(19)
(11)EP 2 469 710 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
18.04.2018 Bulletin 2018/16

(21)Application number: 11193777.7

(22)Date of filing:  15.12.2011
(51)Int. Cl.: 
H03K 17/082  (2006.01)
H02H 3/08  (2006.01)
H02M 1/00  (2006.01)

(54)

Power switch current estimator at gate driver

Netzschalter-Stromschätzer am Gate-Treiber

Estimateur de courant d'un commutateur puissance à partir de la commande de grille


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 23.12.2010 US 977480

(43)Date of publication of application:
27.06.2012 Bulletin 2012/26

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • Curbelo, Alvaro Jorge Mari
    Niskayuna, New York 12309 (US)
  • Zoels, Thomas Alois
    Niskayuna, New York 12309 (US)

(74)Representative: Bedford, Grant Richard 
GPO Europe GE International Inc. The Ark 201 Talgarth Road Hammersmith
London W6 8BJ
London W6 8BJ (GB)


(56)References cited: : 
US-A1- 2009 039 869
US-B1- 6 330 143
US-B1- 6 304 472
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates generally to electronic power switches and more particularly to a method of estimating main load current circulating through a high power switch taking place at the driver unit of the switch without any need for mounting dedicated large scale current sensors in the system employing the electronic power switch, to determine the conditional state of the power switch or to estimate temperatures associated with the power switch.

    [0002] US 6,304,472 for example describes an electric power converting system with an integrator for providing an output indicative of current.

    [0003] US 6,330,143 relates to automatic over-current protection of transistors.

    [0004] US 2009/0039869 describes a cascode current sensor for discrete power semiconductor devices.

    [0005] Current flows through various elements of a solid state main load current conducting power switch. Some of these elements are of parasitic or unwanted nature. Voltage drops are induced in these elements during current transients.

    [0006] In low voltage applications, various types of shunt devices have been employed in series to the main current path. Such use of shunt devices is not possible in high current modules because they destroy the smooth symmetry conditions and are a likely cause of overvoltage failures.

    [0007] In view of the foregoing, there is a need for a technique for estimating a main load current circulating through a high power switch taking place at the driver unit of the switch without any need for mounting dedicated large scale current sensors in the system employing the electronic power switch, to determine the health state of the power switch or to estimate temperatures associated with the power switch. It would be advantageous if the technique allowed efficient protection of the high power switch by enabling self turn-off during deleterious operating conditions that could prove harmful to the high power switch.

    [0008] Briefly, in accordance with one embodiment of the present invention, a power switch current estimator in accordance with appended claim 1 is provided.

    [0009] Various feautres, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:

    Figure 1 is a parasitic element circuit model illustrating an insulated gate bipolar transistor (IGBT) power switch driven by a gate drive circuit, according to one embodiment of the invention;

    Figure 2 illustrates one embodiment of a complex current estimator for the IGBT/gate drive circuit depicted in Figure 1;

    Figure 3 highlights the parasitic inductance between the collector power terminal and the collector sense terminal for the IGBT/gate drive circuit depicted in Figure 1;

    Figure 4 illustrates a main load current estimator for the IGBT/gate drive circuit depicted in Figure 1; and

    Figure 5 is a graph illustrating exemplary waveforms during turn-on for one embodiment of an IGBT/gate drive circuit.



    [0010] While the above-identified drawing figures set forth alternative embodiments, other embodiments of the present invention are also contemplated, as noted in the discussion. In all cases, this disclosure presents illustrated embodiments of the present invention by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope of this invention.

    [0011] Figure 1 is a parasitic element circuit model of an IGBT/gate drive circuit 10 illustrating an insulated gate bipolar transistor (IGBT) module 12 comprising an IGBT power switch 13 with a freewheel diode 15. The IGBT power switch 13 is driven by a gate drive circuit 14, according to one embodiment of the invention. The gate drive circuit 14 is connected to power switch 13 with additional wires for sensing purposes as described in further detail herein with reference to various embodiments. According to one embodiment, one or more analog integrators are integrated with the drive circuit 14. According to another embodiment, an analog-to-digital (A/D) conversion unit is employed in association with a digital integrator within the drive circuit 14. In some embodiments, current estimation algorithmic software resides in non-volatile memory resident in the gate drive circuit 14 or external to the gate drive circuit 14. In still another embodiment, the IGBT 13 and freewheel diode 15 are replaced by a reverse conducting IGBT which is able to conduct current in both directions without the need of an additional freewheel diode.

    [0012] With continued reference to Figure 1, some IGBT current estimations described herein with reference to the various embodiments are determined using a main IGBT collector power terminal 16, a main IGBT emitter power terminal 18, a IGBT collector sense wire terminal 20, an upper auxiliary driving terminal 22 in electrical communication with the IGBT gate parasitic elements described in further detail herein, and a lower auxiliary driving terminal 24 in electrical communication with IGBT emitter parasitic elements described in further detail herein. IGBT/gate drive circuit 10 further comprises a capacitor 26 connected between upper and lower auxiliary terminals 22, 24 to provide driving stability and speed control.

    [0013] A circuit analysis of IGBT/gate drive circuit 10 shows that the differential equation for Vkepe (voltage between the auxiliary emitter and the power emitter terminal) contains the unknown variable Ie (main power switch current) and its derivative as represented by:



    [0014] Although IGBT internal gate current Igint cannot be measured directly, it can be calculated based on Ig and Vge measurements:



    [0015] Further, the implementation of IGBT power switch 12 driven by a gate drive circuit 14 has provisions for measurement of the signals Vkepe, Vgedriver, Vge, Ig, Vske and VC'S. Additional wires to the gate driver 14 may, of course, be required for some of these measurements, such as depicted for one embodiment in Figure 1. The circuit implementations described herein advantageously yield minimal gate drive circuit complexity.

    [0016] Keeping the foregoing features in mind, Figure 2 illustrates one embodiment of a complex current estimator 30 for the IGBT/gate drive circuit 10 depicted in Figure 1. In one implementation, a sum 32 of weighted averages of measured and integrated signals is accomplished with specific weighting factors. In such an implementation, driving currents 36 and voltages 34 are measured via auxiliary driving terminals 22, 24 of the IGBT 13. A time step incremental quotient or derivative of the driving voltage Vge 38 is also implemented. A weighted sum 32 based on the foregoing measurements and also based on corresponding parasitic element values 40 provides the desired current estimator embodiment as depicted in Figure 2. The complex current estimator 30 thus captures the impact of Igint with three integrations and one derivative. The IGBT parasitics according to one embodiment are determined using estimation based on IGBT construction knowledge and fitting simulation and measurement techniques.

    [0017] Figure 3 highlights parasitic elements 50 between the collector power terminal 16 and a collector sense terminal 20 for one embodiment of the IGBT/gate drive circuit 10 depicted in Figure 1. Various additional current estimator embodiments can be realized using these parasitic elements 50 in combination with the current estimator principles described herein. Although parasitics are multiple and possibly of distributed nature, reduced order models with lumped parameters and behavioral matching are useful in practice.

    [0018] Figure 4 illustrates a main load current estimator 60 for the IGBT/gate drive circuit 10 depicted in Figure 1, according to an example. In this embodiment, integration of measured voltage Vkepe is performed in a defined interval with boundaries that are set to only capture a desired switching event. The impact of Igint is neglected in this example as insignificant. Thus, only one signal (Vkepe) is measured and integrated to estimate the main load current circulating through the IGBT power switch 13. The voltage Vkepe is a parasitic transient voltage measured between the lower auxiliary driving terminal 24 and the lower power switch main connection 18. According to a similar example the integral of a parasitic transient voltage measured between the upper power switch main connection 16 and upper auxiliary driving terminal 22 is measured and used for current estimation during a switching event. According to one aspect, the estimated power switch load current is determined from switching events that occur during non-fault switching conditions, although the principles described herein may be applied as well to fault condition switching events such as a short circuit event.

    [0019] According to one embodiment, the estimation of switch current is based on integration of the voltage across the inductance in the current flow path. This current estimation is determined during normal switching transient operations and is not limited to short circuit events of the power switch. The resultant current estimation is then used in subsequent stages such as, but not limited to, an analog/digital conversion stage such as depicted in Figure 1, to provide a result that is stored in memory. In some embodiments described herein that use measurements and parasitics using the upper power switch terminal 16 and the upper auxiliary control terminal 22, estimations of load currents circulating through the power switch 13 are more challenging since there is high voltage between the upper terminal 16 and lower auxiliary driving terminal 24 which is used as common ground.

    [0020] Other embodiments of current estimation techniques using the principles described herein can be implemented using a full-order observer or a reduced-order observer and a Kalman filter to include the effect of noise. The desired estimation according to one embodiment is performed on-line in a programmable device such as an FPGA/CLPD device using a recursive update (fast Kalman filter algorithm) to determine dVgeInt/dt and dIce/dt as represented by:





    [0021] The foregoing observer implements a linearized version of the dynamic system 10, modeling the input circuitry. Several variants of such observers are possible, encompassing noise effects and order reduction based on the number of measured signals.

    [0022] Figure 5 is a graph illustrating exemplary estimated waveforms of load current circulating through a power switch during a turn-on switching event for one embodiment of an IGBT/gate drive circuit. In one embodiment, the estimated current IeEstim1 can be seen to be drifting away due to integration of voltage offset Ie*Ree2 that is required to determine the estimation. In another embodiment, the estimated current IeEstim2 is illustrated using LSQ (least squares) parameters. In another embodiment, the estimated current IeEstim2Param using estimated parasitic parameters exhibits a smaller deviation in the recovery as compared to IeEstim2LSQParam using LSQ parameters. Both embodiments estimating power switch current as IeEstim2 can be seen to be fitting well to actual measured values following the recovery peak. Deviations of estimate current from actual measured current between 8µsec and 9µsec on the graph show IeEstim1 deviating by about 27%, IeEstim2EstParam deviating by about 4%, and IeEstim2LSQParam deviating by about -2%.

    [0023] In summary explanation, according to one embodiment, a power switch current estimator 10 comprises a solid state power switch 13 comprising a control terminal 22, an input current power terminal 16, an output current power terminal 18, and a sense wire terminal 24, wherein one or more parasitic elements define an electrical pathway between the output current power terminal 18 and the sense wire terminal 24. A driver unit 14 is connected to the control terminal 22 and the sense wire terminal 24 and is configured to selectively turn the power switch 13 on and off while a positive voltage appears across the input current power terminal 16 and the output current power terminal 18. The current estimator is configured to generate an estimated level of current circulating in real time through the solid state power switch 13 in response to one or more switching events. The estimated level of current is based on values of at least one of the parasitic elements such that the estimated level of load current substantially corresponds to an actual level of load current circulating through the solid state power switch 13.

    [0024] According to another embodiment, an estimation of the main load current circulating through a high power switch 13 takes place at a driver unit 14 of the switch 13 without any need for mounting dedicated large scale current sensors in the system. This estimated current is then used for condition (health) monitoring of the switch or for estimating certain temperatures useful in determining the condition/health of the switch. A high resolution voltage sensor is employed across the main switch power terminals 16, 18 or between sensing terminals 20, 24. Such high resolution in needed only during the conduction mode when the voltage across the switch is comparatively small. A counter is employed for counting the number of occurrences when the voltage across the main power switch terminals 16, 18 or across sensing terminals 20, 24 exceeds a value stored in a non-volatile memory unit. A corresponding logic controller may issue a feedback signal to a central controller when the count number exceeds a desired threshold, or optionally may issue a self turn-off command to the gate driver 14.

    [0025] More specifically, the non-volatile memory that is part of the gate drive circuit 14 in one embodiment stores Vce and/or Ice characteristics of healthy power switches. The Ice current is then estimated using the principles described herein. The Vce voltage is measured with a high-resolution, low voltage sensor while the power switch 13 is in a conducting state. A determination is made as to whether the measured value of Vce is larger than the stored value. An internal counter is incremented by one each time the measured value of Vce is larger than the stored value. If and when the counter exceeds a specified number, an alarm (feedback signal) is transmitted to a central controller or is employed to shut-down the power switch 13. A physical health estimator is thus implemented using the foregoing principles.

    [0026] According to another embodiment, a temperature estimator and protective turn-off system is implemented by storing in non-volatile memory at the driver 14, Vce (Ice) characteristics of health switches at different temperatures. The Ice current is then estimated using the foregoing principles. The Vce voltage is measured using a high-resolution, low voltage sensor while the power switch 13 is in a conducting state. According to one embodiment, this measurement occurs about 20µsec after current stabilization such as depicted in Figure 5. An inverse function in a field programmable gate array device is employed to estimate the operating temperature. If the temperature exceeds a pre-specified (allowed) threshold, a self-turn off command is issued causing the gate drive circuit 14 to shut down the power switch 13.

    [0027] While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art.


    Claims

    1. A power switch current estimator (10) comprising:

    a solid state power switch (13) connected to a control terminal (22), an input current power terminal (16), an output current power terminal (18), and at least one sense wire terminal (20,24), wherein one or more parasitic elements define an electrical pathway between the at least one sense wire terminal (20,24) and the corresponding power terminal (16,18);

    a driver unit (14) connected to the control terminal (22) and the at least one sense wire terminal (24), the driver unit (14) selectively turning the power switch (13) on and off; and

    a current estimator (30) configured to generate an estimated level of current circulating through the solid state power switch (13) in real time in response to one or more switching events, the estimated level of current based on values of at least one of the parasitic elements in order that the estimated level of load current substantially corresponds to an actual level of load current circulating through the solid state power switch (13); characterised in that:

    the current estimator (30) comprises a summer (32) configured to determine a weighted average of measured and integrated voltage and current signals with predefined weighting factors based on one or more of the parasitic element values, wherein the measured and integrated voltage and current signals comprise a voltage generated between the output current power terminal (18) and the corresponding sense wire terminal (24) during a power switch (13) turn on or turn off event, a current through the control terminal (22) and a derivative of a voltage between the control terminal and the at least one sense wire terminal.


     
    2. The power switch current estimator (10) according to claim 1, wherein the solid state power switch (13) comprises an IGBT device, the control terminal (22) is a gate drive terminal of the IGBT device (13), the input current power terminal (16) is a collector terminal of the IGBT device (13), and the output current power terminal (18) is an emitter terminal of the IGBT device (13).
     
    3. The power switch current estimator (10) according to any preceding claim, wherein the summer (32) is further configured to determine the weighted average based on a time step incremental quotient or derivative of a driving voltage generated via the driver unit (14), wherein the time step incremental quotient or derivative of the driving voltage is weighted based on one or more of the parasitic element values.
     
    4. The power switch current estimator (10) according to any preceding claim, further comprising a voltage sensor connected to the input and output current power terminals (16,18) or sensing terminals (20,24) and configured to generate a count pulse each time the voltage across the input and output current power terminals (16,18) or sensing terminals (20,24) exceeds a predefined threshold voltage level in response to power switch (13) conduction mode events.
     


    Ansprüche

    1. Leistungsschalter-Stromschätzer (10), umfassend:

    einen Festzustand-Leistungsschalter (13), der mit einem Steueranschluss (22) verbunden ist, einen Eingangsstrom-Leistungsanschluss (16), einen Ausgangsstrom-Leistungsanschluss (18) und mindestens einen Abtastdrahtanschluss (20, 24), wobei ein oder mehrere parasitäre Elemente einen elektrischen Weg zwischen dem mindestens einen Abtastdrahtanschluss (20, 24) und dem entsprechenden Leistungsanschluss (16, 18) definieren;

    eine Treibereinheit (14), die mit dem Steueranschluss (22) und dem mindestens einen Abtastdrahtanschluss (24) verbunden ist, wobei die Treibereinheit (14) selektiv den Leistungsschalter (13) ein- und ausschaltet; und

    einen Stromschätzer (30), der ausgelegt ist, einen geschätzten Pegel des Stroms, der durch den Festzustand-Leistungsschalter (13) zirkuliert, in Echtzeit ansprechend auf ein oder mehrere Schaltereignisse zu generieren, wobei der geschätzte Strompegel auf Werten mindestens eines der parasitären Elemente basiert, damit der geschätzte Laststrompegel im Wesentlichen einem tatsächlichen Pegel des Laststroms entspricht, der durch den Festzustand-Leistungsschalter (13) zirkuliert; dadurch gekennzeichnet, dass:

    der Stromschätzer (30) einen Summierer (32) umfasst, der ausgelegt ist, einen gewichteten Mittelwert gemessener und integrierter Spannungs- und Stromsignale mit vordefinierten Gewichtungsfaktoren auf der Basis eines oder mehrerer der parasitären Elementwerte zu bestimmen, wobei die gemessenen und integrierten Spannungs- und Stromsignale eine Spannung, die zwischen dem Ausgangsstrom-Leistungsanschluss (18) und dem entsprechenden Abtastdrahtanschluss (24) während eines Einschalt- oder Ausschalt-Ereignisses des Leistungsschalters (13) generiert wird, einen Strom durch den Steueranschluss (22) und eine Ableitung einer Spannung zwischen dem Steueranschluss und dem mindestens einen Abtastdrahtanschluss umfassen.


     
    2. Leistungsschalter-Stromschätzer (10) nach Anspruch 1, wobei der Festzustand-Leistungsschalter (13) eine IGBT-Vorrichtung umfasst, der Steueranschluss (22) ein Gate-Antriebsanschluss der IGBT-Vorrichtung (13) ist, der Eingangsstrom-Leistungsanschluss (16) ein Kollektoranschluss der IGBT-Vorrichtung (13) ist, und der Ausgangsstrom-Leistungsanschluss (18) ein Emitteranschluss der IGBT-Vorrichtung (13) ist.
     
    3. Leistungsschalter-Stromschätzer (10) nach einem der vorhergehenden Ansprüche, wobei der Summierer (32) ferner ausgelegt ist, den gewichteten Mittelwert auf der Basis eines Zeitschritt-Inkrementalquotienten oder einer Ableitung einer Antriebsspannung zu bestimmen, die über die Treibereinheit (14) generiert wird, wobei der Zeitschritt-Inkrementalquotient oder die Ableitung der Antriebsspannung auf der Basis eines oder mehrerer der parasitären Elementwerte gewichtet wird.
     
    4. Leistungsschalter-Stromschätzer (10) nach einem der vorhergehenden Ansprüche, ferner umfassend einen Spannungssensor, der mit dem Eingangs- und Ausgangsstrom-Leistungsanschluss (16, 18) oder den Abtastanschlüssen (20, 24) verbunden und ausgelegt ist, einen Zählimpuls zu generieren, jedes Mal wenn die Spannung quer über den Eingangs- und Ausgangsstrom-Leistungsanschluss (16, 18) oder die Abtastanschlüsse (20, 24) einen vordefinierten Schwellenspannungspegel ansprechend auf Leitungsmodusereignisse des Leistungsschalters (13) überschreitet.
     


    Revendications

    1. Estimateur de courant (10) de sectionneur de puissance comprenant :

    un sectionneur de puissance à semiconducteurs (13) connecté à une borne de commande (22), une borne d'alimentation en courant d'entrée (16), une borne d'alimentation en courant de sortie (18), et à au moins une borne de fil de lecture (20, 24), dans lequel un ou plusieurs éléments parasites définit ou définissent un trajet électrique entre la au moins une borne de fil de lecture (20, 24) et la borne d'alimentation correspondante (16, 18) ;

    une unité pilote (14) connectée à la borne de commande (22) et à la au moins une borne de fil de lecture (24), l'unité pilote (14) connectant ou déconnectant sélectivement le sectionneur de puissance (13) ; et

    un estimateur de courant (30) configuré pour générer un niveau estimé de courant circulant à travers le sectionneur de puissance à semi-conducteurs (13) en temps réel en réponse à un ou plusieurs événements de commutation, le niveau estimé de courant étant basé sur des valeurs d'au moins l'un des éléments parasites afin que le niveau estimé de courant de charge corresponde sensiblement à un niveau réel de courant de charge circulant à travers le sectionneur de puissance à semi-conducteurs (13) ; caractérisé en ce que :

    l'estimateur de courant (30) comprend un sommateur (32) configuré pour déterminer une moyenne pondérée de signaux de tension et de courant mesurés et intégrés avec des facteurs de pondération prédéfinis basés sur une ou plusieurs des valeurs des éléments parasites, dans lequel les signaux de tension et de courant mesurés et intégrés comprennent une tension générée entre la borne d'alimentation en courant de sortie (18) et la borne de fil de lecture correspondante (24) au cours d'un événement de connexion et de déconnexion du sectionneur de puissance (13), un courant à travers la borne de commande (22) et un dérivé d'une tension entre la borne de commande et la au moins une borne de fil de lecture.


     
    2. Estimateur de courant (10) de sectionneur de puissance selon la revendication 1, dans lequel le sectionneur de puissance à semi-conducteurs (13) comprend un dispositif IGBT, la borne de commande (22) est une borne de commande de grille du dispositif IGBT (13), la borne d'alimentation en courant d'entrée (16) est une borne collectrice du dispositif IGBT (13), et la borne d'alimentation en courant de sortie (18) est une borne émettrice du dispositif IGBT (13).
     
    3. Estimateur de courant (10) de sectionneur de puissance selon l'une quelconque des revendications précédentes, dans lequel le sommateur (32) est en outre configuré pour déterminer la moyenne pondérée sur la base d'un quotient ou d'un dérivé incrémental par stade temporel d'une tension d'entraînement générée via l'unité pilote (14), dans lequel le quotient ou le dérivé incrémental par stade temporel de la tension d'entraînement est pondéré sur la base d'une ou plusieurs des valeurs des éléments parasites.
     
    4. Estimateur de courant (10) de sectionneur de puissance selon l'une quelconque des revendications précédentes, comprenant en outre un capteur de tension connecté aux bornes d'alimentation en courants d'entrée et de sortie (16, 18) ou aux bornes de détection (20, 24) et configuré pour générer une impulsion de comptage chaque fois que la tension aux bornes d'alimentation en courants d'entrée et de sortie (16, 18) ou sur les bornes de lecture (20, 24) dépasse un niveau de tension de seuil prédéfini en réponse à des événements en mode de conduction du sectionneur de puissance (13).
     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description