(19)
(11)EP 2 474 820 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 12150336.1

(22)Date of filing:  05.01.2012
(51)International Patent Classification (IPC): 
G01L 9/00(2006.01)
G01L 19/14(2006.01)
G01L 19/00(2006.01)

(54)

Pressure sensor with low cost packaging

Drucksensor mit kostengünstiger Verpackung

Capteur de pression avec conditionnement à bas coût


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.01.2011 US 986948

(43)Date of publication of application:
11.07.2012 Bulletin 2012/28

(73)Proprietor: Honeywell International Inc.
Morris Plains, NJ 07950 (US)

(72)Inventors:
  • Wade, Richard
    Morristown, NJ 07962-2245 (US)
  • BENTLEY, Ian
    Morristown, NJ 07962-2245 (US)

(74)Representative: Hutchison, James 
Haseltine Lake Kempner LLP Lincoln House, 5th Floor 300 High Holborn
London WC1V 7JH
London WC1V 7JH (GB)


(56)References cited: : 
EP-A2- 0 553 725
JP-A- 2000 199 725
JP-A- H11 230 846
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present disclosure relates generally to pressure sensors, and more particularly, to pressure sensors with low cost packaging.

    Background



    [0002] Pressure sensors are used in a wide variety of applications including, for example, commercial, automotive, aerospace, industrial, and medical applications. In many applications, pressure sensors may detect a pressure via a sensing element, often formed on a pressure sensing die, which converts mechanical stress caused by an incoming pressure into an electrical output signal. In some of these applications, it may be desirable to reduce the cost of the pressure sensor as much as possible. A pressure sensor comprising the features of the preamble of claim 1 is disclosed in patent documents EP0553725 and JP2000199725.

    Summary



    [0003] The present invention is defined by the appended claims.

    [0004] The present disclosure relates generally to pressure sensors, and more particularly, to pressure sensors for sensing a pressure of a media such as a gas or a liquid. In one illustrative embodiment, a pressure sensor assembly may include a pressure sensing die having a front side and a back side. The pressure sensing die may further include a pressure sensing diaphragm having one or more piezoresistors coupled to the pressure sensing diaphragm for sensing a pressure induced stress in the pressure sensing diaphragm. Two or more electrical bond pads may be positioned on the front side of the pressure sensor die, with each of the two or more electrical bond pads electrically coupled to one or more of the piezoresistors. The pressure sensor assembly may further include a housing having a mounting side and a sensing side. The sensing side may define a pressure port. The pressure sensor die may be secured to the housing such that the back side of the pressure sensor die faces the sensing side of the housing with the pressure sensing diaphragm exposed to the pressure port. When so secured, the front side of the pressure sensing die may be positioned adjacent to the mounting side of the housing with the two or more electrical bond pads of the pressure sensing die being accessible from outside of the housing. In some instances, the pressure port may include an elongated pressure port.

    [0005] The preceding summary is provided to facilitate a general understanding of some of the innovative features of the present disclosure, and is not intended to be a full description. A full appreciation of the disclosure can be gained by taking the entire specification, claims, drawings, and abstract as a whole.

    Brief Description of the Drawings



    [0006] The disclosure may be more completely understood in consideration of the following description of various illustrative embodiments in connection with the accompanying drawings, in which:

    Figure 1 is an exploded perspective top view of an illustrative pressure sensor;

    Figure 2 is an exploded perspective bottom view of the illustrative pressure sensor of Figure 1;

    Figure 3 is a perspective view of the illustrative pressure sensor of Figures 1 and 2;

    Figure 4 is an exploded perspective top view of another illustrative pressure sensor;

    Figure 5 is an exploded perspective bottom view of the illustrative pressure sensor of Figure 4; and

    Figure 6 is a perspective view of the illustrative pressure sensor of Figures 4 and 5.



    [0007] While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular illustrative embodiments described herein.

    Description



    [0008] The following description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure. The illustrative embodiments depicted are intended only as exemplary. Selected features of any illustrative embodiment may be incorporated into an additional embodiment unless clearly stated to the contrary.

    [0009] As used herein, the term "fluid" is not intended to be limited to a liquid media. Rather the term "fluid" is considered as including any material subject to flow, such as, but not limited to, liquids and gases.

    [0010] Figure 1 is an exploded perspective top view of an illustrative pressure sensor assembly 10. The pressure sensor assembly 10 may include a porting housing 20 configured to provide a fluid connection between a pressure sensing die 12 and a customer application. The housing 20 may be formed from plastic, polyamide, ceramic, metal, or any other suitable material. While the housing 20 is illustrated as having a generally square shape, it is contemplated the housing 20 may have any shape desired. The housing 20 may include a top side 23 and a bottom side 25 (shown better in Figure 2). In some instances, the housing 20 may include a pressure port 26 extending from the top side 23 to the bottom side 25. The pressure port 26 may be configured to allow fluid communication between an application and the pressure sensing die 12 of the pressure sensor assembly 10. While the pressure port 26 is illustrated as including a circular aperture, it is contemplated that the pressure port 26 may be adapted to include a variety of interface options and connections, as desired. For example, it is contemplated that the pressure port 26 may include any shape or size as desired, often depending on the particular application at hand. It is further contemplated that, in some embodiments, the housing 20 may not include a port 26. When so provided, the housing 20, in conjunction with the back side of the pressure sensing die, may form an enclosed cavity for containing a reference pressure.

    [0011] In one illustrative embodiment, the pressure sensing die 12 may be a micromechanical sensor element fabricated using a silicon wafer and suitable fabrication techniques. The pressure sensing die 12 may include one or more pressure sensing elements and/or other circuitry (e.g. trim circuitry, signal conditioning circuitry, etc.) formed using suitable fabrication or printing techniques. In some cases, the pressure sensing die 12 may include a pressure sensing diaphragm 18 including one or more sensing elements, such as piezoresistive sensing components, formed thereon for sensing a deflection and thus a pressure differential between a top and bottom side of the pressure sensing diaphragm 18. The piezoresistors may be configured in such a manner that their resistance changes in response to the flexing of the pressure sensing diaphragm 18. In some instances, the pressure sensing diaphragm 18 may include a piezoresistive Wheatstone bridge built into a micro-machined silicon diaphragm structure. Thus, when the pressure sensor assembly 10 is arranged such that the pressure port 26 is in fluid communication with a fluid media, the pressure output of the pressure sensor assembly 10 may correspond to the changes in the resistance of the piezoresistors.

    [0012] In some embodiments, the pressure sensing diaphragm 18 may be fabricated by back-side etching a silicon die, however, any suitable process may be used, as desired. The pressure sensing die 12 may include a back side 16 and an opposing front side 14 (better shown in Figure 2). The back side 16 of the sensing die 12 may be bonded to the housing 20 using an adhesive, seal, gasket, or any other suitable bonding or sealing mechanism 32 (e.g. solder, eutectic, etc.). In some instances, the pressure sensing die 12 may be attached to the housing 20 using a stress isolating adhesive, such as, but not limited to, a silicone room temperature vulcanizing (RTV) adhesive. The seal 32 may be configured to attach the sensing die 12 to the housing 20 while allowing the pressure sensing diaphragm 18 to be exposed to the pressure port 26 defined by the housing 20.

    [0013] Figure 2 illustrates an exploded perspective bottom view of the illustrative pressure sensor 10 of Figure 1. As can be seen, the bottom side 25 of the housing 20 may include a mounting side surface 22 and a sensing side surface 24. As shown, the mounting side 22 is connected to but spaced back from the sensing side 24 by one or more lateral side walls 28. In some embodiments, the mounting side 22 may define an opening such that the sensing side 24 and the side walls 28, together define a pressure sensing die cavity 34. In some embodiments, the pressure sensing die 12 may be mounted within the die cavity 34 such that the back side 16 of the pressure sensing die 12 is facing and/or attached to an inside surface of the sensing side 24 of the housing 20. The sensing side 24 of the housing 20 may define a wall including the pressure port 26 such that when the pressure sensing die 12 is mounted within the die cavity 34, the pressure port 26 is in fluid communication with the pressure sensing diaphragm 18. A seal 32, layer of adhesive, gasket, or other sealing mechanism may be disposed between the sensing side 24 of the housing 20 and the back side 16 of the pressure sensing die 12 to secure the die 12 within the die cavity 34. When the pressure sensing die 12 is secured within the die cavity 34 of the housing, the front side 14 of the pressure sense die 12 may be positioned adjacent to (at, below, or above) the mounting side 22 of the housing 20.

    [0014] The pressure sensing die 12 may include one or more electrical bond pads 30 disposed on the front side 14 of the die 12. The electrical bond pads 30 may be positioned such that the pads 30 are accessible from outside of the housing 20. In some instances, the electrical bond pads 30 may be electrically coupled to the one or more sensing elements of the pressure sensing diaphragm 18. In some embodiments, the pressure sensing die 12 may include four electrical bond pads 30, each connected to one of the four connections of a Wheatstone bridge that includes the sensing piezoresistors. However, it is contemplated that the pressure sensing die 12 may include any number of electrical bond pads 30, as desired. In some embodiments, the electrical bond pads 30 may be 0.7 millimeters by 0.3 millimeters, or any other suitable size. This may allow a customer to easily install the pressure sensor assembly 10 directly on a printed circuit board (PCB) or other interface or substrate using, for example, a solder paste solution. In another illustrative embodiment, the electrical bond pads 30 may be relatively small with bump pads attached thereto such that the pressure sensor 10 may be attached to a special interface or PCB. The electrical bond pads 30 extend out past the mounting side 22 of the housing 20.

    [0015] Figure 3 is a perspective view of the assembled pressure sensor 10 of Figure 2. As can be seen, the pressure sensing die 12 may be sized and shaped to generally correspond to the size and shape of the pressure sensing die cavity 34 of the housing 20. When assembled, in some instances, the front side 14 of the pressure sensing die 12 may be adjacent to, or positioned generally near the mounting side 22 of the housing 20. However, it is contemplated that in some embodiments, the front side 14 of the pressure sensing die 12 may be recessed within the die cavity 34 or may extend out beyond the mounting side 22 of the housing 20. The pressure sensing die 12 is positioned such that the electrical bond pads 30 are exposed, and is suitable for soldering directly to corresponding bond pads on a PCB or other substrate. While not explicitly shown in Figure 3, the pressure sensing die 12 is positioned within the die cavity 34 such that the pressure sensing diaphragm 18 is in fluid communication with the pressure port 26. When so positioned, the pressure sensing diaphragm 18 may be free to flex such that the one or more pressure sensing elements may sense a deflection and thus a pressure differential between a top and bottom side of the pressure sensing diaphragm 18.

    [0016] Figure 4 is an exploded perspective top view of another illustrative pressure sensor assembly 110. The pressure sensor assembly 110 may include a porting housing 120 configured to provide a fluid connection between a pressure sensing die 112 and a customer application. The housing 120 may be formed from plastic, polyamide, ceramic, metal, or any other suitable material. While the housing 120 is illustrated as having a generally square shape, it is contemplated the housing 120 may have any shape desired. The housing 120 may include a top side 123 and a bottom side 125 (better shown in Figure 5). In some instances, the housing 120 may include a pressure port 126 extending between the top side 123 to the bottom side 125. The pressure port 126 may be configured to allow fluid communication between an application and the pressure sensing die 112 of the pressure sensor assembly 110.

    [0017] In some instances, the pressure port 126 may be an elongated structure 136. For example, the elongated structure 136 may be a generally tubular member extending away from the top side 123 of the housing 120. It is contemplated that the pressure port 126 may include a variety of interface options and connections. For example, the elongated structure 136 could include an elbow, or may take on any other desired configuration or shape. It is further contemplated that the pressure port 126 may include a threaded or barbed region to facilitate connection to a device. It is further contemplated that, in some embodiments, the housing 120 may not include a port 126 at all, as described above.

    [0018] In one illustrative embodiment, the pressure sensing die 112 may be a micromechanical sensor element fabricated using a silicon wafer and suitable fabrication techniques. The pressure sensing die 112 may include one or more pressure sensing elements and/or other circuitry (e.g. trim circuitry, signal conditioning circuitry, etc.) formed using suitable fabrication or printing techniques. In some cases, the pressure sensing die 112 may include a pressure sensing diaphragm 118 including one or more sensing elements, such as piezoresistive sensing components, formed thereon for sensing a deflection and thus a pressure differential between a top and bottom side of the pressure sensing diaphragm 118. The piezoresistors may be configured in such a manner that their resistance changes in response to the flexing of the pressure sensing diaphragm 118. In some instances, the pressure sensing diaphragm 118 may include a piezoresistive Wheatstone bridge built into a micro-machined silicon diaphragm structure. Thus, when the pressure sensor assembly 110 is arranged such that the pressure port 126 is in fluid communication with a fluid media, the pressure output of the pressure sensor assembly 110 may correspond to changes in the resistance of the piezoresistors.

    [0019] In some embodiments, the pressure sensing diaphragm 118 may be fabricated by back-side etching a silicon die, however, it is contemplated that any suitable process may be used, as desired. The pressure sensing die 112 may include a back side 116 and an opposing front side 114. The back side 116 of the sensing die 112 may be bonded to the housing 120 using an adhesive, gasket, seal, or any other suitable bonding or sealing mechanism 132 (e.g. solder, eutectic, etc.). In some instances, the pressure sensing die 112 may be attached to the housing 120 using a stress isolating adhesive, such as, but not limited to a silicone room temperature vulcanizing (RTV) adhesive. The seal 132 may be configured to attach the sensing die 112 to the housing 120 while allowing the pressure sensing diaphragm 118 to be exposed to the pressure port 126 defined in the housing 120.

    [0020] Figure 5 is an exploded perspective bottom view of the illustrative pressure sensor 110 of Figure 4. The bottom side 125 of the housing 120 may include a mounting side surface 122 and a sensing side surface 124. The mounting side 122 may be connected to and spaced a distance from the sensing side 124 by one or more lateral side walls 128. In some embodiments, the mounting side 122 may define an opening such that the sensing side 124 and the side walls 128 define a pressure sensing die cavity 134. In some embodiments, the pressure sensing die 112 is mounted within the die cavity 134 such that the back side 116 of the die 112 is facing and/or attached to an inside surface of the sensing side 124 of the housing 120. The sensing side 124 of the housing 120 may define a wall including the pressure port 126 such that when the pressure sensing die 112 is mounted within the die cavity 134, the pressure port 126 is in fluid communication with the pressure sensing diaphragm 118. A seal 132, gasket and/or layer of adhesive may be disposed between the sensing side 124 of the housing 120 and the back side 116 of the pressure sensing die 112 to secure the die 112 within the die cavity 134. When the pressure sensing die 112 is secured within the die cavity 134 of the housing, the front side 114 of the pressure sense die 112 may be positioned adjacent to (at, below or above) the mounting side 122 of the housing 120.

    [0021] The pressure sensing die 112 may include one or more electrical bond pads 130 disposed on the front side 114 of the die 112. The electrical bond pads 130 may be positioned such that the bond pads 130 are accessible from outside of the housing 120. The electrical bond pads 130 may be electrically coupled to the one or more sensing elements of the pressure sensing diaphragm 118. In some embodiments, the pressure sensing die 112 may include four electrical bond pads 130, each connected to one of the four connections of a Wheatstone bridge that includes the sensing piezoresistors. However, it is contemplated that the pressure sensing die 112 may include any number of electrical bond pads 130, as desired. In some embodiments, the electrical bond pads 130 may be 0.7 millimeters by 0.3 millimeters or any other suitable size. This may allow a customer to install the pressure sensor assembly 110 directly to a printed circuit board (PCB) or other interface or substrate using, for example, a solder paste solution. In other illustrative embodiments, the electrical bond pads 130 may be relatively small with bump pads attached thereto such that the pressure sensor 110 may be attached to a special interface or PCB. In some cases, the electrical bond pads 130 may extend out past the mounting side 122 of the housing 120, but this is not required.

    [0022] Figure 6 is a perspective view of the assembled pressure sensor 110 of Figure 5. As can be seen, the pressure sensing die 112 may be sized and shaped to generally correspond to the size and shape of the pressure sensing die cavity 134. When assembled, in some instances, the front side 114 of the pressure sensing die 112 may be adjacent to, or positioned generally near the mounting side 122 of the housing 120. However, it is contemplated that in some embodiments, the front side 114 of the pressure sensing die 112 may be recessed within the die cavity 134 or may extend beyond the mounting side 122 of the housing 120. The pressure sensing die 112 may be positioned such that the electrical bond pads are exposed and suitable for soldering directly to corresponding bond pads on a PCB or other substrate. While not explicitly shown in Figure 6, the pressure sensing die 112 may be positioned within the die cavity 134 such that the pressure sensing diaphragm 118 is in fluid communication with the pressure port 126. When so positioned, the pressure sensing diaphragm 118 may be free to flex such that the one or more pressure sensing elements may sense a deflection and thus a pressure differential between a top and bottom side of the pressure sensing diaphragm 118.


    Claims

    1. A pressure sensor assembly (10, 110), comprising:

    a pressure port housing (20, 120) including a sensing side (24, 124) and a mounting side (22, 122), wherein the sensing side (24, 124) includes a pressure port (26, 126) extending through the sensing side (24, 124) of the pressure port housing (20, 120);

    the pressure port housing (20, 120) further including a pressure sensing die cavity (34, 134);

    a pressure sensing die (12, 112) having a first side (16, 116) and an opposite second side (14, 114), the pressure sensing die (12, 112) situated in the pressure sensing die cavity (34, 134) with the first side (16, 116) secured to the sensing side (24, 124) of the pressure port housing (20, 120), the pressure sensing die (12, 112) having a pressure sensing diaphragm (18, 118) exposed to the pressure port (26, 126); and

    the second side (14, 114) of the pressure sensing die (12, 112) facing away from the sensing side (24, 124) of the pressure port housing (20, 120) and toward the mounting side (22, 122) characterized in that two or more electrical bond pads (130) of the pressure sensor die (12, 112) extending out past the mounting side (22, 122) and accessible from outside of the pressure port housing (20, 120) such that the two or more electrical bond pads (30, 130) can be electrically and physically connected directly to two or more corresponding bond pads on another substrate.


     
    2. The pressure sensor assembly (10, 110) of claim 1, further comprising a seal (32, 132) between the first side (16, 116) of the pressure sensing die (112) and the pressure port housing (120), wherein the seal (32, 132) is configured to expose the pressure sensing diaphragm (18, 118) of the pressure sensing die (12, 112) to the pressure port (26, 126) defined in the sensing side (24, 124) of the pressure port housing (120).
     
    3. The pressure sensor assembly (10, 110) of claim 1, wherein the pressure sensing die (12, 112) is secured to the pressure port housing (20, 120) via an adhesive.
     
    4. The pressure sensor assembly (10, 110) of claim 3, wherein the adhesive (32, 132) is a silicone Room Temperature Vulcanizing (RTV) adhesive.
     
    5. The pressure sensor assembly (10, 110) of claim 1, wherein the pressure port (26, 126) is an elongated pressure port (26, 126) that extends from adjacent the first side (16, 116) of the pressure sensing die (12, 112) and away from the first side (16, 116) of the pressure sensing die (112).
     
    6. The pressure sensor assembly (10, 110) of claim 5, wherein at least part of the elongated pressure port (26, 126) is tubular in shape.
     
    7. The pressure sensor assembly (10, 110) of claim 1, wherein the mounting side (22, 122) of the pressure port housing (20, 120) is open to allow the pressure sensing die (12, 112) to be inserted and secured to an inside surface of the pressure port housing (20, 120).
     
    8. The pressure sensor assembly (10, 110) of claim 7, wherein the pressure sensing die (12, 112) is secured to an inside surface of the sensing side of the pressure port housing (20, 120).
     
    9. The pressure sensor assembly (10, 110) of claim 7, wherein:
    the pressure port housing (20, 120) includes side walls (128) that extend from the sensing side of the pressure port housing (120) to the mounting side.
     
    10. A method of using a pressure sensor assembly (10, 110), comprising:

    providing the pressure sensor assembly (10, 110) comprising:

    a pressure port housing (20, 120) including a sensing side (24, 124) and a mounting side (22, 122), wherein the sensing side (24, 124) includes a pressure port (26, 126) extending through the sensing side (24, 124) of the pressure port housing (20, 120);

    the pressure port housing (20, 120) further including a pressure sensing die cavity (34, 134);

    a pressure sensing die (12, 112) having a first side (16, 116) and an opposite second side (14, 114), the pressure sensing die (12, 112) situated in the pressure sensing die cavity (34, 134) with the first side (16, 116) secured to the sensing side (24, 124) of the pressure port housing (20, 120), the pressure sensing die (12, 112) having a pressure sensing diaphragm (18, 118) exposed to the pressure port (26, 126); and

    the second side (14, 114) of the pressure sensing die (12, 112) facing away from the sensing side (24, 124) of the pressure port housing (20, 120) and toward the mounting side (22, 122) with two or more electrical bond pads (130) of the pressure sensor die (12, 112) extending out past the mounting side (22, 122) and accessible from outside of the pressure port housing (20, 120) such that the two or more electrical bond pads (30, 130) can be electrically and physically connected directly to two or more corresponding bond pads on another substrate.

    flexing the pressure sensing diaphragm (18, 118) in response to a pressure differential between the first side (16, 116) and the second side (14, 114) of the pressure sensing diaphragm (18, 118);

    sensing a deflection of the pressure sensing diaphragm (18, 118) with one or more pressure sensing elements; and

    sensing the pressure differential between the first side (16, 116) and the second side (14, 114) of the pressure sensing diaphragm (18, 188) based on the sensing of the deflection.


     
    11. The method of claim 10, wherein the pressure sensing die (12, 112) is secured to the pressure port housing (20, 120) via an adhesive.
     
    12. The method of claim 10, wherein the pressure port (26, 126) is an elongated pressure port (26, 126) that extends from adjacent the first side (16, 116) of the pressure sensing die (12, 112) and away from the first side (16, 116) of the pressure sensing die (112).
     
    13. The method of claim 12, wherein at least part of the elongated pressure port (26, 126) is tubular in shape.
     
    14. The method of claim 10, wherein the mounting side (22, 122) of the pressure port housing (20, 120) is open to allow the pressure sensing die (12, 112) to be inserted and secured to an inside surface of the pressure port housing (20, 120).
     
    15. The method of claim 14, wherein the pressure sensing die (12, 112) is secured to an inside surface of the sensing side of the pressure port housing (20, 120).
     


    Ansprüche

    1. Druckmessanordnung (10, 110), umfassend:

    ein Druckanschlussgehäuse (20, 120), das eine Messseite (24, 124) und eine Montageseite (22, 122) umfasst, wobei die Messseite (24, 124) einen Druckanschluss (26, 126) umfasst, der sich durch die Messseite (24, 124) des Druckanschlussgehäuses (20, 120) erstreckt;

    wobei das Druckanschlussgehäuse (20, 120) ferner einen Druckmesschip-Hohlraum (34, 134) umfasst;

    einen Druckmesschip (12, 112) mit einer ersten Seite (16, 116) und einer gegenüberliegenden zweiten Seite (14, 114), wobei der Druckmesschip (12, 112) im Druckmesschip-Hohlraum (34, 134) so angeordnet ist, dass die erste Seite (16, 116) an der Messseite (24, 124) des Druckanschlussgehäuses (20, 120) befestigt ist, wobei der Druckmesschip (12, 112) eine Druckmessmembran (18, 118) aufweist, die dem Druckanschluss (26, 126) ausgesetzt ist; und

    die zweite Seite (14, 114) des Druckmesschips (12, 112) von der Messseite (24, 124) des Druckanschlussgehäuses (20, 120) ab- und zur Montageseite (22, 122) hingewandt ist,

    dadurch gekennzeichnet, dass

    zwei oder mehr elektrische Bondkontaktstellen (130) des Drucksensorchips (12, 112) sich über die Montageseite (22, 122) hinaus erstrecken und von außerhalb des Druckanschlussgehäuses (20, 120) zugänglich sind, derart dass die zwei oder mehr elektrischen Bondkontaktstellen (30, 130) elektrisch und physisch direkt mit zwei oder mehr entsprechenden Bondkontaktstellen auf einem anderen Substrat verbunden werden können.


     
    2. Drucksensoranordnung (10, 110) nach Anspruch 1, ferner umfassend eine Dichtung (32, 132) zwischen der ersten Seite (16, 116) des Druckmesschips (112) und dem Druckanschlussgehäuse (120), wobei die Dichtung (32, 132) so ausgelegt ist, dass sie die Druckmessmembran (18, 118) des Druckmesschips (12, 112) dem Druckanschluss (26, 126) aussetzt, der in der Messseite (24, 124) des Druckanschlussgehäuses (120) definiert ist.
     
    3. Drucksensoranordnung (10, 110) nach Anspruch 1, wobei der Druckmesschip (12, 112) durch einen Kleber am Druckanschlussgehäuse (20, 120) befestigt ist.
     
    4. Drucksensoranordnung (10, 110) nach Anspruch 3, wobei der Kleber (32, 132) ein Raumtemperaturvulkanisations (RTV)-Silikonkleber ist.
     
    5. Drucksensoranordnung (10, 110) nach Anspruch 1, wobei der Druckanschluss (26, 126) ein länglicher Druckanschluss (26, 126) ist, der sich von benachbart zur ersten Seite (16, 116) des Druckmesschips (12, 112) und von der ersten Seite (16, 116) des Druckmesschips (112) weg erstreckt.
     
    6. Drucksensoranordnung (10, 110) nach Anspruch 5, wobei mindestens ein Teil des länglichen Druckanschlusses (26, 126) rohrförmig ist.
     
    7. Drucksensoranordnung (10, 110) nach Anspruch 1, wobei die Montageseite (22, 122) des Druckanschlussgehäuses (20, 120) offen ist, damit der Druckmesschip (12, 112) in eine Innenfläche des Druckanschlussgehäuses (20, 120) eingesetzt und daran befestigt werden kann.
     
    8. Drucksensoranordnung (10, 110) nach Anspruch 7, wobei der Druckmesschip (12, 112) an einer Innenfläche des Messseite des Druckanschlussgehäuses (20, 120) befestigt ist.
     
    9. Drucksensoranordnung (10, 110) nach Anspruch 7, wobei:
    das Druckanschlussgehäuse (20, 120) Seitenwände (128) umfasst, die sich von der Messseite des Druckanschlussgehäuses (120) zur Montageseite erstrecken.
     
    10. Verfahren zur Verwendung einer Drucksensoranordnung (10, 110), umfassend:

    Bereitstellen der Druckmessanordnung (10, 110), die umfasst:

    ein Druckanschlussgehäuse (20, 120), das eine Messseite (24, 124) und eine Montageseite (22, 122) umfasst, wobei die Messseite (24, 124) einen Druckanschluss (26, 126) umfasst, der sich durch die Messseite (24, 124) des Druckanschlussgehäuses (20, 120) erstreckt;

    wobei das Druckanschlussgehäuse (20, 120) ferner einen Druckmesschip-Hohlraum (34, 134) umfasst;

    einen Druckmesschip (12, 112) mit einer ersten Seite (16, 116) und einer gegenüberliegenden zweiten Seite (14, 114), wobei der Druckmesschip (12, 112) im Druckmesschip-Hohlraum (34, 134) so angeordnet ist, dass die erste Seite (16, 116) an der Messseite (24, 124) des Druckanschlussgehäuses (20, 120) befestigt ist, wobei der Druckmesschip (12, 112) eine Druckmessmembran (18, 118) aufweist, die dem Druckanschluss (26, 126) ausgesetzt ist; und

    die zweite Seite (14, 114) des Druckmesschips (12, 112) von der Messseite (24, 124) des Druckanschlussgehäuses (20, 120) ab- und zur Montageseite (22, 122) hingewandt ist, wobei zwei oder mehr elektrische Bondkontaktstellen (130) des Drucksensorchips (12, 112) sich über die Montageseite (22, 122) hinaus erstrecken und von außerhalb des Druckanschlussgehäuses (20, 120) zugänglich sind, derart dass die zwei oder mehr elektrischen Bondkontaktstellen (30, 130) elektrisch und physisch direkt mit zwei oder mehr entsprechenden Bondkontaktstellen auf einem anderen Substrat verbunden werden können;

    Biegen der Druckmessmembran (18, 118) in Reaktion auf einen Druckunterschied zwischen der ersten Seite (16, 116) und der zweiten Seite (14, 114) der Druckmessmembran (18, 118);

    Messen einer Durchbiegung der Druckmessmembran (18, 118) mit einem oder mehreren Druckmesselementen; und

    Messen des Druckunterschieds zwischen der ersten Seite (16, 116) und der zweiten Seite (14, 114) der Druckmessmembran (18, 188) basierend auf dem Messen der Durchbiegung.


     
    11. Verfahren nach Anspruch 10, wobei der Druckmesschip (12, 112) durch einen Kleber am Druckanschlussgehäuse (20, 120) befestigt wird.
     
    12. Verfahren nach Anspruch 10, wobei der Druckanschluss (26, 126) ein länglicher Druckanschluss (26, 126) ist, der sich von benachbart zur ersten Seite (16, 116) des Druckmesschips (12, 112) und von der ersten Seite (16, 116) des Druckmesschips (112) weg erstreckt.
     
    13. Verfahren nach Anspruch 12, wobei mindestens ein Teil des länglichen Druckanschlusses (26, 126) rohrförmig ist.
     
    14. Verfahren nach Anspruch 10, wobei die Montageseite (22, 122) des Druckanschlussgehäuses (20, 120) offen ist, damit der Druckmesschip (12, 112) in eine Innenfläche des Druckanschlussgehäuses (20, 120) eingesetzt und daran befestigt werden kann.
     
    15. Verfahren nach Anspruch 14, wobei der Druckmesschip (12, 112) an einer Innenfläche des Messseite des Druckanschlussgehäuses (20, 120) befestigt wird.
     


    Revendications

    1. Ensemble capteur de pression (10, 110), comprenant :

    un boîtier d'orifice de pression (20, 120) comportant un côté détection (24, 124) et un côté montage (22, 122), le côté détection (24, 124) comportant un orifice de pression (26, 126) s'étendant à travers le côté détection (24, 124) du boîtier d'orifice de pression (20, 120) ;

    le boîtier d'orifice de pression (20, 120) comportant en outre une cavité à puce de détection de pression (34, 134) ;

    une puce de détection de pression (12, 112) présentant un premier côté (16, 116) et un second côté opposé (14, 114), la puce de détection de pression (12, 112) étant située dans la cavité à puce de détection de pression (34, 134) son premier côté (16, 116) fixé au côté détection (24, 124) du boîtier d'orifice de pression (20, 120), la puce de détection de pression (12, 112) présentant une membrane de détection de pression (18, 118) exposée à l'orifice de pression (26, 126) ; et

    le second côté (14, 114) de la puce de détection de pression (12, 112) faisant dos au côté détection (24, 124) du boîtier d'orifice de pression (20, 120) et face au côté montage (22, 122)

    caractérisé en ce que

    deux ou plusieurs plots de contact électrique (130) de la puce de capteur de pression (12, 112) s'étendent au-delà du côté montage (22, 122) et sont accessibles depuis l'extérieur du boîtier d'orifice de pression (20, 120) de telle sorte que les deux ou plusieurs plots de contact électrique (30, 130) puissent être connectés électriquement et physiquement directement à deux ou plusieurs plots de contact correspondants sur un autre substrat.


     
    2. Ensemble capteur de pression (10, 110) selon la revendication 1, comprenant en outre un joint étanche (32, 132) entre le premier côté (16, 116) de la puce de détection de pression (112) et le boîtier d'orifice de pression (120), le joint étanche (32, 132) étant configuré pour exposer la membrane de détection de pression (18, 118) de la puce de détection de pression (12, 112) à l'orifice de pression (26, 126) défini dans le côté détection (24, 124) du boîtier d'orifice de pression (120).
     
    3. Ensemble capteur de pression (10, 110) selon la revendication 1, dans lequel la puce de détection de pression (12, 112) est fixée au boîtier d'orifice de pression (20, 120) au moyen d'un adhésif.
     
    4. Ensemble capteur de pression (10, 110) selon la revendication 3, dans lequel l'adhésif (32, 132) est un adhésif de silicone à vulcanisation à température ambiante (RTV).
     
    5. Ensemble capteur de pression (10, 110) selon la revendication 1, dans lequel l'orifice de pression (26, 126) est un orifice de pression allongé (26, 126) partant d'une position adjacente au premier côté (16, 116) de la puce de détection de pression (12, 112) et s'écartant du premier côté (16, 116) de la puce de détection de pression (112) .
     
    6. Ensemble capteur de pression (10, 110) selon la revendication 5, dans lequel au moins une partie de l'orifice de pression allongé (26, 126) est de forme tubulaire.
     
    7. Ensemble capteur de pression (10, 110) selon la revendication 1, dans lequel le côté montage (22, 122) du boîtier d'orifice de pression (20, 120) est ouvert pour permettre l'insertion de la puce de détection de pression (12, 112) et sa fixation à une surface intérieure du boîtier d'orifice de pression (20, 120).
     
    8. Ensemble capteur de pression (10, 110) selon la revendication 7, dans lequel la puce de détection de pression (12, 112) est fixée à une surface intérieure du côté détection du boîtier d'orifice de pression (20, 120) .
     
    9. Ensemble capteur de pression (10, 110) selon la revendication 7, dans lequel :
    le boîtier d'orifice de pression (20, 120) comporte des parois latérales (128) qui s'étendent depuis le côté détection du boîtier d'orifice de pression (120) jusqu'au côté montage.
     
    10. Procédé d'utilisation d'un ensemble capteur de pression (10, 110), comprenant :

    la fourniture d'un ensemble capteur de pression (10, 110) comprenant :

    un boîtier d'orifice de pression (20, 120) comportant un côté détection (24, 124) et un côté montage (22, 122), le côté détection (24, 124) comportant un orifice de pression (26, 126) s'étendant à travers le côté détection (24, 124) du boîtier d'orifice de pression (20, 120) ;

    le boîtier d'orifice de pression (20, 120) comportant en outre une cavité à puce de détection de pression (34, 134) ;

    une puce de détection de pression (12, 112) présentant un premier côté (16, 116) et un second côté opposé (14, 114), la puce de détection de pression (12, 112) étant située dans la cavité à puce de détection de pression (34, 134) son premier côté (16, 116) fixé au côté détection (24, 124) du boîtier d'orifice de pression (20, 120), la puce de détection de pression (12, 112) présentant une membrane de détection de pression (18, 118) exposée à l'orifice de pression (26, 126) ; et

    le second côté (14, 114) de la puce de détection de pression (12, 112) fait dos au côté détection (24, 124) du boîtier d'orifice de pression (20, 120) et face au côté montage (22, 122), deux ou plusieurs plots de contact électrique (130) de la puce de capteur de pression (12, 112) s'étendant au-delà du côté montage (22, 122) et étant accessibles depuis l'extérieur du boîtier d'orifice de pression (20, 120) de telle sorte que les deux ou plusieurs plots de contact électrique (30, 130) puissent être connectés électriquement et physiquement directement à deux ou plusieurs plots de contact correspondants sur un autre substrat,

    la flexion de la membrane de détection de pression (18, 118) en réponse à un différentiel de pression entre le premier côté (16, 116) et le second côté (14, 114) de la membrane de détection de pression (18, 118) ;

    la détection d'une déflexion de la membrane de détection de pression (18, 118) avec un ou plusieurs éléments de détection de pression ; et

    la détection du différentiel de pression entre le premier côté (16, 116) et le second côté (14, 114) de la membrane de détection de pression (18, 188) en fonction de la détection de la déflexion.


     
    11. Procédé selon la revendication 10, dans lequel la puce de détection de pression (12, 112) est fixée au boîtier d'orifice de pression (20, 120) au moyen d'un adhésif.
     
    12. Procédé selon la revendication 10, dans lequel l'orifice de pression (26, 126) est un orifice de pression allongé (26, 126) partant d'une position adjacente au premier côté (16, 116) de la puce de détection de pression (12, 112) et s'écartant du premier côté (16, 116) de la puce de détection de pression (112).
     
    13. Procédé selon la revendication 12, dans lequel au moins une partie de l'orifice de pression allongé (26, 126) est de forme tubulaire.
     
    14. Procédé selon la revendication 10, dans lequel le côté montage (22, 122) du boîtier d'orifice de pression (20,120) est ouvert pour permettre l'insertion de la puce de détection de pression (12, 112) et sa fixation à une surface intérieure du boîtier d'orifice de pression (20, 120) .
     
    15. Procédé selon la revendication 14, dans lequel la puce de détection de pression (12, 112) est fixée à une surface intérieure du côté détection du boîtier d'orifice de pression (20, 120).
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description