(19)
(11)EP 2 464 943 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 10743212.2

(22)Date of filing:  10.08.2010
(51)Int. Cl.: 
F41G 3/22  (2006.01)
F41G 9/00  (2006.01)
F41G 7/00  (2006.01)
(86)International application number:
PCT/GB2010/051323
(87)International publication number:
WO 2011/018656 (17.02.2011 Gazette  2011/07)

(54)

SYSTEM INTEGRATION

SYSTEMINTEGRATION

INTÉGRATION DE SYSTÈMES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 12.08.2009 GB 0914109
12.08.2009 EP 09251978
02.12.2009 GB 0921089

(43)Date of publication of application:
20.06.2012 Bulletin 2012/25

(73)Proprietor: BAE Systems PLC
London SW1Y 5AD (GB)

(72)Inventors:
  • RANAT, Bhadrayu, Manherlal
    Preston Lancashire PR4 1AX (GB)
  • AL-AMERI, Monadl, AbdAl-Abbas, Mansour
    Preston Lancashire PR4 1AX (GB)
  • HAINES, Jeffrey, Christopher
    Preston Lancashire PR4 1AX (GB)

(74)Representative: Rawlins, Kate Cecilia 
BAE Systems plc Group IP Dept Lancaster House PO Box 87 Farnborough
Hants GU14 6YU
Hants GU14 6YU (GB)


(56)References cited: : 
WO-A2-2007/020477
US-A- 4 160 250
  
  • D CLARK, A FAUST, A JONES: "Common Launch Acceptability Region Task Group", SAE WORLD AVIATION CONGRESS - PROCEEDINGS OF THE 2001 AEROSPACE CONGRESS, 14 October 2001 (2001-10-14), pages 1-10, XP002562059, Seattle, USA
  • SINGH A ET AL: "Launch Envelope Optimization of Virtual Sliding Target Guidance Scheme", IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 45, no. 3, 1 July 2009 (2009-07-01), pages 899-918, XP011277342, ISSN: 0018-9251
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] This invention relates to the integration of systems and, more particularly, to the integration of weapons on complex, highly integrated aircraft.

[0002] Integration of a weapon system with the other systems on an aircraft is a complex and lengthy task, as it affects all the major aircraft systems. Accordingly there is a requirement to improve weapon integration time and affordability.

[0003] One of the requirements of weapon integration is to enable the display of information to the aircraft pilot as to whether or not a weapon is capable of successfully engaging a particular target. For this purpose, weapons are usually grouped into two categories, weapons designed to engage targets on the ground (air to ground weapons) and weapons designed to engage targets in the air (air to air weapons). In the case of air to ground weapons, a Launch Acceptability Region (LAR) is calculated, being the region where the probability of successfully engaging or hitting a selected target is above some threshold value. The LAR is calculated in order to provide cockpit displays in the launch aircraft indicating the feasibility of successfully engaging the target, and is a function of the weapon performance characteristics, the relative positions and motions of the aircraft and the target, and often ambient conditions such as wind speed and direction.

[0004] For an air to air weapon, a Launch Success Zone (LSZ) is calculated, indicative of the probability of successfully engaging a selected air target is about some threshold value. Again the LSZ is used to provide a cockpit display indicating whether the weapon is capable of successfully engaging the target. However, calculation of a LSZ is more complicated than the calculation of a LAR, because the relative speeds and directions of travel of the launch aircraft and the target are much greater, and consequently the effects of ambient conditions are greater, and also the physical properties of the weapons in flight are more significant on the calculation.

[0005] The conventional approach has been to create a simple, abstract model of the weapon, which is modified according to the launch conditions (taking into account the aircraft and target conditions (e.g. range, direction and speed of travel, etc.) and the ambient conditions). The model is used on board the aircraft to generate the LAR or LSZ for display to the pilot. A disadvantage of the conventional approach is that each model, for each different weapon type, is different. Storing the data relating to several different implicit models consumes significant storage capacity, and each model has to be comprehensively integrated to ensure that there is no adverse effect on any of the aircraft systems. Further, if there are any changes or modifications made to a weapon (such as an improvement in performance) or if it is necessary to load the aircraft with a completely new weapon, a lengthy and expensive integration process has to be conducted because the weapon model is substantially different to anything previously integrated with the aircraft systems.

[0006] D Clark, A Faust, and A Jones disclose a "Common Launch Acceptability Task Group" in SAE World Aviation Congress - Proceedings of the 2001 Aerospace congress, 14 October 2001, pages 1-10 (XP002562059).

[0007] Singh A et al disclose a "Launch Envelope Optimization of Virtual Sliding Target Guidance Scheme" in IEEE transactions on Aerospace and Electronic Systems, IEEE Service Centre, Piscataway, NJ, US, vol. 45, No. 3, 1 July 2009 pages 899-918 (XP011277342).

[0008] Accordingly, the present invention provides a system according to claim 1 for generating in a first aircraft in flight a display indicative of the feasibility of a weapon carried on the first aircraft or a second successfully engaging the other aircraft, the system comprising a first generator, which may be a ground station, configured for generating a database describing a performance envelope of the weapon, a second generator configured for creating coefficients characteristic of that performance envelope using a generic algorithm wherein the generic algorithm has the form of a polynomial, by a) generating candidate polynomials the variables of the polynomials being some or all of a group of weapon or aircraft firing condition parameters, b) for each candidate polynomial, computing coefficients for that candidate polynomial which best fit that candidate polynomial to a characteristic of the performance envelope of the weapon using a criterion of least square error, c) for each candidate polynomial, generating a candidate score according to the quality of the fit of that candidate polynomial to the characteristic of the performance envelope of the weapon, d) applying a genetic algorithm to the candidate polynomials and scores including selecting the best scoring polynomials and discarding the other polynomial(s), thereby identifying a best candidate polynomial and coefficient set , and e) repeating said identifying process until all the required characteristics of the performance envelope have corresponding polynomial models ; an uploader configured for uploading the coefficients to the first aircraft, and a reconstructor on the first aircraft containing the same generic algorithm and configured to select the coefficients for the generic algorithm according to conditions of both aircraft and, using the selected coefficients, generate the feasibility display.

[0009] Such a system significantly improves weapon integration time and cost. A minimal number of generic weapon aiming algorithms are required in order to take account of all weapon types (air to air and air to surface, and powered or unpowered). The generic algorithms can be tailored to different weapons, depending on the weapon aiming methodology adopted, simply by changing the coefficients used in the algorithm. The coefficient can be implemented as loadable data so as to allow accurate and precise weapon behaviour to be implemented within the weapon system. Also, using one or only a few generic algorithms would allow different weapon systems to be cleared or certificated/qualified for use with the aircraft with reduced effort and more quickly than with the extensive testing which is required with conventional approaches. The use of generic algorithms for weapon aiming also enables increases or significant changes in weapon system capability to be integrated with the aircraft systems with significantly less effort then heretofore.

[0010] Preferably the algorithm is a standard polynomial of the form:

where:

αmn represent the m coefficients required to compute output n;

{x1 ..xNi} represent the normalised inputs; and

{y1 .. yNj} represent the outputs.



[0011] The invention also provides, in a second aspect, a method according to claim 4 for generating in a first aircraft in flight a display indicative of the feasibility of a weapon carried on the first aircraft or a second aircraft successfully engaging the other aircraft comprising:

generating a database describing the weapon performance envelope of the weapon;

creating coefficients characteristic of that performance envelope using a generic algorithm wherein the generic algorithm has the form of a polynomial, by; a) generating candidate polynomials the variables of the polynomials being some or all of a group of weapon or aircraft firing condition parameters, b) for each candidate polynomial, computing coefficients for that candidate polynomial which best fit that candidate polynomial to a characteristic of the performance envelope of the weapon using a criterion of least square error, c) for each candidate polynomial, generating a candidate score according to the quality of the fit of that candidate polynomial to the characteristic of the performance envelope of the weapon, d) applying a genetic algorithm to the candidate polynomials and scores including selecting the best scoring polynomials and discarding the other polynomial(s), thereby identifying a best candidate polynomial and coefficient set, and e) repeating said identifying process until all the required characteristics of the performance envelope have corresponding polynomial models,

uploading to the first aircraft the generated coefficients; and

selecting, by a reconstructor on the first aircraft containing the same generic algorithm, the coefficients for the generic algorithm according to conditions of both aircraft, and using the selected coefficients, generating, by the reconstructor, the feasibility display.



[0012] The method may comprise generating new polynomials to replace those discarded and repeating steps b) and c) until there is no further significant improvement in candidate scores. Further, the outputs of the selected polynomials may be used to provide the inputs so as to create higher order candidate polynomials. Still further, the method may comprise iterating the steps of the second aspect and generating new polynomials to replace those discarded and repeating steps b) and c) until there is no further significant improvement in candidate scores on the higher order candidate polynomials, and obtaining a final result recursively from the path ending with the best candidate score.

[0013] The aircraft and target conditions may include one or more of their relative positions, distances, directions of movement, speeds and ambient atmospheric conditions.

[0014] The coefficients specific to a weapon are preferably uploaded to the aircraft when the weapon is loaded as a weapon store. All that is required when loading a new weapon store to integrate the weapon and aircraft aiming system is at the same time to load the coefficients associated with that weapon into the aircraft system; ideally the coefficient could be stored on a hardware device with the weapon, and the devise connected to the aircraft to upload the coefficient data as the weapon is loaded.

[0015] The database may be generated by defining the range of conditions for which the weapon may be required to be fired, the range of aircraft conditions for which it is feasible for the aircraft to fire the weapon and the range of weapon conditions for which it is feasible to fire the weapon;
generating data indicative of the weapon performance for each weapon firing possibility from within the defined ranges, and creating a database defining the weapon's overall performance envelope.

[0016] In this way the database can be generated on a ground-based system, so that the aircraft system needs the capacity only to store the algorithm and process the coefficients with the aircraft and target conditions in order to generate the feasibility display, thus reducing the amount of data storage/processing capacity required on the aircraft.

[0017] The method may also comprise inputting into the reconstructor coefficients characteristic of the performance envelope of a weapon carried by another aircraft, reconstructing that performance envelope using the generic algorithm and, according to the conditions of both aircraft and the performance envelope, generating a display indicating the feasibility of the aircraft being successfully engaged by the weapon on the other aircraft.

[0018] In this way, the same aircraft system can also display whether or not, or to what extent, the aircraft is at risk of being successfully engaged by a weapon carried by a hostile aircraft, which may be a hostile aircraft which the host aircraft is deciding whether or not to engage. The generic algorithm enables the calculation of opposing LSZs and allows better assessment of air to air engagements. This in turn could lead to confident predictions of advantage and likely outcome of engagements.

[0019] An embodiment of the invention will now be described by way of example and with reference to the accompanying drawings, in which:

Figures 1a and 1b illustrate the Launch Acceptability Region (LAR) for an air to surface weapon;

Figure 2 illustrates the Launch Success Zone (LSZ) for an air to air weapon;

Figure 3 is a schematic illustration of an embodiment of the present invention, and

Figure 4 is a schematic diagram illustrating one embodiment of the coefficient generator technique in accordance with the invention.



[0020] Figure 1a shows the LAR in the plane of flight of a launch aircraft 1 flying along a flight path 3 in respect of a target 5 for an air to surface weapon (not shown) loaded on the aircraft. The LAR is calculated to provide cockpit displays in the launch aircraft 1 concerning the feasibility and firing opportunities for the situation. Figures 1b shows the display generated for the LAR of Figure 1a, which is in the form of a downrange and cross range display (the shaded area), where the weapon flight path 7 coincides with the aircraft flight path 3; to successfully engage the target 5 as shown in the display, the target must fall inside the shaded LAR. As the aircraft 1 moves in the downrange direction, the displayed LAR is bounded by the minimum and maximum ranges, Rmin and Rmax.

[0021] The LSZ shown in Figure 2 is the region where the probability of an air to air weapon hitting an airborne target T is above a threshold level. Calculation of the LSZ is more complicated than for the LAR, because a greater number of factors are involved, such as the relative velocities and directions of travel of the launch aircraft and the target, and those of the weapon relative to the target. Also, the shape of the LSZ is more complex than that of the LAR; as with the LAR, there are maximum and minimum ranges, Rmax and Rmin, between which the target T can be successfully engaged, but there is a zone bounded by Rmin within which the Target T cannot be engaged successfully because it is outside the capability of the weapon to manoeuvre and hit the target when the launch aircraft is so close to the target, given the speeds and directions of travel of the launch aircraft and the target T.

[0022] As is known in the art, there are two LSZs, one for the launch aircraft to engage the target 7 and the other for the target to engage the launch aircraft.

[0023] It is often a requirement to calculate the LAR or LSZ for an engagement to display to the crew of the launch aircraft information regarding the feasibility, or likelihood of success, of the engagement, and to aid fire control and steering decisions. The traditional approach has been to create a simple, abstract model of the weapon that has parameters defined by the launch conditions; this model is then used on board the launch aircraft to generate the LAR or LSZ and the appropriate display.

[0024] Figure 3 shows the system of the present invention schematically, and is divided between those processes 11 which are carried out on the ground and the processes 13 which are carried out on the launch aircraft. The processes begin with the generation of the data space, which is the range of conditions over which the weapon performance envelope is to be defined; this is effected by a data space generator 15, and depends on the ranges of conditions: for which it is required to fire the weapon (which is defined by the weapon user/operator); for which it is feasible to fire according to the launch aircraft capability, and for which it is feasible to fire according to the weapon capability/performance. The data space generator 15 defines the release, weather and commanded impact conditions for training and verification sets which are run by a truth data generator 17. The truth data generator 17 generates the weapon performance for each firing case in the data space; this depends on the weapon performance model which is usually provided by the weapon manufacturer. The product of the truth data generator 17 is the truth database 19, which is a set of data relating to a number of exemplary weapon firings which is sufficient to define the weapon's performance envelope. The truth data generator 17 produces the training and verification sets which are used by a coefficient generator 21. Conventionally, the truth database is used as a model which can be employed onboard the launch aircraft in order to generate the feasibility of engagement displays (LAR or LSZ, as appropriate).

[0025] In the present invention a coefficient generator 21 receives the true weapon performance envelope represented by the truth database and calculates and generates coefficients according to a generic LAR/LSZ algorithm 23 - the coefficients "fit" the generic algorithm to the weapon performance envelope shape.

[0026] The coefficient generator 21 may generate coefficients by building training and verification footprints (representing the target engagement envelope) from data extracted from the truth database, by fitting a geometric shape to the training footprint and by defining the coefficients for the generic algorithm. The coefficient generator then verifies the coefficients against the verification sets by creating footprints based on the coefficients at the verification set conditions and by confirming that these verification footprints meet the criteria for successful engagement.

[0027] In an alternative method of coefficient generation, illustrated in Figure 4, the number of inputs 27 and the form of each polynomial descriptor, PD Layer, Node, are determined by an optimisation method known as the Genetic Algorithm. In this method the coefficient generator starts by creating an initial set of candidate polynomials whose variables are some or all of the weapon or aircraft firing condition parameters. For each candidate polynomial, the set of coefficients are computed that give the best "fit" to a single characteristic of the required LAR/LSZ using the criterion of least square error; also computed is the quality of the fit in each case, the latter referred to as the candidate "score".

[0028] The Genetic Algorithm is applied to the candidate polynomials and scores. The best polynomials are retained and the worst rejected. New candidates that have similar features to the retained candidates are created to replace the rejected ones. The coefficients giving the least squares fit and the scores are then calculated for this new generation of candidates.

[0029] The Genetic Algorithm is repeated until improvement in the scores of the best candidates ceases. The result is the first layer, Layer 1, of a Self-Organising Polynomial Neural Network (SOPNN) where each node describes a polynomial function that relates the weapon or aircraft firing condition parameters to a characteristic of the required LAR/LSZ.

[0030] The whole process is then repeated with the outputs of the first layer providing the inputs to create a second layer, Layer 2, of the SOPNN. The new layer has the effect of creating higher-order candidate polynomials and coefficients for consideration. The selection of polynomials in the new layer is again governed and optimised by the Genetic Algorithm.

[0031] Layers are added to the SOPNN in this way until improvement in the scores of the best candidates ceases - a completed network comprising two layers is represented in Figure 4. The final network is obtained recursively from the path ending at the output node with the best score in the final generation of candidates (the "Optimum Solution"). Any node with no connection to this path is discarded as shown in Figure 4, where nodes which contribute to the optimal solution are lightly shaded and discarded nodes are black.

[0032] The best single candidate polynomial and coefficient set is identified and stored. This process is repeated until all the required characteristics of the LAR/LSZ have corresponding polynomial models.

[0033] The generic LAR/LSZ algorithm is predetermined, and in the present invention is a polynomial equation of the form:

Where:

αmn represent the m coefficients required to compute output n;

{x1 .. xNi} represent the normalised inputs; and
{y1 .. yNj} represent the outputs.



[0034] Referring again to Figure 3, the output of the coefficient generator 21 is the set of coefficients which is loaded onto the launch aircraft by a data uploader. Following this step, the onboard processes 13 comprises a reconstructor 25, which brings together the generic LAR/LSZ algorithm 23 (which is held in the aircraft systems) and the uploaded coefficients, so as to reconstruct the LAR or LSZ for a particular engagement by selecting the appropriate algorithm and coefficients for the launch conditions. In the present invention, a single algorithm allows the rapid change between different weapons payloads simply by uploading a set of data representing the coefficients applicable to the new weapon. Once the LAR or LSZ has been reconstructed for a particular engagement by the systems onboard the aircraft, the LAR or LSZ is displayed by conventional means onboard the aircraft.


Claims

1. A system for generating, in a first aircraft (1) in flight, a display indicative of the feasibility of a weapon carried on the first (1) aircraft or a second aircraft (T) successfully engaging the other aircraft, the system comprising:

a first generator (17) configured for generating a database (19) describing a performance envelope of the weapon;

a second generator (21) configured for creating coefficients characteristic of that performance envelope using a generic algorithm (23), wherein the generic algorithm has the form of a polynomial, by

a) generating candidate polynomials the variables of the polynomials being some or all of a group of weapon or aircraft firing condition parameters,

b) for each candidate polynomial, computing coefficients for that candidate polynomial which best fit that candidate polynomial to a characteristic of the performance envelope of the weapon using a criterion of least square error,

c) for each candidate polynomial, generating a candidate score according to the quality of the fit of that candidate polynomial to the characteristic of the performance envelope of the weapon,

d) applying a genetic algorithm to the candidate polynomials and scores including selecting the best scoring polynomials and discarding the other polynomial(s), thereby identifying a best candidate polynomial and coefficient set, and

e) repeating said identifying process until all the required characteristics of the performance envelope have corresponding polynomial models;

an uploader configured for uploading the coefficients to the first aircraft (1); and

a reconstructor (25) on the first aircraft (1) containing the same generic algorithm (23) and configured to select the coefficients for the generic algorithm (23) according to conditions of both aircraft (1, T) and, using the selected coefficients, generate the feasibility display.


 
2. A system according to Claim 1, wherein the first generator is a ground station.
 
3. A system according to Claim 1 or 2, wherein the generic algorithm (23) is a polynomial of the form:

where:

αmn represent the m coefficients required to compute output n;

{x1 .. xNi} represent the normalised inputs; and
{y1 .. yNj} represent the outputs.


 
4. A method for generating, in a first aircraft (1) in flight, a display indicative of the feasibility of a weapon carried on the first (1) or a second aircraft (T) successfully engaging the other aircraft, the method comprising:

generating a database (19) describing a performance envelope of the weapon;

creating coefficients characteristic of that performance envelope using a generic algorithm (23), wherein the generic algorithm has the form of a polynomial, by

a) generating candidate polynomials the variables of the polynomials being some or all of a group of weapon or aircraft firing condition parameters;

b) for each candidate polynomial, computing coefficients for that candidate polynomial which best fit that candidate polynomial to a characteristic of the performance envelope of the weapon using a criterion of least square error,

c) for each candidate polynomial, generating a candidate score according to the quality of the fit of that candidate polynomial to the characteristic of the performance envelope of the weapon, and

d) applying a genetic algorithm to the candidate polynomials and scores including selecting the best scoring polynomials and discarding the other polynomial(s), thereby identifying a best candidate polynomial and coefficient set;

e) repeating said identifying process until all the required characteristics of the performance envelop have corresponding polynomial models;

uploading, to the first aircraft (1), the generated coefficients; and

selecting, by a reconstructor (25) on the first aircraft (1) containing the same generic algorithm (23), the coefficients for the generic algorithm (23) according to conditions of both aircraft (1, T), and

using the selected coefficients, generating, by the reconstructor (25), the feasibility display.


 
5. A method according to Claim 4, comprising generating new polynomials to replace those discarded and repeating steps b) and c) of Claim 4 until there is no further significant improvement in candidate scores.
 
6. A method according to Claim 5, wherein the outputs of the selected polynomials are used to provide the inputs so as to create higher order candidate polynomials.
 
7. A method according to Claim 6, further comprising iterating the steps of Claims 4 and 5 on the higher order candidate polynomials, and obtaining a final result recursively from the path ending with the best candidate score.
 
8. A method according to any of Claims 4 to 7, wherein the generic algorithm (23) is a polynomial of the form:

where:

αmn represent the m coefficients required to compute output n;

{x1 .. xNi} represent the normalised inputs; and
{y1 .. yNj} represent the outputs.


 
9. A method according to any of Claims 4 to 8, wherein the aircraft (1, T) conditions include one or more of their relative positions, distances, directions of movement, speeds and ambient atmospheric conditions.
 
10. A method according to any of Claims 4 to 9, wherein the coefficients specific to a weapon are uploaded to the first aircraft (1) when the weapon is loaded as an aircraft store.
 
11. A method according to any of Claims 4 to 10, wherein the database (19) is generated by:

defining the range of conditions for which the weapon may be required to be fired, the range of aircraft conditions for which it is feasible for the aircraft to fire the weapon and the range of weapon conditions for which it is feasible to fire the weapon;

generating data indicative of the weapon performance for each weapon firing possibility from within the defined ranges; and

creating a database (19) defining the weapon's overall performance envelope.


 


Ansprüche

1. System zum Erzeugen einer Anzeige in einem ersten Flugzeug (1) im Flug, welche die Wahrscheinlichkeit anzeigt, dass eine Waffe, die im ersten Flugzeug (1) oder einem zweiten Flugzeug (T) getragen wird, das andere Flugzeug erfolgreich beschießt, wobei das System umfasst:

einen ersten Generator (17), der zum Erzeugen einer Datenbank (19) konfiguriert ist, die einen Leistungsbereich der Waffe beschreibt;

einen zweiten Generator (21), der so konfiguriert ist, dass er Koeffizienten, die für diesen Leistungsbereich charakteristisch sind, unter Verwendung eines generischen Algorithmus (23), wobei der generische Algorithmus die Form eines Polynoms aufweist, erstellt durch:

a) Erzeugen von Kandidatenpolynomen, wobei die Variablen der Polynome einige oder alle einer Gruppe von Abfeuerungsbedingungsparametern der Waffe oder des Flugzeugs sind,

b) Berechnen für jedes Kandidatenpolynom von Koeffizienten für dieses Kandidatenpolynom, die dieses Kandidatenpolynom am besten an eine Charakteristik des Leistungsbereichs der Waffe anpassen, unter Verwendung eines Kriteriums des Fehlers des kleinsten Quadrats,

c) Erzeugen für jedes Kandidatenpolynom einer Kandidatenbewertung gemäß der Qualität der Anpassung dieses Kandidatenpolynoms an die Charakteristik des Leistungsbereichs der Waffe,

d) Anwenden eines generischen Algorithmus auf die Kandidatenpolynome und -bewertungen, umfassend ein Auswählen der Polynome mit der besten Bewertung und Verwerfen der anderen Polynom(e), um dadurch einen besten Kandidatenpolynom- und Koeffizientensatz zu identifizieren, und

e) Wiederholen des Identifizierungsprozesses, bis alle der erforderlichen Charakteristiken des Leistungsbereichs entsprechende Polynommodelle aufweisen;

einen Uploader, der zum Hochladen der Koeffizienten in das Flugzeug (1) konfiguriert ist; und

eine Rekonstruktor (25) im ersten Flugzeug (1), der den gleichen generischen Algorithmus (23) enthält und zum Auswählen der Koeffizienten für den generischen Algorithmus (23) gemäß Bedingungen beider Flugzeuge (1, T) und Erzeugen der Wahrscheinlichkeitsanzeige unter Verwendung der ausgewählten Koeffizienten konfiguriert ist.


 
2. System nach Anspruch 1, wobei der erste Generator eine Bodenstation ist.
 
3. System nach Anspruch 1 oder 2, wobei der generische Algorithmus (23) ein Polynom der folgenden Form ist:

wobei:

αmn die m Koeffizienten darstellt, die zum Berechnen der Ausgabe n erforderlich sind;

{x1 ... xNi} die normalisierten Eingaben darstellen; und

{y1 ... yNj} die Ausgaben darstellen.


 
4. Verfahren zur Erzeugung einer Anzeige in einem ersten Flugzeug (1) im Flug, welche die Wahrscheinlichkeit anzeigt, dass eine Waffe, die im ersten (1) oder einem zweiten (T) Flugzeug getragen wird, das andere Flugzeug erfolgreich beschießt, wobei das Verfahren umfasst:

Erzeugen einer Datenbank (19), die einen Leistungsbereich der Waffe beschreibt;

Erstellen von Koeffizienten, die für diesen Leistungsbereich charakteristisch sind, unter Verwendung eines generischen Algorithmus (23), wobei der generische Algorithmus die Form eines Polynoms aufweist, durch:

a) Erzeugen von Kandidatenpolynomen, wobei die Variablen der Polynome einige oder alle einer Gruppe von Abfeuerungsbedingungsparametern der Waffe oder des Flugzeugs sind,

b) Berechnen für jedes Kandidatenpolynom von Koeffizienten für dieses Kandidatenpolynom, die dieses Kandidatenpolynom am besten an eine Charakteristik des Leistungsbereichs der Waffe anpassen, unter Verwendung eines Kriteriums des Fehlers des kleinsten Quadrats,

c) Erzeugen für jedes Kandidatenpolynom einer Kandidatenbewertung gemäß der Qualität der Anpassung dieses Kandidatenpolynoms an die Charakteristik des Leistungsbereichs der Waffe, und

d) Anwenden eines generischen Algorithmus auf die Kandidatenpolynome und -bewertungen, umfassend ein Auswählen der Polynome mit der besten Bewertung und Verwerfen der anderen Polynom(e), um dadurch einen besten Kandidatenpolynom- und Koeffizientensatz zu identifizieren;

e) Wiederholen des Identifizierungsprozesses, bis alle der erforderlichen Charakteristiken des Leistungsbereichs entsprechende Polynommodelle aufweisen;

Hochladen der erzeugten Koeffizienten in das erste Flugzeug (1); und

Auswählen durch einen Rekonstruktor (25) im ersten Flugzeug (1), der den gleichen generischen Algorithmus (23) enthält, der Koeffizienten für den generischen Algorithmus (23) gemäß Bedingungen beider Flugzeuge (1, T), und

Erzeugen der Wahrscheinlichkeitsanzeige durch den Rekonstruktor (25) unter Verwendung der ausgewählten Koeffizienten.


 
5. Verfahren nach Anspruch 4, umfassend ein Erzeugen neuer Polynome, um jene zu ersetzen, die verworfen wurden, und Wiederholen von Schritt b) und c) nach Anspruch 4, bis es keine weitere signifikante Verbesserung der Kandidatenbewertungen mehr gibt.
 
6. Verfahren nach Anspruch 5, wobei die Ausgaben der ausgewählten Polynome zum Bereitstellen der Eingaben verwendet werden, um Kandidatenpolynome höherer Ordnung zu erstellen.
 
7. Verfahren nach Anspruch 6, ferner umfassend ein Iterieren der Schritte nach Anspruch 4 und 5 an den Kandidatenpolynomen höherer Ordnung und rekursives Erhalten eines Endergebnisses aus dem Pfad, der mit der besten Kandidatenbewertung endet.
 
8. Verfahren nach einem der Ansprüche 4 bis 7, wobei der generische Algorithmus (23) ein Polynom der folgenden Form ist:

wobei:

αmn die m Koeffizienten darstellt, die zum Berechnen der Ausgabe n erforderlich sind;

{x1 ... xNi} die normalisierten Eingaben darstellen; und

{y1 ... yNj} die Ausgaben darstellen.


 
9. Verfahren nach einem der Ansprüche 4 bis 8, wobei die Bedingungen der Flugzeuge (1, T) eine oder mehrere von ihren relativen Positionen, Entfernungen, Bewegungsrichtungen, Geschwindigkeiten und atmosphärischen Umgebungsbedingungen umfassen.
 
10. Verfahren nach einem der Ansprüche 4 bis 9, wobei die für eine Waffe spezifischen Koeffizienten in das Flugzeug (1) hochgeladen werden, wenn die Waffe als ein Flugzeugmagazin geladen wird.
 
11. Verfahren nach einem der Ansprüche 4 bis 10, wobei die Datenbank (19) erzeugt wird durch:

Definieren des Umfangs von Bedingungen, für welchen die Waffe möglicherweise abgefeuert werden muss, des Umfangs von Flugzeugbedingungen, für welchen es wahrscheinlich ist, dass das Flugzeug die Waffe abfeuert, und des Umfangs von Waffenbedingungen, für welchen es wahrscheinlich ist, dass die Waffe abgefeuert wird;

Erzeugen von Daten, welche die Waffenleistung für jede Waffenabfeuerungsmöglichkeit anzeigen, aus den definierten Bereichen; und

Erstellen einer Datenbank (19), die den Gesamtleistungsbereich der Waffe definiert.


 


Revendications

1. Système destiné à générer, dans un premier aéronef (1) en vol, un affichage indicatif de la faisabilité d'une arme portée par le premier aéronef (1) ou un second aéronef (T) engageant avec succès l'autre aéronef, le système comprenant :

un premier générateur (17) configuré de manière à générer une base de données (19) décrivant une enveloppe de performance de l'arme ;

un second générateur (21) configuré de manière à créer des coefficients caractéristiques de cette enveloppe de performance en utilisant un algorithme générique (23), dans lequel l'algorithme générique a la forme d'un polynôme, en mettant en œuvre les étapes ci-dessous consistant à :

a) générer des polynômes candidats, les variables des polynômes correspondant à tout ou partie d'un groupe de paramètres de conditions de tir d'arme ou d'aéronef ;

b) pour chaque polynôme candidat, calculer des coefficients pour ce polynôme candidat qui ajustent de façon optimale ce polynôme candidat à une caractéristique de l'enveloppe de performance de l'arme, en utilisant un critère d'erreur quadratique minimale ;

c) pour chaque polynôme candidat, générer un score candidat selon la qualité de l'ajustement de ce polynôme candidat à la caractéristique de l'enveloppe de performance de l'arme ;

d) appliquer un algorithme générique aux polynômes candidats et aux scores candidats, et notamment sélectionner les polynômes présentant les meilleurs scores et éliminer le ou les autres polynômes, ce qui permet d'identifier un meilleur ensemble de coefficients et de polynômes candidats ; et

e) répéter ledit processus d'identification jusqu'à ce que toutes les caractéristiques requises de l'enveloppe de performance présentent des modèles de polynômes correspondants ;

un module de téléchargement configuré de manière à télécharger les coefficients vers le premier aéronef (1) ; et

un module de reconstruction (25) à bord du premier aéronef (1) contenant le même algorithme générique (23) et configuré de manière à sélectionner les coefficients pour l'algorithme générique (23) selon des conditions des deux aéronefs (1, T) et, en utilisant les coefficients sélectionnés, à générer l'affichage de faisabilité.


 
2. Système selon la revendication 1, dans lequel le premier générateur est une station au sol.
 
3. Système selon la revendication 1 ou 2, dans lequel l'algorithme générique (23) est un polynôme de la forme :

où :

« αmn » représente les « m » coefficients nécessaires pour calculer une sortie « n »;

{x1 .. xNi} représentent les entrées normalisées ; et
{y1 .. yNj} représentent les sorties.


 
4. Procédé de génération, dans un premier aéronef (1) en vol, d'un affichage indicatif de la faisabilité d'une arme portée par le premier aéronef (1) ou un second aéronef (T) engageant avec succès l'autre aéronef, le procédé comprenant les étapes ci-dessous consistant à :

générer une base de données (19) décrivant une enveloppe de performance de l'arme ;

créer des coefficients caractéristiques de cette enveloppe de performance en utilisant un algorithme générique (23), dans lequel l'algorithme générique a la forme d'un polynôme, en mettant en œuvre les étapes ci-dessous consistant à :

a) générer des polynômes candidats, les variables des polynômes correspondant à tout ou partie d'un groupe de paramètres de conditions de tir d'arme ou d'aéronef ;

b) pour chaque polynôme candidat, calculer des coefficients pour ce polynôme candidat qui ajustent de façon optimale ce polynôme candidat à une caractéristique de l'enveloppe de performance de l'arme, en utilisant un critère d'erreur quadratique minimale ;

c) pour chaque polynôme candidat, générer un score candidat selon la qualité de l'ajustement de ce polynôme candidat à la caractéristique de l'enveloppe de performance de l'arme ;

d) appliquer un algorithme générique aux polynômes candidats et aux scores candidats, et notamment sélectionner les polynômes présentant les meilleurs scores et éliminer le ou les autres polynômes, ce qui permet d'identifier un meilleur ensemble de coefficients et de polynômes candidats ; et

e) répéter ledit processus d'identification jusqu'à ce que toutes les caractéristiques requises de l'enveloppe de performance présentent des modèles de polynômes correspondants ;

télécharger, vers le premier aéronef (1), les coefficients générés ; et

sélectionner, par le biais d'un module de reconstruction (25) à bord du premier aéronef (1) contenant le même algorithme générique (23), les coefficients pour l'algorithme générique (23) selon des conditions des deux aéronefs (1, T) ; et

en utilisant les coefficients sélectionnés, générer, par le biais du module de reconstruction (25), l'affichage de faisabilité.


 
5. Procédé selon la revendication 4, comprenant l'étape consistant à générer de nouveaux polynômes pour remplacer ceux qui ont été éliminés, et à répéter les étapes b) et c) de la revendication 4, jusqu'à ce qu'il n'y ait plus d'amélioration significative des scores candidats.
 
6. Procédé selon la revendication 5, dans lequel les sorties des polynômes sélectionnés sont utilisées en vue de fournir les entrées de manière à créer des polynômes candidats d'ordre supérieur.
 
7. Procédé selon la revendication 6, comprenant en outre l'étape d'itération des étapes selon les revendications 4 et 5 sur les polynômes candidats d'ordre supérieur, et l'étape d'obtention d'un résultat final de manière récursive à partir du chemin se terminant par le meilleur score candidat.
 
8. Procédé selon l'une quelconque des revendications 4 à 7, dans lequel l'algorithme générique (23) est un polynôme de la forme :

où :

« αmn » représente les « m » coefficients nécessaires pour calculer une sortie « n »;

{x1 .. xNi} représentent les entrées normalisées ; et
{y1 .. yNj} représentent les sorties.


 
9. Procédé selon l'une quelconque des revendications 4 à 8, dans lequel les conditions d'aéronefs (1, T) incluent une ou plusieurs parmi leurs positions relatives, leurs distances relatives, leurs directions de déplacement relatives, leurs vitesses relatives et leurs conditions atmosphériques ambiantes relatives.
 
10. Procédé selon l'une quelconque des revendications 4 à 9, dans lequel les coefficients spécifiques à une arme sont téléchargés vers le premier aéronef (1) lorsque l'arme est chargée en tant qu'un magasin d'aéronef.
 
11. Procédé selon l'une quelconque des revendications 4 à 10, dans lequel la base de données (19) est générée en mettant en œuvre les étapes ci-dessous consistant à :

définir la gamme de conditions pour lesquelles il peut être exigé que l'arme soit tirée, la gamme de conditions d'aéronef pour lesquelles il est possible que l'aéronef tire l'arme et la gamme de conditions d'arme pour lesquelles il est possible de tirer l'arme ;

générer des données indicatives de la performance d'arme pour chaque possibilité de tir d'arme depuis et dans les gammes définies ; et

créer une base de données (19) définissant l'enveloppe de performance globale de l'arme.


 




Drawing















REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description