoch darauf beschränkt zu sein. Diese Figur zeigt ein Blockschaltbild für ein erfindungsgemäßes System. Das Element 300 stellt die Sensoreinheit dar, welche Daten über die Wasserwellen und/oder das elektroaktive Polymer 350 gewinnt.

    [0074] Die Daten aus der Sensoreinheit 300 können über ein mathematisches Modell und/oder ein mechanisches Konzept des elektromechanischen Wandlers 310 aufbereitet werden und dann an einen Berechnungseinheit 330 weitergegeben werden. Ebenso können die Daten in eine Modellierung der Wellen 320 einfließen. Die Berechnungseinheit 330 berechnet mit entsprechenden Algorithmen Vorgaben für eine Leistungselektronik oder Leistungseinheit 340. Solche Vorgaben sind insbesondere die auf das elektroaktive Polymer in der Vorrichtung zu übertragende Ladungsmenge und die Zeitpunkte für den Beginn und Ende des Ladens und Entladens. Die Steuereinheit 360 im erfindungsgemäßen System umfasst die Elemente 310, 320 und 330.

    [0075] Durch die Leistungseinheit 340 wird das elektroaktive Polymer 350 mit einer elektrischen Ladung beaufschlagt und, nach Ende der Energiewandlungsphase, die elektrische Energie wieder entnommen. Zum Abgleich der Berechnungsmodelle kann die Leistungseinheit 340 mit der Modelleinheit 310 in Verbindung stehen.

    [0076] In einer Ausführungsform des erfindungsgemäßen Systems umfasst die Sensoreinheit einen von der Vorrichtung beabstandeten Beschleunigungssensor. Dieser Beschleunigungssensor schwimmt vorzugsweise auf der Wasseroberfläche und misst die Schwankung deren Höhe als Folge der Wellenbewegungen. Details hierzu wurden bereits zum erfindungsgemäßen Verfahren erläutert.

    [0077] In einer weiteren Ausführungsform des erfindungsgemäßen Systems misst die Sensoreinheit die zwischen den Elektroden am elektroaktiven Polymer anliegende Spannung und den Abstand der Elektroden am elektroaktiven Polymer. Details hierzu wurden bereits zum erfindungsgemäßen Verfahren erläutert.

    [0078] Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Computerprogrammprodukt, umfassend durch einen Mikroprozessor ausführbare Befehle zur Durchführung der Berechnungen in dem Verfahren gemäß der vorliegenden Erfindung.


    Ansprüche

    1. Verfahren zur Gewinnung von elektrischer Energie aus der Bewegungsenergie von Wasserwellen, umfassend die Schritte:

    Bereitstellen einer Vorrichtung im Wasser, wobei die Vorrichtung so eingerichtet ist, dass ein Teil der Vorrichtung oberhalb der Wasseroberfläche angeordnet ist, wobei die Vorrichtung ein elektroaktives Polymer umfasst, welches zwischen Elektroden angeordnet ist und wobei in der Vorrichtung mechanische Energie aus einer Veränderung des Wasserspiegels auf das elektroaktive Polymer übertragen wird;

    Dehnen des elektroaktiven Polymers von einer minimalen Dehnung εmin bis zu einer maximalen Dehnung εmax als Folge einer mechanischen Einwirkung einer Wasserwelle mit einer Ausbreitungsgeschwindigkeit c und einer Wellenlänge λ,
    wobei während des Dehnens des elektroaktiven Polymers dieses während eines Zeitintervalls Δtload von einem Zeitpunkt t1 bis zu einem Zeitpunkt tload mit einer elektrischen Zielladung Q*load beaufschlagt wird, bei der die elektrische Durchbruchsfeldstärke Emax des elektroaktiven Polymers nicht überschritten wird;

    Relaxieren des gedehnten elektroaktiven Polymers von der maximalen Dehnung εmax bis zu der minimalen Dehnung εmin als Folge einer nachlassenden mechanischen Einwirkung der Wasserwelle,
    wobei während des Relaxierens des elektroaktiven Polymers dieses während eines Zeitintervalls Δtunload von einem Zeitpunkt t2 bis zu einem Zeitpunkt tunload bis auf eine Restladung Q0 entladen wird; und

    wobei zur Berechnung der elektrischen Zielladung erforderliche Zahlenwert der maximalen Dehnung εmax im Voraus abgeschätzt wird durch:

    Abschätzen der maximalen Wellenhöhe hmax einer Wasserwelle und

    Korrelieren der maximalen Wellenhöhe hmax mit der maximalen Dehnung εmax über eine Zuordnungsvorschrift.


     
    2. Verfahren gemäß Anspruch 1, wobei der Zeitpunkt t1 berechnet wird gemäß

    der Zeitpunkt t2 berechnet wird gemäß

    wobei weiterhin zu dem Zeitpunkt tload das elektroaktive Polymer die maximale Dehnung εmax eingenommen hat und zu dem Zeitpunkt tunload das elektroaktive Polymer die minimale Dehnung εmin eingenommen hat
     
    3. Verfahren gemäß Anspruch 2, wobei die Wellenlänge λ ermittelt wird, indem mittels eines Beschleunigungssensors die vertikale Beschleunigung der Wasseroberfläche gemessen wird und:

    die Oszillation des erhaltenen Beschleunigungssensor-Signals über eine Phasenregelschleife eine wellenlängenabhängige Spannung ergibt; und/oder

    die Oszillation des erhaltenen Beschleunigungssensor-Signals über eine Fourier- oder Cosinus-Transformation in die Domäne c/λ überführt wird.


     
    4. Verfahren gemäß Anspruch 2, wobei die Wellenlänge λ ermittelt wird, indem die zwischen den Elektroden am elektroaktiven Polymer anliegende Spannung gemessen wird und:

    die Oszillation der Spannung über eine Phasenregelschleife eine wellenlängenabhängige Spannung ergibt; und/oder

    die Oszillation der Spannung über eine Fourier- oder Cosinus-Transformation in die Domäne c/λ überführt wird.


     
    5. Verfahren gemäß Anspruch 1, wobei für den Fall, dass die tatsächliche Wellenhöhe sich gegenüber der geschätzten Wellenhöhe um so viel höher ist, dass mit der aufgebrachten Ladung die Durchschlagfeldstärke des elektroaktiven Polymers überschritten wird, aus dem elektroaktiven Polymer Ladung entnommen wird.
     
    6. System zur Gewinnung von elektrischer Energie aus der Bewegungsenergie von Wasserwellen und geeignet zur Durchführung des Verfahrens gemäß Anspruch 1, umfassend:

    eine Vorrichtung, welche so eingerichtet ist, dass beim Platzieren der Vorrichtung im Wasser ein Teil der Vorrichtung oberhalb der Wasseroberfläche angeordnet ist, wobei die Vorrichtung ein elektroaktives Polymer umfasst, welches zwischen Elektroden angeordnet ist und wobei in der Vorrichtung mechanische Energie aus einer Veränderung des Wasserspiegels auf das elektroaktive Polymer übertragen wird;

    eine Sensoreinheit zur Gewinnung von Sensordaten über die Wasserwellen und/oder das elektroaktive Polymer;

    eine Leistungseinheit zum Beaufschlagen des elektroaktiven Polymers mit elektrischer Ladung und zum Entladen des elektroaktiven Polymers; und

    eine Steuereinheit, welche eingerichtet ist, um empfangene Daten aus der Sensoreinheit gemäß vorher definierter Datenmodelle in einem Berechnungsalgorithmus zu verarbeiten und als Ergebnis der Berechnung die Leistungselektronik anzusteuern, wobei weiterhin der Berechnungsalgorithmus die Abschätzung der maximalen Wellenhöhe von zukünftigen bei der Vorrichtung eintreffenden Wasserwellen umfasst.


     
    7. System gemäß Anspruch 6, wobei die Sensoreinheit einen von der Vorrichtung beabstandeten Beschleunigungssensor umfasst.
     
    8. System gemäß Anspruch 7, wobei die Sensoreinheit die zwischen den Elektroden am elektroaktiven Polymer anliegende Spannung und den Abstand der Elektroden am elektroaktiven Polymer misst.
     
    9. Computerprogrammprodukt, umfassend durch einen Mikroprozessor ausführbare Befehle zur Durchführung der Berechnungen in dem Verfahren gemäß Anspruch 1.
     


    Claims

    1. Method for harvesting electrical energy from the kinetic energy of water waves, comprising the steps:

    providing a device in the water, the device being so configured that a portion of the device is arranged above the water surface, the device comprising an electroactive polymer which is arranged between electrodes, and mechanical energy from a change in the water level being transmitted in the device to the electroactive polymer;

    expanding the electroactive polymer from a minimum expansion εmin to a maximum expansion εmax as a result of the mechanical action of a water wave having a propagation speed c and a wavelength λ,

    wherein during the expansion of the electroactive polymer there is applied thereto for a time interval Δtload from a time t1 to a time tload a target electrical load Q*load at which the electrical disruptive strength Emax of the electroactive polymer is not exceeded;

    relaxing the expanded electroactive polymer from the maximum expansion εmax to the minimum expansion εmin as a result of the decreasing mechanical action of the water wave,

    wherein during the relaxation of the electroactive polymer it is unloaded during a time interval Δtunload from a time t2 to a time tunload to a residual load Q0; and

    wherein the numerical value of the maximum expansion εmax required for calculating the target electrical load is estimated in advance by:

    estimating the maximum wave height hmax of a water wave and

    correlating the maximum wave height hmax with the maximum expansion εmax via an assignment rule.


     
    2. Method according to claim 1, wherein the time t1 is calculated according to

    time t2 is calculated according to

    wherein further at time tload the electroactive polymer has assumed the maximum expansion εmax and at time tunload the electroactive polymer has assumed the minimum expansion εmin.
     
    3. Method according to claim 2, wherein the wavelength λ is determined by measuring the vertical acceleration of the water surface by means of an acceleration sensor and:

    the oscillation of the resulting acceleration sensor signal gives a wavelength-dependent voltage via a phase-locked loop; and/or

    the oscillation of the resulting acceleration sensor signal is converted to the domain c/λ via a Fourier or cosine transform.


     
    4. Method according to claim 2, wherein the wavelength λ is determined by measuring the voltage present between the electrodes on the electroactive polymer and:

    the oscillation of the voltage gives a wavelength-dependent voltage via a phase-locked loop; and/or

    the oscillation of the voltage is converted to the domain c/λ via a Fourier or cosine transform.


     
    5. Process according to claim 1, wherein load is removed from the electroactive polymer in the event that the actual wave height is so much higher than the estimated wave height that the disruptive strength of the electroactive polymer is exceeded with the applied load.
     
    6. System for harvesting electrical energy from the kinetic energy of water waves and which is suitable for carrying out the method according to claim 1, comprising:

    a device which is so configured that, when the device is placed in the water, a portion of the device is arranged above the water surface, the device comprising an electroactive polymer which is arranged between electrodes, and mechanical energy from a change in the water level being transmitted in the device to the electroactive polymer;

    a sensor unit for obtaining sensor data regarding the water waves and/or the electroactive polymer;

    a power unit for applying electrical load to the electroactive polymer and for unloading the electroactive polymer; and

    a control unit, which is configured to process received data from the sensor unit in a calculation algorithm according to a previously defined data model and to control the power electronics as a result of the calculation, wherein the calculation algorithm further includes the estimation of the maximum wave height of future water waves that are incident on the device.


     
    7. System according to claim 6, wherein the sensor unit comprises an acceleration sensor remote from the device.
     
    8. System according to claim 6, wherein the sensor unit measures the voltage present between the electrodes on the electroactive polymer and the spacing of the electrodes on the electroactive polymer.
     
    9. Computer program product, comprising commands which can be executed by a microprocessor for carrying out the calculations in the method according to claim 1.
     


    Revendications

    1. Procédé de production d'énergie électrique à partir de l'énergie cinétique des ondes aquatiques, comprenant les étapes suivantes :

    fourniture d'un dispositif dans l'eau, le dispositif étant conçu de telle sorte qu'une partie du dispositif est disposée au-dessus de la surface de l'eau, le dispositif comprenant un polymère électroactif qui est disposé entre des électrodes et de l'énergie mécanique issue d'une modification du niveau de l'eau étant transmise sur le polymère électroactif dans le dispositif ;

    allongement du polymère électroactif d'un allongement minimal εmin jusqu'à un allongement maximal εmax en conséquence d'un effet mécanique d'une onde aquatique ayant une vitesse de propagation c et une longueur d'onde λ,

    pendant l'allongement du polymère électroactif, celui-ci étant soumis à une charge électrique cible Qload pendant un intervalle de temps Δtload d'un instant t1 à un instant tload, avec laquelle l'intensité de champ de claquage électrique Emax du polymère électroactif n'est pas dépassée ;

    détente du polymère électroactif de l'allongement maximal εmax jusqu'à l'allongement minimal εmin en conséquence d'un effet mécanique déclinant de l'onde aquatique,

    pendant la détente du polymère électroactif, celui-ci étant déchargé jusqu'à une charge résiduelle Q0 pendant un intervalle de temps Δtunload d'un instant t2 à un instant tunload ;

    la valeur de l'allongement maximal εmax nécessaire pour le calcul de la charge électrique cible étant estimée à l'avance par :

    estimation de la hauteur d'onde maximale hmax d'une onde aquatique et

    corrélation de la hauteur d'onde maximale hmax avec l'allongement maximal εmax par le biais d'une règle d'association.


     
    2. Procédé selon la revendication 1, selon lequel l'instant t1 est calculé selon

    l'instant t2 est calculé selon

    et de plus le polymère électroactif ayant adopté l'allongement maximal εmax à l'instant tload et le polymère électroactif ayant adopté l'allongement minimal εmin à l'instant tunload.
     
    3. Procédé selon la revendication 2, selon lequel la longueur d'onde λ est déterminée en mesurant l'accélération verticale de la surface de l'eau à l'aide d'un capteur d'accélération et :

    l'oscillation du signal de capteur d'accélération obtenu produit une tension dépendante de la longueur d'onde par le biais d'une boucle de régulation de phase ; et/ou

    l'oscillation du signal de capteur d'accélération obtenu est transférée dans le domaine c/λ par le biais d'une transformation de Fourier ou consinusoïdale.


     
    4. Procédé selon la revendication 2, selon lequel la longueur d'onde λ est déterminée en mesurant la tension présente sur le polymère électroactif entre les électrodes et :

    l'oscillation de la tension produit une tension dépendante de la longueur d'onde par le biais d'une boucle de régulation de phase ; et/ou l'oscillation de la tension est transférée dans le domaine c/λ par le biais d'une transformation de Fourier ou consinusoïdale.


     
    5. Procédé selon la revendication 1, selon lequel, dans le cas où la hauteur d'onde effective est supérieure à la hauteur d'onde estimée au point que la charge appliquée provoque un dépassement de l'intensité de champ de claquage du polymère électroactif, de la charge est prélevée du polymère électroactif.
     
    6. Système de production d'énergie électrique à partir de l'énergie cinétique des ondes aquatiques et approprié pour mettre en oeuvre un procédé selon la revendication 1, comprenant :

    un dispositif qui est conçu de telle sorte que lorsque le dispositif est placé dans l'eau, une partie du dispositif est disposée au-dessus de la surface de l'eau, le dispositif comprenant un polymère électroactif qui est disposé entre des électrodes et de l'énergie mécanique issue d'une modification du niveau de l'eau étant transmise sur le polymère électroactif dans le dispositif ;

    une unité de détection destinée à collecter des données de capteur sur les ondes aquatiques et/ou le polymère électroactif ;

    une unité de puissance destinée à soumettre le polymère électroactif à une charge électrique et à décharger le polymère électroactif ; et

    une unité de commande qui est conçue pour traiter dans un algorithme de calcul les données reçues de la part de l'unité de détection conformément à des modèles de données préalablement définis et, en résultat du calcul, commander l'électronique de puissance, l'algorithme de calcul comprenant en outre l'estimation de la hauteur d'onde maximale des futures ondes aquatiques qui parviendront au dispositif.


     
    7. Système selon la revendication 6, avec lequel l'unité de détection comprend un capteur d'accélération espacé du dispositif.
     
    8. Système selon la revendication 6, avec lequel l'unité de détection mesure la tension présente sur le polymère électroactif entre les électrodes et l'espacement des électrodes sur le polymère électroactif.
     
    9. Produit de programme informatique, comprenant des instructions exécutables par un microprocesseur destinées à mettre en oeuvre les calculs dans le procédé selon la revendication 1.
     




    Zeichnung














    Angeführte Verweise

    IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



    Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

    In der Beschreibung aufgeführte Patentdokumente