(19)
(11)EP 2 478 589 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 10817460.8

(22)Date of filing:  17.09.2010
(51)International Patent Classification (IPC): 
H01Q 9/14(2006.01)
H01Q 9/04(2006.01)
H01Q 5/371(2015.01)
(86)International application number:
PCT/KR2010/006451
(87)International publication number:
WO 2011/034391 (24.03.2011 Gazette  2011/12)

(54)

MULTI-BAND ANTENNA AND APPARATUS AND METHOD FOR ADJUSTING OPERATING FREQUENCY OF THE MULTI-BAND ANTENNA IN A WIRELESS COMMUNICATION SYSTEM

MEHRBANDANTENNE SOWIE VORRICHTUNG UND VERFAHREN ZUR EINSTELLUNG DER BETRIEBSFREQUENZ DER MEHRBANDANTENNE IN EINEM DRAHTLOSEN KOMMUNIKATIONSSYSTEM

ANTENNE MULTI-BANDE ET APPAREIL ET PROCÉDÉ D'AJUSTEMENT DE LA FRÉQUENCE OPÉRATIONNELLE DE L'ANTENNE MULTI-BANDE DANS UN SYSTÈME DE COMMUNICATION SANS FIL


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 17.09.2009 KR 20090088095

(43)Date of publication of application:
25.07.2012 Bulletin 2012/30

(73)Proprietor: Samsung Electronics Co., Ltd.
Suwon-si, Gyeonggi-do, 443-742 (KR)

(72)Inventors:
  • KWAK, Yong-Soo
    Suwon-si Gyeonggi-do 441-885 (KR)
  • BYUN, Joon-Ho
    Yongin-si Gyeonggi-do 448-130 (KR)
  • JEONG, Seong-Tae
    Yongin-si Gyeonggi-do 446-707 (KR)
  • CHO, Bum-Jin
    Hwaseong-si Gyeonggi-do 445-170 (KR)
  • HWANG, Soon-Ho
    Seoul 135-280 (KR)
  • KIM, Austin
    Seongnam-si Gyeonggi-do 463-863 (KR)
  • JO, Jae-Hoon
    Seoul 100-835 (KR)
  • KIM, Jae-Hyung
    Seoul 138-786 (KR)
  • SIN, A-Hyun
    Busan 617-776 (KR)

(74)Representative: HGF 
1 City Walk
Leeds LS11 9DX
Leeds LS11 9DX (GB)


(56)References cited: : 
EP-A1- 1 396 906
WO-A1-2009/052234
JP-A- 2002 261 533
US-A1- 2009 051 611
EP-A1- 2 048 739
JP-A- 2001 136 019
US-A1- 2003 142 022
US-A1- 2009 224 991
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention generally relates to a multi-band antenna. More particularly, the present invention relates to a multi-band antenna and an apparatus and method for adjusting the operating frequency of the multi-band antenna in a wireless communication system.

    Background Art



    [0002] As a variety of mobile communication services have recently been popular, more frequency bands need to be supported in a single terminal. 2.5thGeneration (2.5G) and 3rd Generation (3G) mobile communication systems deployed around the world use different frequency bands in different regions.

    [0003] Extensive research has been conducted on a portable terminal that can operate in mobile communication systems having different frequency bands. For example, the portable terminal may operate in low-band systems such as Global System for Mobile Communications 850 (GSM 850) and GSM 900 and in high-band systems such as Digital Cellular System (DCS), Personal Communication Services (PCS), and Universal Mobile Telecommunication System 2100 (UMTS 2100), as well. To implement the multi-band terminal, studies have been conducted on an antenna which can operate in multiple bands.

    [0004] Antennas used for conventional portable terminals include a monopole antenna, a loop antenna, an Inverted F-Antenna (IFA), and a Planar Inverted F-Antenna (PIFA). However, it is difficult to achieve broadband characteristics with these antennas because of a limited space for installing an antenna in a portable terminal.

    [0005] For example, when a terminal is to operate in low bands such as GSM 850 and GSM 900, a small size and a broad Fractional Bandwidth (FBW) are required for the terminal. Hence, the required bandwidth is hard to secure simply with use of a single antenna. To avert this problem, an IFA-based or PIFA-based switchable antenna has been proposed, which operates at an intended operating frequency by changing the distance between a shorting pin and a feed point through selection of one of shorting pins and thus controlling the impedance of the antenna.

    [0006] FIGs. 1 and 2 illustrate a conventional PIFA-based switchable antenna configured so as to operate in different frequency bands. Specifically, FIG. 1 is a perspective view of the conventional PIFA-based switchable antenna and FIG. 2 is a plan view of the conventional PIFA-based switchable antenna.

    [0007] FIGs. 1 and 2, the conventional PIFA-based switchable antenna is configured to include a plurality of shorting pins 101 such that its resonant frequency is changed by controlling its impedance. Specifically, the impedance of the conventional switchable antenna is controlled by selecting one of the shorting pins 101 through a switch 107 and thus adjusting the distance between the selected shorting pin 101 and a feeding point 103.

    [0008] FIGs. 3 to 6 illustrate operations of the conventional PIFA-based switchable antenna.

    [0009] FIGs. 3 and 4 illustrate the off and on states of the switch 107, respectively. FIG. 5 is a graph illustrating reflection coefficients S11 with respect to antenna frequencies in the operations of FIGs. 3 and 4, and FIG. 6 is a Smith chart illustrating impedances with respect to antenna frequencies in the operations of FIGs. 3 and 4.

    [0010] Referring to FIG. 3, since the switch 107 is off, a shorting pin 201 is not shorted to a ground plane 205. Thus, when power is supplied to the switchable antenna, current flows through a feed point 203. Referring to FIG. 4, the switch 107 switches the shorting pin 201 to the ground plane 205. Thus, when power is supplied to the antenna, current flows through the shorting pin 201. In both cases illustrated in FIGs. 3 and 4, as current flows through different shorting pins, the impedance of the switchable antenna is changed. Consequently, the resonant frequency of the switchable antenna may be changed.

    [0011] The reflection coefficients and impedances of the switchable antenna in the cases of FIGs. 3 and 4 are illustrated in FIGs. 5 and 6.

    [0012] Referring to FIG. 5, a dotted line 207 represents the reflection coefficients of the switchable antenna in the case of FIG. 3 and a solid line 209 represents the reflection coefficients of the switchable antenna in the case of FIG. 4. Each curve has two valleys and a frequency corresponding to the minimum reflection coefficient of each valley is an operating frequency of the switchable antenna. For example, on the curve 207, a frequency corresponding to the bottom of the left valley 211 is the low-band operating frequency of the switchable antenna (about 850MHz) and a frequency corresponding to the bottom of the right valley 213 is the high-band operating frequency of the switchable antenna (about 1760MHz). The same thing applies to the curve 209. However, it is noted from the curves 207 and 209 that there is little difference between the operating frequencies of the switchable antenna in the cases of FIGs. 3 and 4.

    [0013] Little difference between the operating frequencies in the two cases is also observed in FIG. 6. Impedance variations with respect to antenna frequencies in the operations of FIGs. 3 and 4 are illustrated on the Smith chart of FIG. 6. Reference numeral 215 denotes the impedance of the switchable antenna in FIG. 3 and reference numeral 217 denotes the impedance of the switchable antenna in FIG. 4. Reference numerals 219 and 221 denote impedance variations in low and high bands, respectively. The Smith chart reveals that there is little difference in the distances from the origin (i.e. locuses) regarding impedance variations. The distance from the origin of the Smith chart means the magnitude of impedance. Therefore, when it is said that there is almost no change in the impedance magnitude, this means that there is almost no change in the resonant frequency of the antenna. This result is attributed to the shunt L matching effect of the shorting pins as impedance matching. Due to the shunt L matching, although the phase of impedance may change greatly, a change in the magnitude of the impedance is relatively small.

    [0014] WO2009052234 A1 discloses a variable frequency patch antenna system comprising a patch antenna having a patch spatially separated from a ground plane; a plurality of pins interposed between the patch and the ground plane selectively connecting the patch to the ground plane; and a control module operably coupled to the plurality of pins and operable to set an operating frequency characteristic of the patch antenna by selectively connecting the patch to the ground plane with one or more of the plurality of pins.

    [0015] EP2048739 A1 discloses an antenna device and radio communication device capable of achieving multiple resonances and wideband characteristics and also an improvement of antenna efficiency and accurate matching at resonant frequencies.

    Disclosure of Invention


    Technical Problem



    [0016] As described above, the conventional method of adjusting the distance between a feed point and a shorting pin to implement a multi-band antenna does not change the resonant frequency of an antenna significantly. Therefore, the conventional method has limitations in its effectiveness in implementing a multi-band antenna in a portable terminal.

    [0017] This problem is conspicuous especially in low band. Since a high-band antenna is short in length, it is not difficult to implement a multi-band antenna that operates in different high bands in a portable terminal. However, a low-band antenna is long relative to an antenna installation area available in a portable terminal. Hence, it is difficult to realize an antenna that can operate simultaneously in different low bands.

    Solution to Problem



    [0018] An aspect of exemplary embodiments of the present invention is to address at least the problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an aspect of exemplary embodiments of the present invention is to provide a multi-band antenna in a wireless communication system.

    [0019] Another aspect of exemplary embodiments of the present invention is to provide an apparatus and method for adjusting the operating frequency of a multi-band antenna in a wireless communication system.

    [0020] Another aspect of exemplary embodiments of the present invention is to provide a multi-band antenna that operates in low bands in a portable terminal.

    [0021] A further aspect of exemplary embodiments of the present invention is to provide an apparatus and method for adjusting the operating frequency of a multi-band antenna that operates in low bands in a portable terminal.

    [0022] In accordance with an aspect of exemplary embodiments of the present invention, there is provided a multi-band antenna as defined in claim 1 of the appended claim,s. The multi-band antenna may further include a controller for controlling the switch to select one of the shorting pins according to an operating frequency of the multi-band antenna. The multi-band antenna may be one of an Inverted F-Antenna (IFA) and a Planar Inverted F-Antenna (PIFA).

    [0023] In accordance with another aspect of exemplary embodiments of the present invention, there is provided a method for controlling an operating frequency of a multi-band antenna as defined in claim 6 of the appended claims. The multi-band antenna may be one of an IFA and a PIFA.

    Advantageous Effects of Invention



    [0024] As is apparent from the above description of the present invention, the amount of coupling between a radiation patch and a shorting pin or between a ground and a shorting pin is controlled by selecting one of a plurality of shorting pins having different paths and connecting the selected shorting pin to a switch, in an antenna. Thus the resonant frequency of the antenna is changed greatly. Consequently, a portable terminal having a small antenna installation space can operate in multiple bands.

    Brief Description of Drawings



    [0025] The above and other objects, features and advantages of certain exemplary embodiments of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:

    FIGs. 1 and 2 illustrate a conventional PIFA-based switchable antenna that can switch to different frequency bands;

    FIGs. 3 to 6 illustrate exemplary operations of the conventional PIFA-based switchable antenna;

    FIGs. 7, 8 and 9 illustrate exemplary embodiments based on the basic principle of the present invention;

    FIGs. 10 to 13 illustrate the structures of switchable antennas according to exemplary embodiments of the present invention;

    FIG. 14 illustrates an apparatus for adjusting the operating frequency of a switchable antenna according to an exemplary embodiment of the present invention;

    FIG. 15 is a graph illustrating a change in the resonant frequency of the antennas illustrated in FIGs. 10 to 13;

    FIGs. 16 and 17 illustrate a real structure of a switchable antenna according to an exemplary embodiment of the present invention;

    FIG. 18 is a graph illustrating reflection coefficients with respect to frequencies of the antenna illustrated in FIGs. 16 and 17; and

    FIG. 19 illustrates a method for adjusting the operating frequency of an antenna according to an exemplary embodiment of the present invention.



    [0026] Throughout the drawings, the same drawing reference numerals will be understood to refer to the same elements, features and structures.

    Mode for the Invention



    [0027] The matters defined in the description such as a detailed construction and elements are provided to assist in a comprehensive understanding of exemplary embodiments of the invention. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the invention. Also, descriptions of well-known functions and constructions are omitted for clarity and conciseness.

    [0028] Before describing the present invention in detail, the basic principle of the present invention will first be described in brief.

    [0029] The operating frequency of an antenna is changed by adjusting the amount of coupling between a radiation patch and a shorting pin through control of the distance between the radiation patch and the shorting pin or the distance between a ground and the shorting pin in the antenna. Specifically, in an antenna of an IFA or PIFA configuration including a plurality of shorting pins, a radiation patch of the antenna is connected to one of the shorting pins, thereby changing the impedance of the antenna according to the amount of coupling between the shorting pin and the radiation patch. Consequently, the resonant frequency of the antenna is controlled to thereby operate the antenna in an intended frequency band.

    [0030] FIGs. 7, 8 and 9 illustrate exemplary embodiments based on the basic principle of the present invention.

    [0031] Specifically, FIG. 7 illustrates an antenna structure having a large amount of coupling according to an exemplary embodiment of the present invention, FIG. 8 illustrates an antenna structure having a small amount of coupling according to an exemplary embodiment of the present invention, and FIG. 9 is a graph illustrating reflection coefficients S11 with respect to frequencies of the antenna structures illustrated in FIGs. 7 and 8.

    [0032] Referring to FIGs. 7 and 8, shorting pins 303 and 305 are of the same length within a housing 311. However, the shorting pin 303 is nearer to a radiation patch 301 than the shorting pin 305. Therefore, a much larger amount of coupling occurs in the antenna structure of FIG. 7 than in the antenna structure of FIG. 8. This is because as a shorting pin is nearer to a radiation patch, coupling increases in amount and thus impedance changes more greatly.

    [0033] Referring to FIG. 9, a solid line 307 denotes reflection coefficients of the antenna structure illustrated in FIG. 8 and a dotted line 309 denotes reflection coefficients of the antenna structure illustrated in FIG. 7. A comparison between the curves 307 and 309 reveals that the antenna structures of FIGs. 7 and 8 have very different frequencies corresponding to minimum reflection coefficients, that is, very different operating frequencies, especially in the vicinity of a low frequency band.

    [0034] The antenna structure of FIG. 7 experiences a large amount of coupling because the distance between the radiation patch 301 and the shorting pin 303 is small. Therefore, the resonant frequency of the antenna structure illustrated in FIG. 7 is lower than that of the antenna structure illustrated in FIG. 8, in the low frequency band. The antenna structure of FIG. 8 experiences a small amount of coupling because the distance between the radiation patch 301 and the shorting pin 305 is large. Therefore, the antenna structure illustrated in FIG. 8 resonates at a relatively high frequency in the low frequency band.

    [0035] FIGs. 10 to 13 illustrate the structures of switchable antennas according to exemplary embodiments of the present invention.

    [0036] The switchable antennas illustrated in FIGs. 10 to 13 are merely exemplary applications given for illustrative purposes, to which the present invention is not limited. Thus, modifications can be made to the switchable antennas based on the basic principle of the present invention.

    [0037] In FIGs. 10 to 13, reference character F denotes a feed point, reference character G denotes a ground, and reference characters a and b denote shorting pins. While two shorting pins are shown for the convenience s sake of description, three or more shorting pins may be used depending on an antenna design.

    [0038] Referring to FIG. 10, the shorting pins a and b are connected to the ground G and a switch 402a is connected to a radiation patch 401. The switch 402a may switch one of the shorting pins a and b to the radiation patch according to an intended frequency band for the switchable antenna. Thus the resonant frequency of the switchable antenna can be changed to a target frequency.

    [0039] Referring to FIG. 11, the shorting pins a and b are connected to the radiation patch 401 and a switch 402b is connected to the ground G.

    [0040] Referring to FIG. 12, the shorting pins a and b are connected to the radiation patch 401 and a switch 402c is connected to the ground G.

    [0041] Referring to FIG. 13, the shorting pins a and b are connected to the ground G and a switch 402d is connected to the radiation patch 401.

    [0042] FIG. 14 illustrates an apparatus for adjusting the operating frequency of an antenna according to an exemplary embodiment of the present invention.

    [0043] The apparatus illustrated in FIG. 14 is shown as controlling the operating frequency of the antenna illustrated in FIG. 10. That is, a controller 403 is added in connection to the switch 402a in the antenna of FIG. 10. The controller 403 controls the switch 402a to switch to the shorting pin a or b according to a target operating frequency for the antenna so that the antenna has an impedance corresponding to the target operating frequency. Needless to say, an operating frequency adjusting apparatus similar to that illustrated in FIG. 14 may be designed based on either of the antenna structures illustrated in FIGs. 11, 12 and 13.

    [0044] FIG. 15 is a graph illustrating a change in the resonant frequency of the antennas illustrated in FIGs. 10 to 13.

    [0045] Referring to FIG. 15, the graph illustrates resonant frequencies in both cases where each of the switches 402a to 402d switches to the shorting pins a and b in the antennas illustrated in FIGs. 10 to 13. If the switch is connected to the shorting pin a, a large amount of coupling occurs. Therefore, the antenna resonates at a low frequency in a low band. On the other hand, if the switch is connected to the shorting pin b, a small amount of coupling occurs. Therefore, the antenna resonates at a high frequency in the low band.

    [0046] FIGs. 16 and 17 illustrate an actual structure of a switchable antenna according to an exemplary embodiment of the present invention, and FIG. 18 is a graph illustrating reflection coefficients with respect to frequencies of the switchable antenna that operate as illustrated in FIGs. 16 and 17.

    [0047] Referring to FIGs. 16 and 17, the switchable antenna is configured so as to include two shorting pins, by way of example. The antenna experiences a large amount of coupling as current flows through an upper shorting pin, as indicated by reference numeral 501 and the antenna experiences a small amount of coupling as current flows through a lower shorting pin, as indicated by reference numeral 503.

    [0048] Referring to FIG. 18, a dotted line 505 denotes reflection coefficients of the antenna when current flows through the upper shorting pin as illustrated in FIG. 16, and a solid line 507 denotes reflection coefficients of the antenna when current flows through the lower shorting pin as illustrated in FIG. 17. As described above, the antenna experiences more coupling in the state of FIG. 16 than in the state of FIG. 17. Therefore, the antenna resonates at a lower frequency in a low band in FIG. 16 than in FIG. 17.

    [0049] FIG. 19 is a flowchart illustrating a method for adjusting the operating frequency of an antenna according to an exemplary embodiment of the present invention.

    [0050] Referring to FIG. 19, the controller 403 selects one of the plurality of shorting pins according to a target operating frequency for the antenna in step 701. In step 703, the controller 403 controls the switch to connect the selected shorting pin to the radiation patch. As the switch switches the selected shorting pin to the radiation patch, coupling occurs between the shorting pin and the radiation patch in step 705.

    [0051] It has been described above that to implement a multi-band antenna, the amount of coupling is controlled by changing the distance between a radiation patch and a shorting pin in the antenna, to thereby operate the antenna in a target operating frequency according to an exemplary embodiment of the present invention.

    [0052] A modification can be made to the present invention such that the amount of coupling is controlled by changing the distance between a ground and a shorting pin in an antenna. In this case, since the amount of coupling is determined by the distance between the ground plane and the shorting pin, the antenna may be configured so that shorting pins are provided relatively near to the ground plane.

    [0053] The present invention is applicable to both high and low frequency bands in a wireless communication system. For operation in a high frequency band, a small-size antenna is needed. Hence, a multi-band antenna for a high frequency band can be implemented in a portable terminal without using the switchable antenna of the present invention. On the other hand, since a relatively large antenna is required for operation in a low frequency band, using the switchable antenna of the present invention will be efficient.


    Claims

    1. A multi-band antenna (105) for a wireless communication system, said antenna (105) comprising a radiation patch (301, 401);
    a plurality of shorting pins (101, 201 303, 305, 501, 503) configured to be spaced from the radiation patch (301, 401) by different distances; and
    a switch (107, 402) configured to connect one of the plurality of shorting pins (101, 201, 303, 305, 501, 503) to the radiation patch (301, 401),
    wherein a first spaced distance between a first shorting pin (303) and the radiation patch (301, 401) is shorter than a second spaced distance between a second shorting pin (305) and the radiation patch (301, 401),
    wherein the first shorting pin (303) and the second shorting pin (305) are included in the plurality of shorting pins (101, 201, 303, 305, 501, 503), and
    wherein a first resonant frequency formed based on the first spaced distance is included in a lower band than a second resonant frequency formed based on the second spaced distance.
     
    2. The multi-band antenna (105) of claim 1, further comprising a controller (403) configured to control the switch (107, 402) to select one of the plurality of shorting pins (101, 201, 303, 305, 501, 503) according to an operating frequency of the multi-band antenna (105).
     
    3. The multi-band antenna (105) of claim 1, wherein the multi-band antenna (105) is one of an Inverted F-Antenna, IFA, and a Planar Inverted F-Antenna, PIFA.
     
    4. The multi-band antenna (105) of claim 1, wherein the first shorting pin (303) and the second shorting pin (305) are placed in parallel with the radiation patch (305, 503).
     
    5. The multi-band antenna (105) of claim 1, wherein the first shorting pin (303) and the second shorting pin (305) have the same length.
     
    6. A method for controlling an operating frequency, in a wireless communication system, of a multi-band antenna (105) having a radiation patch (301, 401) and a plurality of shorting pins (101, 201, 303, 305, 501, 503) spaced from the radiation patch (301, 401) by different distances, the method comprising: the steps of selecting one of the plurality of shorting pins (101, 201, 303, 305, 501, 503) according to an operating frequency of the multi-band antenna (105) by a controller (403); and
    connecting the selected shorting pin (101, 201, 303, 305, 501, 503) to the radiation patch (301, 401) by a switch (107, 402),
    wherein a first spaced distance between a first shorting pin (303) and the radiation patch (301, 401) is shorter than a second spaced distance between a second shorting pin (305) and the radiation patch (301, 401),
    wherein the first shorting pin (303) and the second shorting pin (305) are included in the plurality of shorting pins (101, 201, 303, 305, 501, 503), and
    wherein a first resonant frequency formed based on the first spaced distance is included in a lower band than a second resonant frequency formed based on the second spaced distance.
     
    7. The method of claim 6, wherein the multi-band antenna (105) is one of an Inverted F-Antenna, IFA, and a Planar Inverted F-Antenna, PIFA.
     
    8. The method of claim 6, wherein the first shorting pin (303) and the second shorting pin (305) are placed in parallel with the radiation patch (301, 401).
     
    9. The method of claim 6, wherein the first shorting pin (303) and the second shorting pin (305) have the same length.
     


    Ansprüche

    1. Mehrbandantenne (105) für ein drahtloses Kommunikationssystem, die Antenne (105) umfassend:

    ein Strahlungsbereich (301, 401);

    eine Vielzahl von Kurzschlussstiften (101, 201, 303, 305, 501, 503), die konfiguriert sind, um von dem Strahlungsbereich (301, 401) um verschiedene Abstände beabstandet zu sein; und

    einen Schalter (107, 402), der konfiguriert ist, um einen der Vielzahl von Kurzschlussstiften (101, 201, 303, 305, 501, 503) mit dem Strahlungsbereich (301, 401) zu verbinden,

    wobei ein erster beabstandeter Abstand zwischen einem ersten Kurzschlussstift (303) und dem Strahlungsbereich (301, 401) kürzer ist als ein zweiter beabstandeter Abstand zwischen einem zweiten Kurzschlussstift (305) und dem Strahlungsbereich (301, 401),

    wobei der erste Kurzschlussstift (303) und der zweite Kurzschlussstift (305) in der Vielzahl von Kurzschlussstiften (101, 201, 303, 305, 501, 503) beinhaltet sind, und

    wobei eine erste Resonanzfrequenz, die basierend auf dem ersten beabstandeten Abstand gebildet wird, in einem niedrigeren Band beinhaltet ist als eine zweite Resonanzfrequenz, die basierend auf dem zweiten beabstandeten Abstand gebildet wird.


     
    2. Mehrbandantenne (105) nach Anspruch 1, ferner umfassend eine Steuerung (403), die konfiguriert ist, um den Schalter (107, 402) zu steuern, um einen der Vielzahl von Kurzschlussstiften (101, 201, 303, 305, 501, 503) entsprechend einer Betriebsfrequenz der Mehrbandantenne (105) auszuwählen.
     
    3. Mehrbandantenne (105) nach Anspruch 1, wobei die Mehrbandantenne (105) eine von einer invertierten F-Antenne, IFA, und einer planaren invertierten F-Antenne, PIFA, ist.
     
    4. Mehrbandantenne (105) nach Anspruch 1, wobei der erste Kurzschlussstift (303) und der zweite Kurzschlussstift (305) parallel zu dem Strahlungsbereich (305, 503) angeordnet sind.
     
    5. Mehrbandantenne (105) nach Anspruch 1, wobei der erste Kurzschlussstift (303) und der zweite Kurzschlussstift (305) die gleiche Länge aufweisen.
     
    6. Verfahren zum Steuern einer Betriebsfrequenz, in einem drahtlosen Kommunikationssystem, einer Mehrbandantenne (105), die ein Strahlungsbereich (301, 401) und eine Vielzahl von Kurzschlussstiften (101, 201, 303, 305, 501, 503), die von dem Strahlungsbereich (301, 401) durch unterschiedliche Abstände beabstandet sind, aufweist, das Verfahren umfassend: die Schritte eines
    Auswählens eines der Vielzahl von Kurzschlussstiften (101, 201, 303, 305, 501, 503) gemäß einer Betriebsfrequenz der Mehrbandantenne (105) durch eine Steuerung (403); und
    Verbinden des ausgewählten Kurzschlussstifts (101, 201, 303, 305, 501, 503) mit dem Strahlungsbereich (301, 401) durch einen Schalter (107, 402),
    wobei ein erster beabstandeter Abstand zwischen einem ersten Kurzschlussstift (303) und dem Strahlungsbereich (301, 401) kürzer ist als ein zweiter beabstandeter Abstand zwischen einem zweiten Kurzschlussstift (305) und dem Strahlungsbereich (301, 401),
    wobei der erste Kurzschlussstift (303) und der zweite Kurzschlussstift (305) in der Vielzahl von Kurzschlussstiften (101, 201, 303, 305, 501, 503) beinhaltet sind, und
    wobei eine erste Resonanzfrequenz, die basierend auf dem ersten beabstandeten Abstand gebildet wird, in einem niedrigeren Band beinhaltet ist als eine zweite Resonanzfrequenz, die basierend auf dem zweiten beabstandeten Abstand gebildet wird.
     
    7. Verfahren nach Anspruch 6, wobei die Mehrbandantenne (105) eine von einer invertierten F-Antenne, IFA, oder eine von einer planaren invertierten F-Antenne, PIFA, ist.
     
    8. Verfahren nach Anspruch 6, wobei der erste Kurzschlussstift (303) und der zweite Kurzschlussstift (305) parallel zu dem Strahlungsbereich (301, 401) angeordnet sind.
     
    9. Verfahren nach Anspruch 6, wobei der erste Kurzschlussstift (303) und der zweite Kurzschlussstift (305) die gleiche Länge aufweisen.
     


    Revendications

    1. Antenne multibande (105) pour un système de communication sans fil, ladite antenne (105) comprenant
    une plaque de rayonnement (301, 401) ;
    une pluralité de broches de court-circuit (101, 201, 303, 305, 501, 503) conçues pour être espacées de la plaque de rayonnement (301, 401) de différentes distances ; et
    un commutateur (107, 402) conçu pour connecter l'une de la pluralité de broches de court-circuit (101, 201, 303, 305, 501, 503) à la plaque de rayonnement (301, 401), une première distance espacée entre une première broche de court-circuit (303) et la plaque de rayonnement (301, 401) étant plus courte qu'une seconde distance espacée entre une seconde broche de court-circuit (305) et la plaque de rayonnement (301, 401), ladite première broche de court-circuit (303) et ladite seconde broche de court-circuit (305) étant comprises dans la pluralité de broches de court-circuit (101, 201, 303, 305, 501, 503), et une première fréquence de résonance formée sur la base de la première distance espacée étant comprise dans une bande plus basse qu'une seconde fréquence de résonance formée sur la base de la seconde distance espacée.
     
    2. Antenne multibande (105) selon la revendication 1, comprenant en outre un dispositif de commande (403) conçu pour commander le commutateur (107, 402) pour sélectionner l'une de la pluralité de broches de court-circuit (101, 201, 303, 305, 501, 503) selon une fréquence de fonctionnement de l'antenne multibande (105).
     
    3. Antenne multibande (105) selon la revendication 1, ladite antenne multibande (105) étant l'une d'une antenne F inversée (IFA) et d'une antenne F inversée planaire (PIFA).
     
    4. Antenne multibande (105) selon la revendication 1, ladite première broche de court-circuit (303) et ladite seconde broche de court-circuit (305) étant placées en parallèle avec la plaque de rayonnement (305, 503).
     
    5. Antenne multibande (105) selon la revendication 1, ladite première broche de court-circuit (303) et ladite seconde broche de court-circuit (305) possédant la même longueur.
     
    6. Procédé permettant la commande d'une fréquence de fonctionnement, dans un système de communication sans fil, d'une antenne multibande (105) possédant une plaque de rayonnement (301, 401) et une pluralité de broches de court-circuit (101, 201, 303, 305, 501, 503) espacées de la plaque de rayonnement (301, 401) de différentes distances, le procédé comprenant : les étapes de sélection de l'une de la pluralité de broches de court-circuit (101, 201, 303, 305, 501, 503) selon une fréquence de fonctionnement de l'antenne multibande (105) par un dispositif de commande (403) ; et
    la connexion de la broche de court-circuit sélectionnée (101, 201, 303, 305, 501, 503) à la plaque de rayonnement (301, 401) par un commutateur (107, 402), une première distance espacée entre une première broche de court-circuit (303) et la plaque de rayonnement (301, 401) étant plus courte qu'une seconde distance espacée entre une seconde broche de court-circuit (305) et la plaque de rayonnement (301, 401), ladite première broche de court-circuit (303) et ladite seconde broche de court-circuit (305) étant comprises dans la pluralité de broches de court-circuit (101, 201, 303, 305, 501, 503), et une première fréquence de résonance formée sur la base de la première distance espacée étant comprise dans une bande plus basse qu'une seconde fréquence de résonance formée sur la base de la seconde distance espacée.
     
    7. Procédé selon la revendication 6, ladite antenne multibande (105) étant l'une d'une antenne F inversée (IFA) et d'une antenne F inversée planaire (PIFA).
     
    8. Procédé selon la revendication 6, ladite première broche de court-circuit (303) et ladite seconde broche de court-circuit (305) étant placées en parallèle avec la plaque de rayonnement (301, 401).
     
    9. Procédé selon la revendication 6, ladite première broche de court-circuit (303) et ladite seconde broche de court-circuit (305) possédant la même longueur.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description