(19)
(11)EP 2 481 077 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.04.2019 Bulletin 2019/14

(21)Application number: 10757464.2

(22)Date of filing:  13.09.2010
(51)Int. Cl.: 
H01J 49/24  (2006.01)
F04D 19/04  (2006.01)
(86)International application number:
PCT/GB2010/051528
(87)International publication number:
WO 2011/036472 (31.03.2011 Gazette  2011/13)

(54)

MASS SPECTROMETER SYSTEM

MASSENSPEKTROMETERSYSTEM

SYSTÈME DE SPECTROMÈTRE DE MASSE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 24.09.2009 GB 0916797

(43)Date of publication of application:
01.08.2012 Bulletin 2012/31

(73)Proprietor: Edwards Limited
Burgess Hill West Sussex RH15 9TW (GB)

(72)Inventor:
  • STONES, Ian David
    Burgess Hill West Sussex RH15 9TT (GB)

(74)Representative: Norton, Ian Andrew et al
Edwards Limited Innovation Drive Burgess Hill
West Sussex RH15 9TW
West Sussex RH15 9TW (GB)


(56)References cited: : 
DE-A1-102007 010 068
GB-A- 2 455 977
US-A1- 2003 155 496
US-A1- 2007 258 836
US-A1- 2008 166 219
DE-A1-102007 027 352
JP-A- 2008 095 504
US-A1- 2007 148 020
US-A1- 2008 063 541
US-B1- 6 586 730
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a mass spectrometer system.

    [0002] A prior art mass spectrometer system is known for evacuating the stages of a mass spectrometer using a so-called split flow multi-stage pump. Such a pump may comprise a pump envelope in which a plurality of pumping stages are supported for rotation about an axis for pumping fluid from a main pump inlet to a main pump outlet. The main pump inlet is connected for evacuating a high vacuum stage. An inter-stage inlet is provided between pumping stages and is connected for evacuating a lower vacuum stage of the mass spectrometer.

    [0003] Typically, a split flow pump is orientated 'vertically' with its axis orthogonal to the flow direction from one stage to the next stage of a mass spectrometer. In this regard, the stages of a mass spectrometer comprise a respective plurality of vacuum chambers connected in series to allow flow from a low vacuum chamber to a high vacuum chamber. Each chamber comprises an instrument for processing a sample introduced to the mass spectrometer.

    [0004] This arrangement, in which more than one mass spectrometer stage at different pressures are evacuated by the same pump, offers advantages in terms of production cost, system size, maintenance and cost of ownership. However, the interstage inlet suffers from relatively low conductance and also the pump occupies a relatively large amount of space.

    [0005] More recently, a mass spectrometer system shown in Figure 3 has been provided. The mass spectrometer system 100 may, for example, comprise stages 101, 102, 103 of a mass spectrometer 104 evacuated using a split flow multi-stage pump 106. The pump 106 comprises a pump envelope 108 in which a plurality of pumping stages 109, 110, 111 are supported for rotation about an axis 112 for pumping fluid from a main pump inlet 114 to a main pump outlet 116.

    [0006] The envelope 108 forms a pump casing which structurally supports the pumping components of the pumping stages 109, 110, 111. The stator components may be fixed to and supported by the casing whilst the rotor components are fixed to and supported by a drive 112 which is itself supported by bearings (not shown) fixed to and supported by the casing.

    [0007] The main pump inlet 114 is connected for evacuating a high vacuum stage 103. An inter-stage inlet 118 is provided between pumping stages and is connected for evacuating a lower vacuum stage 102. The low vacuum stage, may, for example, be evacuated by a backing pump 120.

    [0008] In system 100, the split flow pump 106 is mounted with its axis X of rotation substantially parallel to the flow direction Y in the mass spectrometer. Such an arrangement can be utilised to increase conductance at the inter-stage inlet and reduce the height of the pump and instrument profile. However, in order to provide high pumping speed at the chamber 103, the inlet conductance between the chamber port 114 and the first pumping stage 109 must be relatively large. This is typically achieved by providing a relatively large space 122 in axial alignment with the pumping stage 109 and within the pumping envelope 108 (i.e. downstream of the main pump inlet 114 and upstream of the first pumping stage 109). In use, a pressure drop is generated between the main inlet 114 and the pumping stage 109 due to the flow of molecules and associated conductance of the port (sometimes referred to as pipe losses). Increasing the size of space 122 and decreasing a duct length minimises parasitic pressure drop between the main pump inlet 114 and the pumping stage 109 thereby maximising the pumping speed and minimising the pressure at the chamber.

    [0009] It is known from DE102007027352 and from DE102007010068 to provide a multistage split flow type vacuum pump to differentially pump mass spectrometer chambers.

    [0010] The present invention also provides a mass spectrometer according to Claim 1.

    [0011] Other preferred and/or optional aspects of the invention are defined in the accompanying claims.

    [0012] In order that the present invention may be well understood, two embodiments thereof, which are given by way of example only, will now be described with reference to the accompanying drawings, in which:

    Figure 1 shows a mass spectrometer system;

    Figure 2 shows another mass spectrometer system; and

    Figure 3 shows a prior art mass spectrometer system;



    [0013] Referring to Figure 1, a mass spectrometer system 10 is shown which comprises a mass spectrometer 12 and a split flow multi-stage pump 14. The mass spectrometer 12 comprising a plurality of mass spectrometer stages 16, 18, 20 in flow communication from a low vacuum stage 16 to a high vacuum stage 20. Flow from one stage to the next stage occurs generally in a direction to the right (as shown in the drawing) which is typically horizontal. The stages 16, 18, 20 comprise respective vacuum chambers 22, 24, 26.

    [0014] The split flow multi-stage pump 14 comprises a pump envelope 28 in which a plurality of pumping stages 30, 32, 34 are supported for rotation about an axis X, generally parallel to the direction of flow in the mass-spectrometer, for pumping fluid from a main pump inlet 36 to a main pump outlet 38. An inter-stage inlet 40 is provided between pumping stages and is connected for evacuating a lower vacuum stages 16, 18. In this embodiment, an inter-stage inlet is provided between pumping stages 32 and 34. An inter-stage inlet may also or alternatively be provided between pumping stages 30 and 32. The low vacuum stage 22 is as shown evacuated by a backing pump 42 which also backs the main pump outlet 38.

    [0015] The envelope 28 forms a pump casing which structurally supports the pumping components of the pumping stages 30, 32, 34. The stator components may be fixed to and supported by the casing whilst the rotor components are fixed to and supported by a drive 29 which is itself supported by bearings (not shown) fixed to and supported by the casing.

    [0016] The plurality of vacuum chambers 22, 24, 26 are differentially pumped by the vacuum pump 14 attached thereto and comprising two pump inlets 36, 40. The first pumping stage 34 exhausts to the second pumping stage 32 and the second pumping exhausts to the third pumping stage 30. The first pumping stage is connected through main pump inlet 36 to relatively high vacuum chamber 26 from which gas molecules can enter the pump through volume 44 from chamber 26 and pass through the first, second and third pumping stages towards the pump outlet 38. The second pumping stage is connected through inter-stage inlet 40 to a medium vacuum chamber 24 from which gas molecules can enter the pump through inter-stage inlet 40 and pass through the second and third pumping stages towards the pump outlet 38. The low vacuum chamber 22 may be evacuated by backing pump 42.

    [0017] In this embodiment, pumping stage 30 comprises a molecular drag mechanism and pumping stages 32 and 34 comprise turbo molecular pumping mechanisms.

    [0018] In order to maintain conductance at the main pump inlet a relatively large space 44 is provided in axial alignment with the pumping stage 34 and within the pumping envelope 28 (i.e. downstream of the main pump inlet 36 and upstream of the first pumping stage 34). Pumping stage 34 is the first or most upstream pumping stage. As indicated above with reference to the prior art, the space 44 allows the pumping stage 34 to work efficiently. The pressure in space 44 is lower than the pressure in chamber 26 immediately upstream of the main pump inlet because of the afore-mentioned conductance effects (pipe losses). In the prior art, there is a relatively large amount of redundant space in the pump which is simply required for porting the gas from the mass spectrometer into the vacuum pump. With the exception of providing reasonable conductance, this volume 122 serves no mechanical purpose and is therefore wasteful in terms of material costs, machining, instrument size and weight. Unlike the prior art, the present invention incorporates volume 44 into the mass spectrometer forming a high vacuum chamber in the pump envelope which in use is at higher vacuum than a chamber directly upstream thereof. Accordingly, an additional mass spectrometer stage is provided in the arrangement at high vacuum without increased overall size of the system.

    [0019] As described in more detail below, instrumentation 50 of the mass spectrometer is located at least partially and preferably fully within the volume 44 of the pump and in axial alignment with the first pumping stage 34. The term "axial alignment" as used herein is shown illustratively in Figures 1 and 2. In this regard, the outer radial extent of the first pumping stage is shown by broken lines and coincides with an inner surface of the pump envelope 28 housing the pumping mechanism of the first pumping stage. The mass spectrometer instrumentation 50, which may include analysers or optics, is axially aligned with the first pumping stage 34 in Figure 1 as it is located within the radial extent of the first pumping stage as shown by the double headed arrow 'A'.

    [0020] As shown in Figures 1 and 2, the mass spectrometer instrumentation is axially aligned with the first the pumping stage. Further, the axis of rotation X of the pumping stages is horizontal. Accordingly, the sample gas flow direction, or ion path, through the mass spectrometer stages turns through approximately 90° or more so that the ion path is located partially within the pump envelope.

    [0021] Mass spectrometer instruments 46, 48 are located in vacuum chambers 24, 26 and mass spectrometer instrument 50 is located in space 44 between the main pump inlet 36 and the first pumping stage 34.

    [0022] The arrangement makes effective use of the space and provides a higher level of pumping performance for the equipment at the reduced pressure directly in front of the blades of the first pumping stage. It is noted in this regard, that the pressure in vacuum chamber 26 is about 10-6 mbar whereas the pressure in volume 44 is about 10-7 mbar. The amount of improvement in performance is dependant upon the conductance of the pump and porting, however, it is typically in the order of 50%.

    [0023] Although, as shown in Figure 1, instrument 50 is located wholly within the pumping envelope and in axial alignment with the first pumping stage 34, only part of the instrument 50 may be located within the pumping envelope and in axial alignment with the first pumping stage 34. Accordingly, at least part of one of the mass spectrometer stages is located within the pump envelope at the main pump inlet or in axial alignment with the pumping stage 34.

    [0024] The instruments 46, 48, 50 are shown schematically, and may include various means for determining characteristics of a sample passing through the system. Sample ions are guided through the mass spectrometer (optics) towards equipment for analysing the ions (analyser). Both types of equipment (Optics and Analysers) may be incorporated in the embodiments described herein.

    [0025] A mass spectrometer 60 is shown in Figure 2 in which like reference numerals are used for like features shown in Figure 1. Mass spectrometer 60 comprises a time-of-flight (TOF) instrument 62 which extends from space 44 within the pump envelope 28 through the main pump inlet 36 to vacuum chamber 26 directly upstream of inlet 36. Accordingly, mass spectrometer stage 20 bridges chamber 26 and space 44 and therefore the instrument 62 (and stage 20) is partially in axial alignment with the first pumping stage and within the envelope 28. The TOF stage makes specific use of the pipe losses which occur between mass spectrometer chamber 26 and volume 44. As indicated above, the pressure in chamber 26 is about 10-6 and the pressure in volume 44 is about 10-7. Accordingly, the arrangement provides a natural pressure gradient that the TOF instrument can utilise.


    Claims

    1. A mass spectrometer system (10; 60) comprising: a mass spectrometer (12) comprising a plurality of differentially pumped mass spectrometer stages (16, 18, 20), said stages (16, 18, 20) comprising respective vacuum chambers (22, 24, 26), in gas communication from a low vacuum mass spectrometer (16) stage to a high vacuum mass spectrometer stage (20); and a multi-stage vacuum pump (14) configured to evacuate said mass spectrometer stages (16, 18, 20); the pump comprising:

    a pump envelope (28) attached to said plurality of vacuum chambers (22, 24, 26), in which a plurality of pumping stages (30, 32, 34), supported for rotation about an axis (X) generally parallel to the direction of flow in the mass spectrometer stages, are configured for pumping fluid from a main pump inlet (36) to a pump outlet (38); a first, pumping stage (34) being connected through the main pump inlet (36) to the high vacuum stage (20) from which, in use, gas molecules can enter the pump (14) from chamber (26) and pass through said pumping stages towards the pump outlet (38);

    wherein at least one stage (32, 34) of the pump (14), comprises a turbomolecular pumping mechanism; an interstage port (40) located between pumping stages (30, 32, 34) connected to a mass spectrometer stage (16, 18); and wherein an instrument (50; 62) for determining a characteristic of a mass spectrometer sample is at least partially located within the pump envelope (28) downstream of the main pump inlet (36) and upstream of the pumping mechanism of said first pumping stage (34), said instrument in axial alignment with the pumping stages (30, 32, 34), and wherein the pump envelope (28) downstream of the main pump inlet (36) and upstream of the pumping mechanism of said first pumping stage (34) forms part of a high vacuum chamber (44) which, in use, is at higher vacuum than a mass spectrometer chamber (26) attached directly upstream thereof.


     
    2. A mass spectrometer system as claimed in claim 1, wherein a spectrometer ion path is located partially within the pump envelope (28).
     
    3. A mass spectrometer system as claimed in any one of the preceding claims, wherein the axis of rotation (X) is generally horizontal.
     
    4. A mass spectrometer system as claimed in any one of the preceding claims, wherein a time-of-flight instrument (62) extends between the pump envelope (28) at the main inlet (36) and a chamber (26) directly upstream thereof.
     


    Ansprüche

    1. Massenspektrometersystem (10; 60) mit: einem Massenspektrometer (12), das eine Mehrzahl von differentiell ausgepumpten Massenspektrometerstufen (16, 18, 20) aufweist, wobei diese Stufen (16, 18, 20) jeweils Vakuumkammern (22, 24, 26) aufweisen, die in Gasströmungsverbindung von einer Niedervakuum-Massenspektrometerstufe (16) zu einer Hochvakuum-Massenspektrometerstufe (20) stehen, und einer mehrstufigen Vakuumpumpe (14), die zum Evakuieren der Massenspektrometerstufen (16, 18, 20) konfiguriert ist, wobei die Pumpe aufweist:
    eine Pumpenhülle (28), die an der Mehrzahl von Vakuumkammern (22, 24, 26) befestigt ist, in welcher eine Mehrzahl von Pumpenstufen (30, 32, 34), die um eine Achse (X) drehbar im allgemeinen parallel zur Strömungsrichtung der Massenspektrometer-stufen abgestützt sind, zum Pumpen von Strömungsmittel von einem Hauptpumpeneinlaß (36) zu einem Pumpenauslaß (38) konfiguriert sind, wobei eine erste Pumpenstufe (34) über den Hauptpumpeneinlaß (36) mit der Hochvakuumstufe (20) verbunden ist, von welcher im Betrieb Gasmoleküle aus der Kammer (26) in die Pumpe (14) eintreten und durch die Pumpenstufen zum Pumpenauslaß (38) hin gelangen können, wobei mindestens eine Stufe (32, 34) der Pumpe (14) einen Turbomolekularpumpen-mechanismus aufweist; eine Zwischenstufenöffnung (40), die zwischen den Pumpenstufen (30, 32, 34) gelegen und mit einer Massenspektrometerstufe (16, 18) verbunden ist; und wobei ein Instrument (50; 62) zum Bestimmen einer Charakteristik einer Massenspektrometerprobe mindestens teilweise innerhalb der Pumpenhülle (28) stromab des Hauptpumpeneinlasses (36) und stromauf des Pumpenmechanismus der ersten Pumpenstufe (34) angeordnet ist, wobei das Instrument mit den Pumpenstufen (30, 32, 34) axial fluchtend ist, und wobei die Pumpenhülle (28) stromab des Hauptpumpeneinlasses (36) und stromauf des Pumpenmechanismus der ersten Pumpenstufe (34) Teil einer Hochvakuumkammer (44) bildet, die im Betrieb unter höherem Vakuum als eine direkt stromauf davon befestigte Massenspektrometerkammer (26) liegt.
     
    2. Massenspektrometersystem nach Anspruch 1, wobei ein Spektrometer-Ionenpfad teilweise innerhalb der Pumpenhülle (28) gelegen ist.
     
    3. Massenspektrometersystem nach einem der vorhergehenden Ansprüche, wobei die Drehachse (X) etwa horizontal verläuft.
     
    4. Massenspektrometersystem nach einem der vorhergehenden Ansprüche, wobei ein Flugzeitinstrument (62) zwischen der Pumpenhülle (28) am Haupteinlaß (36) und einer direkt stromauf davon befindlichen Kammer (26) verläuft.
     


    Revendications

    1. Système de spectromètre de masse (10 ; 60) comprenant : un spectromètre de masse (12) comprenant une pluralité d'étages de spectromètre de masse pompés de façon différentielle (16, 18, 20), lesdits étages (16, 18, 20) comprenant des chambres à vide respectives (22, 24, 26), en communication gazeuse depuis un étage de spectromètre de masse à vide peu poussé (16) vers un étage de spectromètre de masse à vide poussé (20) ; et une pompe à vide multi-étagée (14) agencée pour évacuer lesdits étages de spectromètre de masse (16, 18, 20) ; la pompe comprenant :

    une enveloppe de pompe (28) attachée à ladite pluralité de chambres à vide (22, 24, 26), dans laquelle une pluralité d'étages de pompage (30, 32, 34), supportés pour tourner autour d'un axe (X) généralement parallèle au sens de circulation dans les étages de spectromètre de masse, sont agencés pour pomper du fluide depuis une entrée principale de la pompe (36) vers une sortie de la pompe (38) ; un premier étage de pompage (34) étant relié à travers l'entrée principale de la pompe (36) à l'étage à vide poussé (20) depuis lequel, en utilisation, des molécules gazeuses peuvent entrer dans la pompe (14) depuis la chambre (26) et passer à travers lesdits étages de pompage vers la sortie de la pompe (38) ;

    dans lequel au moins un étage (32, 34) de la pompe (14) comprend un mécanisme de pompage turbomoléculaire ; un orifice entre étages (40) situé entre les étages de pompage (30, 32, 34) relié à un étage de spectromètre de masse (16, 18) ; et dans lequel un instrument (50 ; 62) destiné à déterminer une caractéristique d'un échantillon de spectromètre de masse est au moins partiellement situé à l'intérieur de l'enveloppe de pompe (28) en aval de l'entrée principale de la pompe (36) et en amont du mécanisme de pompage dudit premier étage de pompage (34), ledit instrument étant en alignement axial avec les étages de pompage (30, 32, 34), et dans lequel l'enveloppe de pompe (28) en aval de l'entrée principale de la pompe (36) et en amont du mécanisme de pompage dudit premier étage de pompage (34) fait partie intégrante d'une chambre à vide poussé (44) qui, en utilisation, présente un vide plus poussé qu'une chambre de spectromètre de masse (26) attachée directement en amont de celle-ci.


     
    2. Système de spectromètre de masse selon la revendication 1, dans lequel un trajet d'ions de spectromètre est situé partiellement à l'intérieur de l'enveloppe de pompe (28).
     
    3. Système de spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel l'axe de rotation (X) est généralement horizontal.
     
    4. Système de spectromètre de masse selon l'une quelconque des revendications précédentes, dans lequel un instrument à temps de vol (62) s'étend entre l'enveloppe de pompe (28) au niveau de l'entrée principale (36) et une chambre (26) directement en amont de celle-ci.
     




    Drawing












    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description