(19)
(11)EP 2 483 697 B2

(12)NEW EUROPEAN PATENT SPECIFICATION
After opposition procedure

(45)Date of publication and mention of the opposition decision:
05.07.2017 Bulletin 2017/27

(45)Mention of the grant of the patent:
04.06.2014 Bulletin 2014/23

(21)Application number: 10819788.0

(22)Date of filing:  01.10.2010
(51)International Patent Classification (IPC): 
G01N 33/92(2006.01)
G01N 27/00(2006.01)
C40B 30/10(2006.01)
C40B 30/02(2006.01)
G01N 33/483(2006.01)
G01N 33/574(2006.01)
(86)International application number:
PCT/CA2010/001565
(87)International publication number:
WO 2011/038509 (07.04.2011 Gazette  2011/14)

(54)

METHOD TO DIAGNOSE PANCREATIC CANCER

METHODE ZUR DIAGNOSE BAUCHSPEICHELDRÜSENKREBS

MÉTHODE POUR DIAGNOSTIQUER LE CANCER DU PANCRÉAS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 01.10.2009 US 247828 P

(43)Date of publication of application:
08.08.2012 Bulletin 2012/32

(60)Divisional application:
14164872.5 / 2770328
16177004.5 / 3124980

(73)Proprietor: Phenomenome Discoveries Inc.
Saskatoon, Saskatchewan S7N 4L8 (CA)

(72)Inventors:
  • PASTURAL, Elodie
    Saskatoon, Saskatchewan S7N 4L8 (CA)
  • RITCHIE, Shawn
    Saskatoon, Saskatchewan S7V 1G6 (CA)

(74)Representative: D Young & Co LLP 
120 Holborn
London EC1N 2DY
London EC1N 2DY (GB)


(56)References cited: : 
WO-A1-2009//061404
CA-A1- 2 525 740
CA-A1- 2 676 109
WO-A1-2009//151967
CA-A1- 2 619 732
  
  • HSU F F ET AL: "Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: Mechanisms of fragmentation and structural characterization", JOURNAL OF CHROMATOGRAPHY B: BIOMEDICAL SCIENCES & APPLICATIONS, ELSEVIER, AMSTERDAM, NL, vol. 877, no. 26, 15 September 2009 (2009-09-15), pages 2673-2695, XP026422743, ISSN: 1570-0232 [retrieved on 2009-02-21]
  • D.E. MISEK ET AL.: "Early Detection and Biomarkers in Pancreatic cancer", JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, vol. 5, no. 10, 1 November 2007 (2007-11-01), pages 1034-1041, XP055053031, National Comprehensive Cancer Network, Fort Washington, PA 19034 USA
  • VALERIO ET AL: 'Serum protein profiles of patients with pancreatic cancer and chronic pancreatitis: searching for a diagnostic protein pattern' RAPID COMMUN. MASS SPECTROM. vol. 15, 2001, pages 2420 - 2425
  • BHATTACHARYYA ET AL: 'Diagnosis of pancreatic cancer using serum proteomic profiling' NEOPLASIA vol. 6, no. 5, September 2004 - October 2004, pages 674 - 686
  • HONDA ET AL: 'Possible detection of pancreatic cancer by plasma protein profiling' CANCER RES. vol. 65, 2005, pages 10613 - 10622
  • GE ET AL: 'Classification of premalignant pancreatic cancer mass-spectrometry data using decision tree ensembles' BMC BIOINFORMATICS vol. 9, 2008, pages 275 - 286
  • CONRADS ET AL: 'Cancer diagnosis using proteomic patterns' EXPERT REV. MOL. DIAGN. vol. 3, no. 4, 2003, pages 411 - 420
  • RAO ET AL: 'Lipid composition and 3-hydroxy-3-methylglutaryl-CoA reductase activity of acinar cell carcinoma of rat pancreas' BIOCHIMICA ET BIOPHYSICA ACTA vol. 759, 1983, pages 74 - 80
  • PAWA ET AL: 'Mass spectrometiy based proteomic profiling for pancreatic cancer' J. PANCREAS vol. 11, no. 5, 06 September 2010, pages 423 - 426
  • http://ieltd.com/Mass-Spectrometers/Quattro -Micro/
  • http:/www.uji.es/UK/serveis/iupa/larp/ins.h tm/
  • BERGER R. ET AL: 'Metabonomic models of human pancreatic cancer using ID proton NMR spectra of lipids in plasma' METABOLOMICS vol. 2, no. 3, March 2006, pages 125 - 134
  


Description

FIELD OF INVENTION



[0001] The present invention relates to biomarkers and methods of detecting the presence of pancreatic cancer. Change in said pancreatic cancer or risk of developing pancreatic cancer.

BACKGROUND OF THE INVENTION



[0002] The incidence of pancreatic cancer has increased during the past decades throughout the world, and ranks as the fourth and sixth leading causes of cancer in North America and the European Union respectively (1). This high rank is due to a very poor overall survival (OS) rate (less than 4%), which is illustrated by an annual incidence rate of pancreatic cancer almost identical to the mortality rate. In Canada for example, 3800 new cases were expected to be diagnosed in 2008 with 3700 anticipated deaths from this cancer.

[0003] Diagnosis is difficult because there are no noticeable symptoms in early stages, and signs are common with many other illnesses. Furthermore, pancreas location behind other organs renders its imaging more difficult. Diagnosis is usually performed when cancer has already disseminated to other organs. In combination with this late detection, pancreatic cancer displays a poor response to chemotherapy, radiation therapy, and surgery as conventionally used. For patients with advanced pancreatic cancer, the OS rate is less than 1% at five years, whereas for the rare patients diagnosed at an early stage, when surgery is possible, the after resection OS rate climbs to 20% (2). These numbers emphasize the need for an early detection and a new treatment concept of pancreatic cancer.

[0004] Current detection methods mostly rely on imaging and are summarized in Table 1.
Table 1. Current pancreatic cancer detection methods (adapted from cancer.gov)
Imaging Computed Tomography (CT) Scan
Ultrasonography Transabdominal Ultrasound
Endoscopic Ultrasound
Magnetic Resonance Imaging (MRI)
Endoscopic Retrograde Cholangiopancreatography
Percutaneous Transhepatic Cholangiography
Biopsies Fine-Needle Aspiration (FNA) Biopsy
Brush Biopsy
Laparoscopy
Lab tests Bilirubin and other substances


[0005] The most sensitive and specific screening tool currently available seems to be the endoscopic ultrasound (3, 4), but its invasive features restrict its use to the screening of high risk populations, namely kindred with minimum two affected first-degree relatives or with known hereditary pancreatic cancer. Another inconvenience of endoscopic ultrasound is that its use is recommended to be associated to other methods such as computed tomography and endoscopic retrograde cholangiopancreatography (5). Diagnosis is confirmed exclusively on analysis of a biopsy. Thus, in addition to being invasive, this multi-step detection and diagnosis process only establishes the presence of an already developed tumor and does not identify risks of developing cancer.

[0006] New technologies such as genomics, proteomics, metabolomics and glycomics, have been used in the search for blood-based tumor markers, and have identified glycoproteins, more specifically highly glycosylated mucins, as main tumor markers in all kinds of cancer (6). Among these highly glycosylated mucins, which can be detected by specific monoclonal antibodies, the Cancer Antigen 19-9 (CA 19-9) is present primarily in pancreatic and biliary tract cancers, but also in patients with other malignancies (e.g. colorectal cancer) and benign conditions such as cirrhosis and pancreatitis. CA 19-9 is detected in most proteomics studies in pancreatic cancer serum samples (such as (7)), but its low specificity does not recommend it as a pancreatic cancer biomarker. Anecdotally so far, another glycosylation-related potential biomarker of pancreatic cancer is the core fusylation of biantennary glycans of RNase I, which displayed a 40% increase in the serum of two pancreatic cancer patients relative to two healthy controls (8).

[0007] Another well-known serum marker of pancreatic cancer is CEA (carcinoembryonic antigen), with an average reported sensitivity and specificity of both 65% (7). MP/PAP-1 and MIC-1 (macrophage inhibitory cytokine I) are also classical serum markers (9, 10). According to one study, MIC-1 and CA19-9 seem the markers with the highest sensitivity and specificity, in the sense of specificity vs. chronic pancreatitis (and not vs. colon cancer for example), when compared to osteopontin, TIMP-1 and HIP/PAP-I (9).

[0008] The use of CA19-9 as a marker is now recommended in combination with other markers, such as the mutation status of pancreatic cancer -related oncogenes like K-ras (2). K-ras is reported to be mutated in 78% of pancreatic adenocarcinomas (11). Molecular events in pancreatic carcinogenesis have been extensively studied (12), and beside K-ras, p53, p21, p16, p27, SMAD4, and cyclin D1 are a few of these genes whose mutations or alterations in expression have been associated to pancreatic cancer (12). However, evidence regarding their application as prognostic indicators is conflicting. For instance, there is no consensus on the association between mutation in p53 and decreased survival (12).

[0009] MicroRNA profiling has also been performed for pancreatic cancer, with the identification of some common microRNAs specifically altered (13-15).

[0010] Protein markers show the advantage of simple screening through an ELISA (Enzyme-linked immunosorbent assay) method, and research in this field is therefore very intensive. Newer proteomics studies have identified additional protein markers, such as apolipoproteins A-I and A-II, and transthyretin (7), all decreased in serum of pancreatic cancer patients, as well as MMP-9, DJ-1 and AIBG, each of which is overexpressed in pancreatic juice from cancer patients (16).

[0011] The involvement of apolipoproteins is interesting since they participate in lipid metabolism (17) and other members of this family have been associated to cancer (18).

[0012] The fatty acid composition of lipids in plasma and bile from patients with pancreatic cancer has also been analyzed (19, 20), even though neither of these studies has detailed the chemical subfamilies of the altered lipids. Plasma from pancreatic patients showed significantly lower levels of phospholipids that contain the side chain 18:2(ω6), 20:5(ω3) or 22:5(ω3), without distinction of lipid classes (19). Bile from hepatopancreaticobiliary cancer patients was found to contain a much lower level of phosphatidylcholines without distinction of side chains (20).

[0013] Since diabetes mellitus (DM) has a high prevalence in pancreatic cancer patients and is frequently of new onset, research has also been aimed at determining whether DM can be utilized as an early pancreatic cancer marker (21). A 2-fold increase of the glucagon / insulin ratio was found in the blood of pancreatic cancer patients relative to healthy controls, and at a cut-off of 7.4 ng/mU glucagon/insulin, pancreatic cancer induced new-onset DM could be discriminated from type 2 DM with 77% sensitivity and 69% specificity (21).

Valerio et al (Rapid Commun. Mass Spectrom., vol. 15, 2001, 2420-2425) described a s study where sera from 13 patients with pancreatic cancer, 9 patients with chronic pancreatitis and 10 healthy subjects were analyzed by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry.

Bhattacharyya et al (Neoplasia, vol. 6 no. 5, Sept. 2004 - Oct. 2004, 674-686) described a study where the objective was to use high-throughput protein profiling technology to identify biomarkers in the serum proteome for the early detection of resectable PCa.

Honda et al (Cancer Res., vol. 65, 2005, 10613-10622) investigates whether the detection of pancreatic cancer by plasma protein profiling was possible.

Ge et al (BMC Bioinformatics, vol. 9, 2008, 275-286) explores the utility of three different feature selection schemas (Student t test, Wilcoxon rank sum test and genetic algorithm) to reduce the high dimensionality of a pancreatic cancer proteomic dataset.

Conrads et al (Expert Rev. Mol. Diagn., vol. 3, no.4, 2003, 411-420) provides a discussion of cancer diagnosis using proteomic patterns.

CA 2 525 740 relates to the provision of biomolecules and the use of these biomolecules for the differential diagnosis of pancreatitis and/or pancreatic cancer.

CA 2 676 109 describes a method for predicting a health-state indicative of the presence of ovarian cancer (OC).

CA 2 619 732 relates to the diagnosis of colorectal and ovarian cancers (CRC and OC, respectively). In particular, it to the diagnosis of CRC and OC through the measurement of the levels of specific metabolite markers.

Rao et al (Biochimica Et Biophysica Acta, vol. 759, 1983, 74-80) describes a study where the lipid composition and 3-hydroxy-3-methylglutaryl-CoA reductase activity of subcutaneous transplantable pancreatic acinar cell tumors on nude mice were compared with those of normal, regenerating, fetal and newborn rat pancreata.

Hsu et al (Journal of Chromatography B: Biomedical Sciences and Applications, Elsevier, vol. 877, no. 26, 15 Sept. 2009, 2673-2695) describes the use of low-energy collisionally activated dissociation (CAD) with both tandem quadrupole and ion-trap mass spectrometry toward structural characterization of glycerophospholipids (GPLs), including classes of glycerophosphocholine, glycerophosphoethanolamine, glycerophosphoserine, glycerophosphoglycerol glycerophosphoinositol and glycerophosphatidic acid, as well as their lyso-, plasmanyl-, and plasmenylphospholipid subclasses.

Misek et al (Journal of the National Comprehensive Cancer Network, vol. 5, no. 10, 1 November 2007, 1034-1041) focuses on developments in the identification of new serum protein biomarkers that are useful in the early detection of pancreatic ductal adenocarcinoma (PDAC).

Pawa et al (Journal of the Pancreas, vol. 11, no 5, 6, September 2010, 423-426) discloses MS based serum profiling for pancreatic cancer.



[0014] Overall, the methods described above are not ideally suited for large-scale population screening (either for low compliance or low sensitivity and specificity except in the case of a still-to-optimize multiple method combination), and most are capable of detecting pancreatic cancer after the formation of a tumor only. As a result, there still remains a need for accurate methods of detection, particularly for methods to detect early stages of the disease.

SUMMARY OF THE INVENTION



[0015] It is an object of the invention to provide diagnostic methods for detecting pancreatic cancer. In particular, the present invention relates to the subject matter of the appended claim 1.

[0016] As an aspect of the disclosure, a method is provided for diagnosing a subject's pancreatic cancer health state or change in health state, or for diagnosing pancreatic cancer or the risk of pancreatic cancer in a subject, comprising steps of:
  1. a) analyzing a sample from the patient by high resolution mass spectrometry to obtain accurate mass intensity data;
  2. b) comparing the accurate mass intensity data to corresponding data obtained from one or more than one reference sample to identify an increase or decrease in accurate mass intensity; and
  3. c) using the increase or decrease in accurate mass intensity for diagnosing the patient's pancreatic cancer health state, or change in pancreatic cancer health state, or for diagnosing risk of developing pancreatic cancer or the presence of pancreatic cancer in the patient,
wherein the accurate mass intensity is measured, in Daltons, at or substantially equivalent to a hydrogen and electron adjusted accurate mass, or neutral accurate mass as described in further detail herein, for example in Table 5.

[0017] In an embodiment of the disclosure, the accurate mass intensity is measured at one or more of the following masses: 78.0516; 84.0575; 112.0974; 116.5696; 191.5055; 197.0896; 200.1389; 202.045; 203.1155; 214.1204; 214, 1205; 232.1309; 233.1345; 240.0997; 243.0714; 244.0554; 254.1127; 255.1161; 256.2403; 260.0033; 262.0814; 268.1284; 270.0323; 270.0867; 276.0948; 280.2403; 280.2404; 281.2432; 281.2435; 282.2558; 282.2559; 283.2591; 283.2595; 284.9259; 300.1186; 300.2067; 302.0945; 302.222; 302.2457; 304.2375; 304.2407; 317.9613; 318.0931; 326.2048; 326.2458; 327.9902; 328.2403; 328.2408; 328.2627; 329.2439; 329.2658; 330.2559; 332.1473; 338.0189; 348.1191; 350.2222; 360.1782; 360.1792; 361.1828; 366.3593; 368.1057; 382.1083; 382.1601; 418.2204; 428.2404; 428.3647; 446.2526; 446.3395; 468.2336; 468.3581; 468.3807; 469.237; 469.3616; 481.315; 484.3527; 485.904; 494.4321; 495.3325; 496.3373; 505.3146; 508.2256; 517.3141; 518.321; 519.3295; 520.448; 522.4638; 522.4639; 523.3661; 523.4675; 538.4237; 540.4381; 541.3134; 541.3361; 542.3394; 545.3454; 562.4962; 564.5121; 565.3373; 566.3403; 569.3682; 570.372; 572.4798; 573.4833; 574.4952; 575.4985; 576.4751; 576.5113; 577.5149; 578.5169; 578.5284; 579.5313; 587.3214; 588.3269; 589.3368; 590.3408; 592.4709; 594.4852; 594.4863; 595.4892; 595.4897; 596.5017; 596.5027; 597.5066; 598.4955; 599.4993; 600.5117; 601.5151; 602.5269; 603.5297; 606.5591; 609.3259; 613.3379; 615.3535; 627.5656; 628.5438; 630.799; 631.798; 633.3245; 635.7525; 636.7532; 645.7958; 657.7337; 658.7372; 670.5696; 671.5731; 681.5858; 702.5709; 715.6959; 719.6256; 720.6272; 721.5035; 723.5203; 723.521; 724.5252; 724.5477; 725.7228; 733.5054; 735.6582; 743.5396; 744.5425; 745.5631; 746.5128; 746.5705; 748.527; 749.5374; 749.5388; 750.5425; 751.5511; 751.5539; 752.5574; 755.5497; 757.556; 757.5587; 758.562; 758.5626; 759.5383; 759.5733; 760.5792; 763.5578; 765.5678; 766.4792; 771.5699; 773.5276; 774.5419; 775.5522; 775.5532; 775.5532; 777.0402; 777.5709; 779.5405; 779.5416; 780.5452; 780.5454; 781.5029; 781.5566; 782.5612; 783.569; 783.5755; 784.5742; 784.5806; 785.5913; 785.5929; 785.5931; 786.593; 786.5972; 787.5989; 791.5841; 793.7091; 795.5181; 796.5212; 801.5147; 801.5262; 801.5523; 802.5291; 803.5373; 803.5414; 803.5677; 804.5422; 804.5456; 804.5714; 804.7208; 805.5549; 806.5632; 807.5734; 807.5739; 807.5764; 808.5783; 808.5791; 809.5796; 810.5867; 811.5729; 811.608; 812.6774; 813.5888; 819.5177; 823.5411; 824.69; 825.5522; 826.5561; 826.7047; 827.5401; 827.5678; 827.7082; 828.5397; 828.5721; 829.5516; 829.5532; 829.5843; 830.5591; 830.5879; 831.5652; 831.572; 831.5997; 832.6031; 833.5864; 834.5868; 835.598; 837.7209; 838.7284; 838.7435; 839.7464; 847.531; 850.7061; 850.7326; 851.6694; 851.7107; 851.7337; 852.7368; 853.573; 854.7358; 854.7397; 855.5721; 855.7392; 855.7436; 856.7505; 856.754; 857.6923; 857.7543; 857.7574; 858.7644; 861.749; 865.752; 866.7585; 867.7649; 868.7704; 871.5547; 873.7819; 874.7066; 874.787; 875.7108; 879.7629; 889.7537; 889.8147; 894.7911; 898.7043; 898.7325; 902.7629; 903.7636; 907.7847; 908.7907; 909.7882; 910.7272; 916.7735; 919.6496; 921.813; 922.7081; 922.7285; 922.8222; 923.7295; 924.7233; 925.727; 933.8137; 937.7542; 946.8194; 947.8263; 948.836; 950.7364; 960.7432; 970.733; 972.7481; 973.7482; 984.7406; 986.7568; 996.7518; 997.7397; 998.7566; 999.7632; 1010.765; 1011.669; 1011.77; 1012.781; 1016.931; 1017.935; 1018.944; 1019.951; 1020.957; 1038.915; 1039.705; 1039.921; 1040.933; 1041.935; 1199.084; 1200.088; 1201.09; 1202.098; 1223.09; 1224.096; 1225.096; 1226.599; 1227.112; 1228.117; 1229.12; 1230.125; 1247.084; 1249.105; 1250.108; 1251.119; 1252.12; 1253.123; 1253.134; 1254.137 and 1255.153.

[0018] In a further non-limiting embodiment of the disclosure the accurate mass intensity is measured at an accurate mass of 519.3295, 523.3661, 541.3134, 702.5709, 724.5477, 757.556, 779.5405, 783.569, 785.5913, 803.5373, 805.SS49, 807.5734, 809.5796, 812.6774, 829.5516, 833.5864, 576.4751, 594.4863, 596.5017 or combinations thereof. In such embodiments a decrease in accurate mass intensity is generally identified in the comparing step (b).

[0019] In a further exemplary embodiment of the disclosure, the accurate mass is measured at an accurate mass of 600.5117. In such an embodiment an increase in accurate mass intensity is identified in the comparing step (b).

[0020] In the above-described method, the term "substantially equivalent" may in certain non-limiting embodiments refer to ± 5 ppm of the hydrogen and electron adjusted accurate mass, or neutral accurate mass, and in further embodiments, ± 1 ppm of the hydrogen and electron adjusted accurate mass, or neutral accurate mass.

[0021] In an embodiment of the invention, the one or more metabolite marker comprises one or more molecule having a molecular formula as follows: C36H62O4, C36H62O5, C36H64O5, C36H66O5, C36H84O6, C36H66O6, C36H68O6, C22H48NO7P, C24H50NO7P, C24H48NO7P, C24H46NO7P, C26H54NO7P, C26H52NO7P, C26H50NO7P, C26H48NO7P, C28H56NO7P, C28H54NO7P, C28H52NO7P, C28H50NO7P, C28H48NO7P, C28H46NO7P, C30H56NO7P, C10H54NO7P, C30H52NO7P, C30H50NO7P, C32H58NO7P, C32H54NO7P, C38H76NO7P, C40H82NO7P, C40H80NO7P, C40H78NO7P, C40H70NO7P, C42H78NO8P, C42H80NO8P, C42H82NO8P, C42H84NO8P, C44H78NO8P, C44H80NO8P, C44H82NO8P, C44H84NO8P, C44H86NO8P, C44H88NO8P, C46H78NO8P, C46H80NO8P, C46H82NO8P, C46H84NO8P, C48H80NO8P, C48H82NO8P, C48H84NO8P, C48H86NO8P, C42H80NO7P, C42H82NO7P, C42H84NO7P, C44H82NO7P, C44H84NO7P, C44H86NO7P, C44H88NO7P, C46H82NO7P, C46H84NO7P, C46H86NO7P, C48H84NO7P, C48H86NO7P, C39H79N2O6P (or C39H80N2O6P+), or C41H81N2O6P (or C41H82N2O6P+), or C41H83N2O6P (or C41H84N2O6P+), or C47H93N2O6P (or C47H94N2O6P+), or C47H95N2O6P (or C47H96N2O6P+), including combinations thereof.

[0022] In further non-limiting embodiments of the disclosure, the metabolite marker may be a diacylphosphatidylcholine, plasmanylphosphocholine or plasmenylphosphocholine as defined in Formula (I):

including adducts or salts thereof, wherein

R1 is a 16:0, 16:1, 18:0, 18:1, 18:2, 18:3, 20:3, 20:4, 20:5, 22:5 or 22:6 fatty acid or alcohol moiety bonded to the glycerol backbone, the bond being an acyl linkage when the metabolite marker is a diacylphosphatidylcholine, an ether linkage when the metabolite marker is a plasmanylphosphocholine, or a vinyl-ether linkage when the metabolite marker is a plasmenylphosphocholine; and

R2 is a 16:0, 16:1, 18:0, 18:1, 18:2, 18:3, 20:3, 20:4, 20:5, 22:5, or 22:6 fatty acid moiety bonded to the glycerol backbone through an acyl linkage.



[0023] In further embodiments of the disclosure, the metabolite marker may be a 2-lysophosphatidylcholine as defined in Formula (II) or a 1-lysophosphatidylcholine as defined in Formula (III):



including adducts or salts thereof, wherein
Rt is a 14:1, 16:0, 16:1, 16:2, 18:0, 18:1, 18:2, 18:3, 20:1, 20:2, 20:3, 20:4, 20:5, 20:6, 22:3, 22:4, 22:5, 22:6, 24:4, 24:d, 30:1, 32:0, 32:1, 32:2 or 32:6 fatty acid moiety bonded to the glycerol backbone through an acyl linkage.

[0024] In other non-limiting embodiments of the disclosure, the metabolite marker may be a sphingomyelin as defined in Formula (IV):

including adducts or salts thereof, wherein the dashed line represents an optional double bond;

R1 is a C13 alkyl group; and

R2 is a C11 to C25 alkyl or alkenyl group, the alkenyl group having from 1 to 3 double bonds.



[0025] In certain non-limiting embodiments, R2 of the sphingomyelin of Formula (IV) may be a C11 alkyl group, a C13 alkyl group, a C15 alkyl group, a C17 alkyl group, a C17 alkenyl group with 3 double bonds, a C19 alkyl group, a C21 alkyl group, a C23 alkenyl group with 1 double bond, a C23 alkyl group, a C24 alkyl group, a C25 alkenyl group with 1 double bond, a C25 alkyl group.

[0026] The above described methods may further include steps of: analyzing a sample from the patient to obtain quantifying data for one or more than one internal standard molecule; and obtaining a ratio for each of the levels of the one or more than one metabolite marker to the level obtained for the one or more than one internal standard molecule; wherein the comparing step (b) comprises comparing each ratio to one or more corresponding ratios obtained for the one or more than one reference sample.

[0027] Without wishing to be limiting in any way, it will be appreciated that the above-described methods can be carried out, at least in part, with the assistance of a computer. In such embodiments the computer may be integrated with the instrument used to perform the analysis, or it may be a separate computer adapted to receive data output from the instrument according to the knowledge and skill of those in the art. The analyzing step (a) will typically be carried out using the instrument, for example but not limited to a mass spectrometer, and the comparing step (b) carried out using the computer or other processing means programmed to receive the accurate mass intensity data or quantifying data from the instrument and perform the calculations required to identify an increase or decrease in the level of the one or more than one metabolite marker in the sample. This data from step (b) may be output for use by an individual trained to identify the noted increase or decrease and make the diagnosis of step (c), or alternatively the computer or processing means may be further programmed to generate an output of a diagnosis. In the latter case, the output may comprise a positive or negative diagnosis factor, and may optionally include additional details including but not limited to statistical data, threshold data, patient data and other details. The data may be output to a display, such as a monitor, to a printer for generating a copy of the details of diagnosis, to a data receiving centre or directly to a service provider, or in any other way as would be understood by one skilled in the art.

[0028] In certain embodiments, the metabolite may be a lysophosphatidylcholine (LysoPC), including LysoPC 14:1, LysoPC 16:0, LysoPC 16:1, LysoPC 16:2, LysoPC 18:0, LysoPC 18:1, LysoPC 18:2, LysoPC 18:3, LysoPC 20:1, LysoPC 20:2, LysoPC 20:3, LysoPC 20:4, LysoPC 20:5, LysoPC 20:6, LysoPC 22:3, LysoPC 22:4, LysoPC 22:5, LysoPC 22:6, LysoPC 24:4, LysoPC 24:6, LysoPC 30:1, LysoPC 32:0, LysoPC 32:1, LysoPC 32:2, LysoPC 32:6, or combinations thereof.

[0029] In other embodiments the metabolite may be a phosphatidylcholine, including phosphatidylcholine molecules having a molecular formula of C42H78NO8P, C42H80NO8P, C42H82NO8P, C42H84NO8P, C44H78NO8P, C44H80NO8P, C44H82NO8P, C44H84NO8P, C44H86NO8P, C44H88NO8P, C46H78NO8P, C46H80NO8P, C46H82NO8P, C46H84NO8P, C48H80NO8P, C48H82NO8P, C48H84NO8P, C48H86NO8P, or combinations thereof.

[0030] In other embodiments the metabolite may be a plasmenylphosphocholine, including plasmenylphosphocholine molecules having a formula of C42H80NO7P, C42H82NO7P, C42H84NO7P, C44H82NO7P, C44H84NO7P, C44H86NO7P, C44H88NO7P, C46H82NO7P, C46H84NO7P, C46H86NO7P, C48H84NO7P, C48H86NO7P, or combinations thereof.

[0031] In yet further embodiments the metabolite may be a sphingomyelin, including sphingomyelin molecules having a molecular formula of C39H79N2O6P (or C39H80N2O6P+), C41H81N2O6P (or C41H82N2O6P+), or C41H83N2O6P (or C41H84N2O6P+), or C47H93N2O6P (or C47H94N2O6P+), or C47H95N2O6P (or C47H96N2O6P+), or combinations thereof.

[0032] As described herein, alterations in the levels of the metabolite markers may be detected by MS/MS transition. For instance, a metabolite marker of molecular formula C36H64O5 may be monitored for level fluctuations of organic extracts in negative ionization mode (such as atmospheric pressure chemical ionization (APCI)) at a MS/MS transition of 575.5 / 513.5, 575.5 / 557.5, 575.5 / 539.5, 575.5 / 531.5, 575.5 / 499.5, 575.5 / 495.5, 575.5 / 459.4, 575.5 / 417.4, 575.5 / 415.3, 575.5 / 413.3, 575.5 / 403.3, 575.5 / 295.2, 575.5 / 279.2, 575.5 / 260.2, 575.5 / 251.2, 575.5 / 197.9, 575.5 / 119.4, 575.5 / 113.1, and 575.5 / 97.0, or combinations thereof.

[0033] Other useful MS/MS transitions for organic extracts in negative ionization mode (e.g. APCI mode) for the metabolite markers described herein include: 593.5 / 557.5, 593.5 / 575.4, 593.5 / 549.4, 593.5 / 531.5, 593.5 / 513.4, 593.5 / 495.4, 593.5 / 433.3, 593.5 / 421.4, 593.5 / 415.2, 593.5 / 391.4,593.5 / 371.3, 593.5 / 315.3, 593.5 / 311.1, 593.5 / 297.2, 593.5 / 281.2, 593.5 / 277.2, 593.5 / 251.2, 593.5 / 201.1, 593.5 / 195.3, 593.5 / 171.1, 593.5 / 139.1 and 593.5 / 133.5, or combinations thereof for C36H66O6; 595.5 / 559.5, 595.5 / 577.4, 595.5 / 551.4, 595.5 / 533.4, 595.5 / 515.5, 595.5 / 497.4, 595.5 / 478.4, 595.5 / 433.3, 595.5 / 423.4, 595.5 / 391.3, 595.5 / 372.3, 595.5 / 595.5 / 315.3, 595.5 / 313.2, 595.5 / 298.2, 595.5 / 297.2, 595.5 / 281.2, 595.5 / 279.2, 595.5 / 239.2, 595.5 / 232.9, 595.5 / 171.1, 595.5 / 169.1 and 595.5 / 141.1, or combinations thereof for C36H68O6; 557.4 / 495.4, 557.4 / 539.4, 557.4 / 513.3, 557.4 / 279.2, 557.4 / 277.2, 557.4 / 220.7 and 557.4 / 111.2, or combinations thereof for C36H62O4; 573.5 / 511.4, 573.5 / 555.3, 573.5 / 537.4, 573.5 / 529.4, 573.5 / 519.4, 573.5 / 493.3, 573.5 / 457.4, 573.5 / 455.3, 573.5 / 443.4, 573.5 / 415.4, 573.5 / 413.3, 573.5 / 411.3, 573,5 / 399.3, 573.5 / 397.3, 573.5 / 389.7, 573.5 / 295.2, 573.5 / 279.2, 573.5 / 277.2, 573.5 / 251.2, 573.5 / 231.1, 573.5 / 223.1, 573.5 / 201.1, 573.5 /171.1,573.5 / 169.1, 573.5 / 125.1 and 573.5 / 113.1, or combinations thereof for C36H62O5; 577.5 / 515.4, 577.5 / 559.4, 577.5 / 546.5, 577.5 / 533.5, 577.5 / 497.4, 577.5 / 419.4, 577.5 / 405.5, 577.5 / 297.2 and 577.5 / 281.2, or combinations thereof for C36H66O5; 591.5 / 573.4, 591.5 / 555.4, 591.5 / 528.3, 591.5 / 511.2, 591.5 / 476.1, 591.5 / 419.3, 591.5 / 403.1, 591.5 / 387.3, 591.5 / 297.2, 591.5 / 295.2, 591.5 / 274.0, 591.5 / 255.3, 591.5 / 223.6, 591.5 / 203.5, 591.5 / 201.1, 591.5 / 171.0 and 591.5 / 125.3, or combinations thereof for C36H64O6.

[0034] Other useful MS/MS transitions for aqueous extracts in positive ionization mode (e.g. positive Electrospray Ionization (ESI)) for the metabolite markers described herein include: 520.3 / 184.2 for C26H50NO7P; 524.3 / 184.2 for C26H54NO7P; 542.3 / 184.2 for C28H48NO7P; 758.6 / 184.2 for C42H80NO8P; 784.6 / 184.2 for C44H82NO8P; 786.6 / 184.2 for C44H84NO8P; 788.6 / 184.2 for C44H86NO8P; 790.6 / 184.2 for C44H88NO8P; 806.6 / 184.2 for C46H80NO8P; 808.6 / 184.2 for C46H82NO8P; 810.6 / 184.2 for C46H84NO8P; 834.6 / 184.2 for C48H84NO8P; 836.6 / 184.2 for C48H86NO8P; 703.6 / 184.2 for C39H79N2O6P; 729.6 / 184.2 for C41H81N2O6P; 731.6 / 184.2 for C41H83N2O6P; 813.6 / 184.2 for C47H93N2O6P; or 815.6 / 184.2 for C47H95N2O6P. Additional MS/MS transition details and other features of the metabolites described herein are evident from the following detailed description of the invention and may also be used in further non limiting embodiments of the invention.

[0035] Other useful MS/MS transitions for aqueous extracts in negative ionization mode (e.g. negative ESD for the metabolite markers described herein include: 564.3 / 504.3 / 279.3 for C26H50NO7P; 568.3 / 508.4 / 283.3 for C26H54NO7P; 586.3 / 526.3 / 301,2 for C28H48NO7P; 802.6 / 742.6 / 279.2,802.6 / 742.6 / 281.2,802.6 / 742.6 / 253.2 or 802.6 / 742.6 / 255.2 for C42H80NO8P; 828.6 / 768.6 / 305.3, 828.6 / 768.6 / 279.2,828.6 / 768.6 / 281.2 or 828.6 / 768.6 / 255.2 for C44H82NO8P; 830.6 / 770.6 / 279.2, 830.6 / 770.6 / 281.2 or 830.6 / 770.6 / 283.2 for C44H84NO8P; 832.6 / 772.6 / 281.2 or 832.6 / 772.6 / 283.2 for C44H86NO8P; 834.6 / 774.6 / 283.2 for C44H88NO8P; 850.6 / 790.6 / 327.3,850.6 / 790.6 / 279.2,850.6 / 790.6 / 303.2 or 850.6 / 790.6 / 255.2 for C46H80NO8P; 852.6 / 792.6 / 329.3, 852.6 / 792.6 / 301.3, 852.6 / 792.6 / 303.2, 852.6 / 792.6 / 281.2, 852.6 / 792.6 / 283.2 or 852.6 / 792.6 / 255.2 for C46H82NO8P; 854.6 / 794.6 / 331.3,854.6 / 794.6 / 303.2, 854.6 / 794.6 / 283.2 or 854.6 / 794.6 / 255.2 for C46H84NO8P; 878.6 / 818.6 / 327.3 or 878.6 / 818.6 / 283.2 for C48H84NO8P; 880.6 / 820.6 / 329.3 or 880.6 / 820.6 / 283.2 for C44H86NO8P ; 747.6 / 687.6 / 168.1 for C39H79N2O6P; 773.6 / 713.6 / 168.1 for C41H81N2O6P; 775.6/715.6/168;1 for C41H83N2O6P; 857.6 / 797.6 / 168.1 for C47H93N2O6P; or 859.6 / 799.6 / 168.1 for C47H95N2O6P. Additional MS/MS transition details and other features of the metabolites described herein are evident from the following detailed description of the invention and may also be used in further non limiting embodiments of the invention.

[0036] In the above-described methods, the step of comparing accurate mass intensity data to reference data to identify an increase or decrease in accurate mass intensity; or the step of comparing quantifying data for a metabolite marker to reference data to identify a decrease in the level of the metabolite marker, can in certain non-limiting embodiments comprise or otherwise relate to a step of determining the level of the specified markers, metabolites or molecules, either by determining a change in accurate mass intensity or by other analytical means.

[0037] The disclosure further relates to an assay standard comprising a metabolite marker as described herein labeled with a detection agent. The standard will be useful for carrying out a diagnostic method as described herein, and may include one or more of the following non-limiting detection agents: a stable isotope, an enzyme, or a protein that enables detection in vitro.

[0038] In certain non-limiting embodiments, the assay standard may comprise as the metabolite marker a diacylphosphatidylcholine, plasmanylphosphocholine or plasmenylphosphocholine as defined in Formula (I):

including adducts or salts thereof, wherein

R1 is a 16:0, 16:1, 18:0, 18:1, 18:2, 18:3, 20:3, 20:4, 20:5, 22:5 or 22:6 fatty acid or alcohol moiety bonded to the glycerol backbone, the bond being an acyl linkage when the metabolite marker is a diacylphosphatidylcholine, an ether linkage when the metabolite marker is a plasmanylphosphocholine, or a vinyl-ether linkage when the metabolite marker is a plasmenylphosphocholine; and

R2 is a 16:0, 16:1, 18:0, 18:1, 18:2, 18:3, 20:3, 20:4, 20:5, 22:5, or 22:6 fatty acid moiety bonded to the glycerol backbone through an acyl linkage.



[0039] In further embodiments, the assay standard may comprise as the metabolite marker a 2-lysophosphatidylcholine as defined in Formula (II) and a 1-lysophosphatidylcholine in Formula (III):



including adducts or salts thereof, wherein
R1 is a 14:0, 14:1, 16:0, 16:1, 16:2, 18:0, 18:1, 18:2, 18:3, 20:1, 20:2, 20:3, 20:4, 20:5, 20:6, 22:3, 22:4, 22:5, 22:6, 24:4, 24:6, 30:1, 32:0, 32:1, 32:2 or 32:6 fatty acid moiety bonded to the glycerol backbone through an acyl linkage.

[0040] In other non-limiting embodiments, the assay standard may comprise as the metabolite marker a sphingomyelin as defined in Formula (IV):

including adducts or salts thereof, wherein the dashed line represents an optional double bond,

R1 is a C13 alkyl group; and

R2 is a C11 to C25 alkyl or alkenyl group, the alkenyl group having from 1 to 3 double bonds.



[0041] In certain non-limiting embodiments, R2 of the sphingomyelin of Formula (IV) may be a C11 alkyl group, a C13 alkyl group, a C15 alkyl group, a C17 alkyl group, a C17 alkenyl group with 3 double bonds, a C19 alkyl group, a C21 alkyl group, a C23 alkenyl group with 1 double bond, a C23 alkyl group, a C24 alkyl group, a C25 alkenyl group with 1 double bond, or a C25 alkyl group.

[0042] In further embodiments of the standard, which are also considered to be non-limiting, the assay standard may comprise as the metabolite marker a lysophosphatidylcholine (LysoPC, either 1-LysoPC or 2-LysoPC) including LysoPC 14:0, LysoPC 14:1, LysoPC 16:0, LysoPC 16:1, LysoPC 16:2, LysoPC 18:0, LysoPC 18:1, LysoPC 18:2, LysoPC 18:3, LysoPC 20:1, LysoPC 20:2, LysoPC 20:3, LysoPC 20:4, LysoPC 20:5, LysoPC 20:6, LysoPC 22:3, LysoPC 22:4, LysoPC 22:5, LysoPC 22:6, LysoPC 24:4, LysoPC 24:6, LysoPC 30:1, LysoPC 32:0, LysoPC 32:1, LysoPC 32:2, or LysoPC 32:6.

[0043] The disclosure further relates to a kit or commercial package comprising the above-described standard and instructions for quantitating an analyte or performing a diagnostic test as described herein.

BRIEF DESCRIPTION OF THE DRAWINGS



[0044] These and other features of the invention will become more apparent from the following description in which reference is made to the following figures.

Figure 1 provides a schematic description of the studies performed.

Figure 2 illustrates a Principal Component Analysis on all masses differentiating pancreatic cancer from controls with p-value < 0.05 showing a clear separation between pancreatic cancer samples (grey) and controls (black).

Figure 3 illustrates a Principal Component Analysis on the 20 best biomarkers showing a clear separation between pancreatic cancer samples (grey) and controls (black) (a), and the relative level intensities of these 20 biomarkers in the serum of pancreatic cancer patients relative to controls (b).

Figure 4 illustrates a ROC and variability chart for the first six best biomarkers by FTICR, namely 594.4863 (AUC=0.96) (a), 785.5913 (AUC=0.93) (b), 702.5709 (AUC=0.91) (c), 807.5734 (AUC=0.93) (d), 576.4751 (AUC=0.93) (e) and 541.3134 (AUC=0.92) (f).

Figure 5 shows a logistic regression analysis of the combination of the six FTICR best biomarkers, with ROC curve (a) and classification table (b).

Figure 6 illustrates the fragmentation pattern of C36 compound "576".

Figure 7 illustrates the fragmentation pattern of C36 compound "594".

Figure 8 illustrates the fragmentation pattern of C36 compound "596".

Figure 9 illustrates the fragmentation pattern of C36 compound "558".

Figure 10 illustrates the fragmentation pattern of C36 compound "574".

Figure 11 illustrates the fragmentation pattern of C36 compound "578"

Figure 12 illustrates the fragmentation pattern of C36 compound "592".

Figure 13 shows the 1H NMR spectrum of the fraction rich in C36 markers "594" and "596".

Figure 14 illustrates the fragmentation patterns of 519.3 in positive aqueous ESI mode. (a) and (b) correspond to the fragmentation patterns at different retention times.

Figure 15 illustrates the fragmentation patterns of 523.3 in positive aqueous ESI mode. (a) and (b) correspond to the fragmentation patterns at different retention times.

Figure 16 illustrates the fragmentation patterns of 541.3 in positive aqueous ESI mode. (a), (b), (c) and (d) correspond to fragmentation patterns at different retention times.

Figure 17 illustrates the fragmentation pattern of 757.6 in positive aqueous ESI mode.

Figure 18 illustrates the fragmentation pattern of 779.5 in positive aqueous ESI mode.

Figure 19 illustrates the fragmentation pattern of 783.6 in positive aqueous ESI mode, showing three retention times with choline fragments (a), (b), (c).

Figure 20 illustrates the fragmentation pattern of 785.6 in positive aqueous ESI mode.

Figure 21 illustrates the fragmentation pattern of 803.5 in positive aqueous ESI mode.

Figure 22 illustrates the fragmentation pattern of 805.6 in positive aqueous ESI mode.

Figure 23 illustrates the fragmentation pattern of 807.6 in positive aqueous ESI mode showing two retention times with choline fragments (a), (b).

Figure 24 illustrates the fragmentation pattern of 809.6 in positive aqueous ESI mode.

Figure 25 illustrates the fragmentation pattern of 829.6 in positive aqueous ESI mode.

Figure 26 illustrates the fragmentation pattern of 833.6 in positive aqueous ESI mode.

Figure 27 illustrates the fragmentation pattern of "757.6" as a formic acid adduct in negative aqueous ESI mode, showing two main side chains, 16:0 (m/z 255.2) and 18:2 (m/z 279.2). "757.6" is therefore PtdCho 16:0/18:2 and PtdCho 18:2/16:0.

Figure 28 illustrates the fragmentation pattern of "779.6" as a formic acid adduct in negative aqueous ESI mode, showing the side chains 16:0 (m/z 255.2), 20:5 (m/z 301.2) and 20:4 (m/z 303.2) as the most abundant. "779.6" is therefore mostly PtdCho 16:0/20:5, PtdCho 20:5/16:0 and PtdCho 18:2/20:4.

Figure 29 illustrates the fragmentation pattern of "783.6" as a formic acid adduct in negative ESI aqueous mode, showing the side chains 20:3 (m/z 305.2), 18:2 (m/z 279.2), 18:1 (m/z 281.2) and 16:0 (m/z 255.2) as the most abundant. "783.6" therefore mostly is PtdCho 16:0/20:3 and PtdCho 18:1/18:2.

Figure 30 illustrates the fragmentation pattern of "785.6" as a formic acid adduct in negative aqueous ESI mode, showing two side chains, 18:0 (m/z 283.3) and 18:2 (m/z 279.2) in one pattern (a) and one main side chain, 18:1 (m/z 281.2) in the other (b). "785.6" is therefore PtdCho 18:0/18:2 and PtdCho18:1/18:1.

Figure 31 illustrates the fragmentation pattern of "805.6" as a formic acid adduct in negative aqueous ESI mode at different retention times (a-d). The different side chains, 16:0 (m/z 255.2), 22:6 (m/z 327.3), 18:2 (m/z 279.3) and 20:4 (m/z 303.2), identify "805.6" as PtdCho 22:6/16:0 and, PtdCho 20:4/18:2).

Figure 32 illustrates the fragmentation patterns of "807.6" as a formic acid adduct in negative aqueous ESI mode at different retention times (a-c). The different side chains, 18:0 (m/z 283.2), 20:5 (m/z 301.2), 16:0 (m/z 255.2), 22:5 (m/z 329.3), 18:1 (m/z 281.3) and 20:4 (m/z 303.2) identify "807.6" as PtdCho 18:0/20:5, PtdCho 16:0/22:5, PtdCho 22:5/16:0 and PtdCho 18:1/20:4.

Figure 33 illustrates the fragmentation pattern of 702.6 in positive aqueous ESI mode.

Figure 34 illustrates the fragmentation pattern of 812.7 in positive aqueous ESI mode.

Figure 35 illustrates the fragmentation pattern of 724.6 in positive aqueous ESI mode

Figure 36 illustrates the fragmentation pattern of 702.6 as a formic acid adduct in negative ESI analysis mode in control sample aqueous extracts (m/z 747.6).

Figure 37 illustrates the fragmentation pattern of synthetic SM(d18:1/16:0) (from Avanti Polar Lipids, cat. 860584) as a formic acid adduct in negative ESI analysis mode (m/z 747.6).

Figure 38 illustrates the fragmentation pattern of 812.7 as a formic acid adduct in negative ESI analysis mode in control sample aqueous extracts (m/z 857.7).

Figure 39 illustrates the fragmentation pattern of synthetic SM(d18:1/24:1(15Z)) (from Avanti Polar Lipids, cat. 860593) as a formic acid adduct in negative ESI analysis mode (m/z 857.7).

Figure 40 illustrates the fragmentation of 600.5117 organic extract in positive APCI.

Figure 41 shows the relative levels of LysoPC18:0 (mass 523.4), LysoPC 18:2 (mass 519.3) and LysoPC20:5 (mass 541.3) and of additional LysoPC in the serum of pancreatic cancer patients relative to controls by Electrospray Ionization (ESI) analysis. (a) LysoPC with 14, 16 and 18 carbons on the side chain, (b) LysoPC with 20, 22 and 24 carbons on the side chain, (c) LysoPC with 30 and 32 carbons on the side chain, and (d) LysoPC with 14, 16, 18, 20 and 22 carbons on the side chain. (a) to (c) in positive ESI analysis mode and (d) in negative ESI analysis mode.

Figure 42 shows the relative MRM levels of 13 PtdCho named by their parent mass in positive ESI analysis mode (a) 27 PtdCho in negative ESI mode (b), and 12 PIsCho named by their parent mass in positive ESI mode (c) in the serum of pancreatic cancer patients relative to controls.

Figure 43 shows the relative MRM levels of five sphingomyelins in the serum of pancreatic cancer patients relative to controls.

Figure 44 shows the relative levels of C36 markers in the serum of pancreatic cancer patients relative to controls.

Figure 45 shows the relative intensities of biomarkers for pancreatic cancer at different stages in three LysoPC (a), seven PtdCho (b), five sphingomyelins (c) and three C36 markers (d).

Figure 46 shows the relative intensities of biomarkers for pancreatic cancer chemoradiation therapy status in three LysoPC (a), seven PtdCho (b), five sphingomyelins (c) and three C36 markers (d).


DETAILED DESCRIPTION



[0045] The present inventors have identified cancer-specific biomarkers in human serum, and accordingly present herein a non-invasive cancer detection method that is useful for monitoring an individual's susceptibility to disease, and that may be used either alone or in combination with other known diagnostic methods. The methods described are particularly useful for detecting or diagnosing pancreatic cancer.

[0046] A "non-targeted" approach was developed for the identification of biomarkers specific to pancreatic cancer. This discovery platform incorporated the use of Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), which is capable of detecting ions with mass accuracy below 1 part per million (ppm). Using this method, liquid sample extracts can be directly infused, for instance using electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), without chromatographic separation. Ions with differing mass to charge (M/Z) ratios are then simultaneously resolved using a Fourier transformation. This combination of liquid extraction, flow injection, high resolution and informatics affords a unique opportunity to broadly characterize the biochemical composition of samples without a priori knowledge.

[0047] When analyzing the serum metabolomic profiles of pancreatic cancer patients and healthy asymptomatic subjects included in their study, the inventors identified specific biomarkers that had significantly altered serum levels in pancreatic cancer patients when compared to controls in a set of 90 samples. Structural characterization was performed by MS/MS technology, and some of the markers were found to be choline-related compounds. Alterations in the serum levels of these biomarkers were confirmed by targeted mass spectrometry using a targeted high-throughput triple-quadrupole MRM (TQ-MRM) method on the same samples.

[0048] The inventors have accordingly developed methods to monitor levels of these biomarkers in a subject in a specific and sensitive manner, and to use this information as a useful tool for the early detection and screening of pancreatic cancer.

[0049] The present invention accordingly relates to a method of diagnosing cancer by measuring the levels of specific biomarkers present in human serum and comparing them to "normal" reference levels. The described method may be used for the early detection and diagnosis of cancer as well as for monitoring the effects of treatment on cancer patients.

[0050] The method also may be incorporated into a high-throughput screening method for testing large numbers of individuals, and further enables longitudinal screening throughout the lifetime of a subject to assess risk and detect disease early on. The method therefore has the potential to detect disease progression prior to that detectable by conventional methods, which is critical to positive treatment outcome.

[0051] According to the described method, biological samples taken from one or more subjects of a particular health-state category are compared to the same samples taken from the normal population to identify differences in the levels of the described biomarkers. The samples are extracted and analyzed using various analytical platforms including, but not limited to, Fourier transform ion cyclotron resonance mass spectrometry (FTMS) and liquid chromatography mass spectrometry (LC-MS).

[0052] The biological sample is blood (serum/plasma). While the term "serum" is used herein, those skilled in the art will recognize that plasma or whole blood or a sub-fraction of whole blood may be used.

[0053] When a blood sample is drawn from a patient there are several ways in which the sample can be processed. The range of processing can be as little as none (i.e. frozen whole blood) or as complex as the isolation of a particular cell type. The most common and routine procedures involve the preparation of either serum or plasma from whole blood. All blood sample processing methods, including spotting of blood samples onto solid-phase supports, such as filter paper or other immobile materials, are also contemplated by the invention.

[0054] Without wishing to be limiting, the processed blood or plasma sample described above may then be further processed to make it compatible with the methodical analysis technique to be employed in the detection and measurement of the metabolites contained within the processed blood sample. The types of processing can range from as little as no further processing to as complex as differential extraction and chemical derivatization. Extraction methods may include sonication, soxhlet extraction, microwave assisted extraction (MAE), supercritical fluid extraction (SFE), accelerated solvent extraction (ASE), pressurized liquid extraction (PLE), pressurized hot water extraction (PHWE) and/or surfactant assisted extraction (PHWE) in common solvents such as methanol, ethanol, mixtures of alcohols and water, or organic solvents such as ethyl acetate or hexane. A method of particular interest for extracting metabolites for FTMS non-targeted analysis and for flow injection LC-MS/MS analysis is to perform a liquid/liquid extraction whereby non-polar metabolites dissolve in an organic solvent and polar metabolites dissolve in an aqueous solvent.

[0055] The extracted samples may be analyzed using any suitable method including those known in the art. For example, and without wishing to be limiting, extracts of biological samples are amenable to analysis on essentially any mass spectrometry platform, either by direct injection or following chromatographic separation. Typical mass spectrometers are comprised of a source that ionizes molecules within the sample, and a detector for detecting the ionized molecules or fragments of molecules. Non-limiting examples of common sources include electron impact, electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), atmospheric pressure photo ionization (APPI), matrix assisted laser desorption ionization (MALDI), surface enhanced laser desorption ionization (SELDI), and derivations thereof. Common mass separation and detection systems can include quadrupole, quadrupole ion trap, linear ion trap, time-of-flight (TOF), magnetic sector, ion cyclotron (FTMS), Orbitrap, and derivations and combinations thereof. The advantage of FTMS over other MS-based platforms is its high resolving capability that allows for the separation of metabolites differing by only hundredths of a Dalton, many of which would be missed by lower resolution instruments.

[0056] By the term "metabolite", it is meant specific small molecules, the levels or intensities of which are measured in a sample, and that may be used as markers to diagnose a disease state. These small molecules may also be referred to herein as "metabolite marker", "metabolite component", "biomarker", or "biochemical marker".

[0057] The metabolites are generally characterized by their accurate mass, as measured by mass spectrometry technique. The accurate mass may also be referred to as "accurate neutral mass" or "neutral mass". The accurate mass of a metabolite is given herein in Daltons (Da), or a mass substantially equivalent thereto. By "substantially equivalent thereto", it is meant that a +/- 5 ppm difference in the accurate mass would indicate the same metabolite. The accurate mass is given as the mass of the neutral metabolite. During the ionization of the metabolites, which occurs during analysis of the sample, the metabolite will cause either a loss or gain of one or more hydrogen atoms and a loss or gain of an electron. This changes the accurate mass to the "ionized mass", which differs from the accurate mass by the mass of hydrogen atoms and electrons lost or gained during ionization. Unless otherwise specified, the accurate neutral mass will be referred to herein.

[0058] Similarly, when a metabolite is described by its molecular formula, the molecular formula of the neutral metabolite will be given. Naturally, the molecular formula of the ionized metabolite will differ from the neutral molecular formula by the number of hydrogen atoms lost or gained during ionization or due to the addition of a non-hydrogen adduct ion.

[0059] Data is collected during analysis and quantifying data for one or more than one metabolite is obtained. "Quantifying data" is obtained by measuring the levels or intensities of specific metabolites present in a sample.

[0060] The quantifying data is compared to corresponding data from one or more than one reference sample. The "reference sample" is any suitable reference sample for the particular disease state. For example, and without wishing to be limiting in any manner, the reference sample may be a sample from a control individual, i.e., a person not suffering from cancer with or without a family history of cancer (also referred to herein as a " 'normal' counterpart"); the reference sample may also be a sample obtained from a patient clinically diagnosed with cancer. As would be understood by a person of skill in the art, more than one reference sample may be used for comparison to the quantifying data. For example and without wishing to be limiting, the one or more than one reference sample may be a first reference sample obtained from a non-cancer control individual. In the case of monitoring a subject's change in disease state, the reference sample may include a sample obtained at an earlier time period either pre-therapy or during therapy to compare the change in disease state as a result of therapy.

[0061] An "internal control metabolite" refers to an endogenous metabolite naturally present in the patient. Any suitable endogenous metabolite that does not vary over the disease states can be used as the internal control metabolite.

[0062] Use of a ratio of the metabolite marker to the internal control metabolite offers measurement that is more stable and reproducible than measurement of absolute levels of the metabolite marker. As the internal control metabolite is naturally present in all samples and does not appear to vary significantly over disease states, the sample-to-sample variability (due to handling, extraction, etc) is minimized.

[0063] As discussed above the biomarkers described herein were identified by a method known as non-targeted analysis. Non-targeted analysis involves the measurement of as many molecules in a sample as possible, without any prior knowledge or selection of the components prior to the analysis (see WO 01/57518, published August 9, 2001). Therefore, the potential for non-targeted analysis to discover novel metabolite biomarkers is high versus targeted methods, which detect a predefined list of molecules. The present inventors used a non-targeted method to identify metabolite components that differ between cancer-positive and healthy individuals, followed by the development of a high-throughout targeted assay for a subset of the metabolites identified from the non-targeted analysis.

[0064] According to this analysis small molecules, metabolites, or metabolite fragments were identified that have differential abundances between cancer-positive serum and normal serum. As listed in Table 5, the inventors found 362 metabolite masses to have statistically significant differential abundances between cancer-positive serum and normal serum. All of these features, which differ statistically between the two populations, have potential diagnostic utility. However, the incorporation of 362 signals into a commercially diagnostic assay is in many cases impractical, so an optimum diagnostic set of markers or metabolites may be selected, for instance in a panel for a high-throughput screening (HTS) assay.

[0065] There are multiple types of HTS assay platform options currently available depending on the molecules being detected. These include, but are not limited to, colorimetric chemical assays (UV, or other wavelength), antibody-based enzyme-linked immunosorbant assays (ELISAs), chip-based and polymerase-chain reaction for nucleic acid detection assays, bead-based nucleic-acid detection methods, dipstick chemical assays, image analysis such as MRI, petscan, CT scan, and various mass spectrometry-based systems.

[0066] In a non-limiting embodiment, the HTS assay is based upon conventional triple-quadrupole mass spectrometry technology. The HTS assay works by directly injecting a serum extract into the triple-quad mass spectrometer, which then individually isolates each of the parent molecules by single-ion monitoring (SIM). This is followed by the fragmentation of each molecule using an inert gas (called a collision gas, collectively referred to as collision-induced dissociation or CID). The intensity of a specific fragment from each parent biomarker is then measured and recorded, through a process called multiple-reaction monitoring (MRM). In addition, an internal standard molecule is also added to each sample and subjected to fragmentation as well. This internal standard fragment should have the same intensity in each sample if the method and instrumentation is operating correctly. When all biomarker fragment intensities, as well as the internal standard fragment intensities are collected, a ratio of the biomarker to IS fragment intensity is calculated, and the ratio log-transformed. The values for each patient sample are then compared to a previously determined distribution of disease-positive and controls, to determine the relative likelihood that the person is positive or negative for the disease.

[0067] A commercial method for screening patients for cancer using the described assay methods is also envisioned. There are numerous options for the deployment of the assay world-wide. These include, but are not limited to: 1, the development of MS/MS methods compatible with current laboratory instrumentation and triple-quadrupole mass spectrometers which are readily in place in many labs around the world, and/or 2, the establishment of a testing facility where samples could be shipped and analyzed at one location, and the results sent back to the patient or patient's physician.

[0068] Structural elucidation of the identified metabolites was carried out using a series of physical and chemical property investigations. The principal characteristics that are normally used for this identification are accurate mass and molecular formula determination, polarity, acid/base properties, NMR spectra, and MS/MS or MSn spectra.

[0069] One group of diagnostic biomarkers, referred to herein as the C36 markers (558.4, 574.5, 576.5, 578.5, 592.5, 594.5, 596.5), were determined to have the following molecular formulae, respectively: C36H6204, C36H62O5, C36H64O5, C36H66O5, C36H64O6, C36H66O6, and C36H68O6. MS/MS transitions for each of these biomarkers for organic extracts in negative APCI were observed as follows: C36H62O4 : 557.4 / 495.4, 557.4 / 539.4, 557.4 / 513.3, 557.4 / 279.2, 557.4 / 277.2, 557.4 / 220.7 and 557.4 / 11.2; C36H62O5: 573.5 / 511.4, 573.5 / 555.3, 573.5 / 537.4, 573.5 / 529.4, 573.5 / 519.4, 573.5 / 493.3, 573.5 / 457.4, 573.5 / 455.3, 573.5 / 443.4, 573.5 / 415.4, 573.5 / 413.3, 573.5 / 411.3, 573.5 / 399.3, 573.5 / 397.3, 573.5 / 389.7, 573.5 / 295.2, 573.5 / 279.2, 573.5 / 277.2, 573.5 / 251.2, 573.5 / 231.1, 573.5 / 223.1, 573.5 / 201.1, 573.5 / 171.1, 573.5 / 169.1, 573.5 / 125.1 and 573.5 / 113.1; C36H64O5 : 575.5 / 513.5, 575.5 / 557.5, 575.5 / 531.5, 575.5 / 499.5, 575.5 / 495.4, 575.5 / 447.3, 575.5 / 417.4, 575.5 / 415.4, 575.5 / 413.3, 575.5 / 371.3, 575.5 / 295.2, 575.5 / 279.2, 575.5 / 260.2, 575.5 / 251.2, 575.5 / 459.4, 575.5 / 403.3, 575.5 / 197.9, 575.5 / 119.4, 575.5 / 113.1, 575.5 / 97.0 and 575.5 / 539.5; C36H66O5 : 577.5 / 515.4, 577.5 / 559.4, 577.5 / 546.5, 577.5 / 533.5, 577.5 / 497.4, 577.5 / 419.4, 577.5 / 405.5, 577.5 / 297.2 and 577.5 / 281.2; C36H64O6: 591.5 / 573.4, 591.5 / 555.4, 591.5 / 528.3, 591.5 / 511.2, 591.5 / 476.1, 591.5 / 419.3, 591.5 / 403.1, 591.5 / 387.3, 591.5 / 297.2, 591.5 / 295.2, 591.5 / 274.0, 591.5 / 255.3, 591.5 / 223.6, 591.5 / 203.5, 591.5 / 201.1, 591.5 / 171.0 and 591.5 / 125.3; C36H66O6: 593.5 / 557.5, 593.5 / 513.4, 593.5 / 495.4, 593.5 / 371.3, 593.5 / 315.3, and 593.5 / 277.2; C36H68O6 : 595.5 / 577.5, 595.5 / 559.5, 595.5 / 551.5, 595.5 / 549.7, 595.5 / 533.5, 595.5 / 279.2, 595.5 / 391.3, 595.5 / 515.4, 595.5 / 478.4, 595.5 / 423.4, 595.5 / 372.5, 595.5 / 315.3, 595.5 / 313.2, 595.5 / 433.3, 595.5 / 298.2, 595.5 / 239.2, 595.5 / 232.9, 595.5 /171.1, 595.5 /169.1, 595.5 /141.1 and 595.5 / 497.4.

[0070] A second group of choline-related diagnostic biomarkers, including lysophosphatidylcholines, phosphatidylcholines and sphingomyelins were also identified. The lysophosphatidylcholines include: LysoPC 14:0; LysoPC 14:1; LysoPC 16:0; LysoPC 16:1; LysoPC 16:2; LysoPC 18:0; LysoPC 18:1; LysoPC 18:2; LysoPC 18:3; LysoPC 20:1; LysoPC 20:2; LysoPC 20:3; LysoPC 20:4; LysoPC 20:5; LysoPC 20:6; LysoPC 22:3; LysoPC 22:4; LysoPC 22:5; LysoPC 22:6; LysoPC 24:4; LysoPC 24:6; LysoPC 30:1; LysoPC 32:0; LysoPC 32:1; LysoPC 32:2; and LysoPC 32:6. The molecular weight, formulae and MS/MS transitions for each of these biomarkers are described in further detail below.

[0071] The phosphatidylcholines (755.55; 757.56; 759.58; 761.59; 779.54; 781.56; 783.58; 785.59; 787.61; 803.54; 805.56; 807.58; 809.59; 829.55; 831.58; and 833.59), were determined to have the following molecular formulae, respectively: C42H78NO8P; C42H80NO8P; C42H82NO8P; C42H84NO8P; C44H78NO8P; C44H80NO8P; C44H82NO8P; C44H84NO8P; C44H86NO8P; C46H78NO8P; C46H80NO8P; C46H82NO8P; C46H84NO8P; C48H80NO8P; C48H82NO8P; and C48H84NO8P. The molecular weight, formulae and MS/MS transitions for each of these biomarkers are described in further detail below.

[0072] The sphingomyelins 702.57 and 812.68 were determined to have the respective formulae C39H72N2O6P and C47H93N2O6P. The molecular weight, formulae and MS/MS transitions for each of these biomarkers are described in further detail below.

[0073] The present invention is further defined with reference to the following examples that are not to be construed as limiting.

EXAMPLES


Materials & Methods:


1. Patient Sample Selection



[0074] Clinical samples were obtained from Osaka Medical University, Japan. Samples were collected, processed and stored in a consistent manner by teams of physicians. All samples were properly consented and were accompanied by detailed pathology reports.

[0075] The samples included 50 controls and 40 pancreatic cancer patients, among them 20 had undergone chemoradiation therapy (CRT) and 20 had not at the time of sampling. Four patients were in stage I, four in stage II, five in stage III, 16 in stage IVa and 11 in stage IVb (Table 2).
Table 2. Clinical characteristics of the studied population.
 Stage IStage IIStage IIIStage IVaStage IVb
CRT 4 2 2 7 5
no CRT 0 2 3 9 6


[0076] All samples were processed and analyzed in a randomized manner and the results unblinded following analysis.

2. Sample extraction



[0077] Serum samples were stored at -80°C until thawed for analysis, and were only thawed once. All extractions were performed on ice. Serum samples were prepared for FTICR-MS analysis by first sequentially extracting equal volumes of serum with 1% ammonium hydroxide and ethyl acetate (EtOAc) in the ratio of 1:1:5 respectively three times. Samples were centrifuged between extractions at 4°C for 10 min at 3500 rpm, and the organic layer removed and transferred to a new tube (extract A). After the third EtOAc extraction, 0.33 % formic acid was added, followed by two more EtOAc extractions. Following the final organic extraction, the remaining aqueous component was further extracted twice with water, and protein removed by precipitation with 3:1 acetonitrile (extract B). A 1:5 ratio of EtOAc to butanol (BuOH) was then evaporated under nitrogen to the original BuOH starting volume (extract C). All extracts were stored at -80°C until FTICR-MS analysis.

3. FTICR-MS analysis



[0078] Extracts were diluted either three or six-fold in methano1:0.1%(v/v) ammonium hydroxide (50:50, v/v) for negative ionization modes, or in ethanol:0.1% (v/v) formic acid (50:50, v/v) for positive ionization modes. For APCI, sample extracts were directly injected without diluting. All analyses were performed on a Bruker Daltonics APEX III Fourier transform ion cyclotron resonance mass spectrometer equipped with a 7.0 T actively shielded superconducting magnet (Bruker Daltonics, Billerica, MA). Samples were directly injected using electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) at a flow rate of 600 µL per hour. Details of instrument tuning and calibration conditions have been previously reported (22). Although different sample extracts were analyzed separately, the mass spectral data for each sample were combined following spectral processing. All sample peaks were calibrated using internal standards such that each internal standard mass peak had a mass error of <1 ppm relative to the theoretical mass.

4. Full-scan Q-TOF and HPLC-coupled tandem mass spectrometry


4.1 Organic extracts



[0079] 500 µL of ethyl acetate extracts of serum from five pancreatic cancer samples and five normal samples were evaporated separately under nitrogen gas and each reconstituted in 50 µL of isopropanol:methanol:formic acid (10:89.9:0.1, v/v/v). For both LC/MS full scan and MS/MS, 20 µL of the reconstituted samples were subjected to HPLC (Agilent 1100, Agilent Technologies) analyses with Hypersil ODS column (5 µm, 150 x 4.6 mm), mobile phase: Solvent A: 94.9% H2O, 5% MeOH and 0.1% Formic acid, Solvent B: 100% MeOH, gradient 100% A to 79% A and 21% B at 15 min, then to 100% B at 25 min, and then held up to 30 min at a flow rate of 1 mL/min. Eluate from the HPLC was analyzed using an ABI QSTAR® XL mass spectrometer fitted with an APCI source and data were collected in negative mode. The scan type in full scan mode was time-of-flight (TOF-MS) with a scan time of 1.0000 second, mass range between 50 and 1500 Da, and duration time of 30 min. Source parameters were as follows: Ion source gas 1 (GS1) 80; Ion source gas 2 (GS2) 10; Curtain gas (CUR) 30; Nebulizer Current (NC) -3.0; Temperature 400°C; Declustering Potential (DP) -60; Focusing Potential (FP) -265; Declustering Potential 2 (DP2) -15. In MS/MS mode, scan type was Product Ion, scan time was 1.0000 second, scan range was 50 to 1500 Da and duration time was 30 min. All source parameters are the same as above, with collision energies (CE) of - 35 V and collision gas (CAD, nitrogen) of 5.

4.2 Aqueous extracts



[0080] 10 µL of C-ACN fractions (aqueous extracts) of serum from five pancreatic cancer samples and five normal samples were directly injected into HPLC (Agilent 1100) equipped with a Meta Sil AQ column (3 µm, 100 x 2.0 mm, Varian) for full scan and product ion scan (MS/MS) at a flow rate of 0.18 mL/min. Solvent A: H2O- MeOH-formic acid (94.9 : 5 : 0.1, v/v/v) and solvent B: MeOH-formic acid (99.9 : 0.1, v/v) were used as the mobile phase; the gradient solvent program was applied starting from 100% of A to 80% of B and 20% of A at 11 min, then held up to 20 min, then to 100% of B at 30 min, then held up to 45 min. Eluate from the HPLC was analyzed in negative and positive modes, using an Applied Biosystem (AB) QSTAR® XL mass spectrometer fitted with an ESI source. The scan type in full scan mode was time-of-flight (TOF-MS) with a scan time of 1.0000 second, mass range between 50 and 1500 Da, and duration time of 60 min. Source parameters are as follows: Ion source gas 1 (GS1), 65; Ion source gas 2 (GS2), 75; Curtain gas (CUR), 30; Temperature 425°C; for negative mode: Ion Spray (IS), - 4200V; Declustering Potential (DP), -60; Focusing Potential (FP), -265; Declustering Potential 2 (DP2), -15; and for positive mode: Ion Spray (IS), 5500V; Declustering Potential (DP), 60; Focusing Potential (FP), 265; Declustering Potential 2 (DP2), 15. In MS/MS mode, the scan type was Product Ion, scan time was set as 1.0000 second, scan range was 50 to 1500 Da and duration time was 60 min. All source parameters are the same as above, with collision energy (CE) of -30 V and +30V, respectively, and collision gas (CAD, nitrogen) of 5.

5. LC-MS/MS flow injection analyses.



[0081] All LC-MS/MS analyses were performed according to Goodenowe et al. (23) with the following modifications. Specifically, analyses were performed using a triple quadrupole mass spectrometer (4000 Q TRAP, Applied Biosystems) coupled with an Agilent 1100 LC system.

5.1 MRM for C36 markers



[0082] Sample was prepared by adding 15 µL of internal standard (0.1 µg/mL of (24-13C)-Cholic Acid (Cambridge Isotope Laboratories, Andover, MA) in methanol) to 120 µL ethyl acetate fraction of each sample. 100 µL of sample was injected by flow injection analysis (FIA), and monitored under negative Atmospheric Pressure Chemical Ionization (APCI) mode. The method was based on multiple reaction monitoring (MRM) of one parent/fragment transition for each metabolite and (24-13C)-Cholic Acid (Table 3).
Table 3. List of C36 markers monitored in negative mode (organic fraction) with their formulae and transitions
NameMassPredicted formulaMRM transitions
"558" 558.4 C36H62O4 557.4 / 495.4
"574" 574.5 C36H62O5 573.5 / 511.4
"576" 576.5 C36H64O5 575.5 / 513.5
"578" 578.5 C36H66O5 577.5 / 515.4
"592" 592.5 C36H64O6 591.5 / 555.4
"594" 594.5 C36H66O6 593.5 / 557.5
"596" 596.5 C36H68O6 595.5 / 559.5


[0083] Each transition was scanned for 70 ms. 100% MeOH at a flow rate of 360 µL/min was used as the mobile phase. The source parameters were set as follows: CUR: 10.0, CAD: 8.0, NC: -4.0, TEM: 400, GS1: 30, GS2: 50, interface heater on. A standard curve was generated for all analytes to verify instrument linearity by serial dilution of (24-13C)-Cholic Acid in extracted commercial serum matrix (ethyl acetate fraction). All samples were analyzed in a randomized blinded manner and were bracketed by known serum standard dilutions. All standard curves had r2 values > 0.98.

5.2 MRM for choline-related compounds



[0084] 12 µL of C-ACN fraction was mixed with 108 µL mobile phase and 15 µL reserpine as an internal standard. Mobile phase consists of 75% acetonitrile and 25% of 1% formic acid in ddH2O. 100 µL of sample was injected by flow injection analysis (FIA), and monitored under positive or negative Ion Electrospray (ESI) mode. The method was based on multiple reaction monitoring (MRM) of one parent / fragment transition for each metabolite and reserpine (Table 4). The negative ESI mode transitions for phosphatidylcholines have been selected as follows: formate adduct and qualifier (both common to same mass phosphatidylcholines), and sn-2 fatty acid (specific to individual phosphatidylcholines).









[0085] Each transition was scanned for 70 ms. Mobile phase was used at a flow rate of 60 µL/min. The source parameters were set as follows: CUR: 10.0, IS: 5500.0, CAD: 10.0, TEM: 500, GS1: 30, GS2: 50, interface heater on. A standard curve was generated for all analytes to verify instrument linearity by serial dilution of C-ACN fraction of Randox (Human Serum Precision Control Level II) with constant concentration of reserpine. All samples were analyzed in a randomized blinded manner and were bracketed by known serum standard dilutions. All standard curves had r2 values > 0.98. For sphingomyelins, both MRM transitions were run and similarity was verified; the MRM transitions with m/z 168 were selected for the graphs reported.

6. Statistical Analysis



[0086] FTICR-MS accurate mass array alignments were performed using DISCOVAmetrics™ (Phenomenome Discoveries Inc., Saskatoon). Initial statistical analysis and graphs of FTICR-MS data were carried out using Microsoft Office Excel 2007. Two-tailed unpaired Student's t-tests were used for determination of significant difference between pancreatic cancer and controls. P-values of less than 0.05 were considered significant. ROC curves were generated from logistic regression analysis using SAS Enterprise Guide 4.2.

Results


FTICR Metabolomic Profiling


1A. FTICR data analysis



[0087] The experimental workflow generated for the studies described here is summarized in Figure 1.

[0088] Serum metabolites were captured through a liquid extraction process (see methods) and extracts were directly infused by electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) on an FTICR mass spectrometer. In total six separate analyses comprising combinations of extracts and ionization modes were obtained for each sample:

Aqueous Extract

  1. 1. Positive ESI (analysis mode 1101)
  2. 2. Negative ESI (analysis mode 1102)

Organic Extract

3. Positive ESI (analysis mode 1201)

4. Negative ESI (analysis mode 1202)

5. Positive APCI (analysis mode 1203)

6. Negative APCI (analysis mode 1204)



[0089] Separately for each project, the resulting spectral data of all the subjects was aligned within 1 ppm mass accuracy, background peaks were subtracted, and a two-dimensional array table comprising the intensities of each of the sample-specific spectral peaks was created using custom informatics software DISCOVAmetrics™.

[0090] In the metabolomic profile thus created, a Boolean filtering sorted the masses that differentiate the "pancreatic cancer" condition from the "control" condition. Table 5 lists the 362 masses that discriminate the pancreatic cancer samples from the control samples with a p-value lower than 0.05.
Table 5: Accurate mass features differing between clinically diagnosed pancreatic cancer patients and controls (p<0.05).
Detected MassAnalysis ModeP valueRatio pancreatic cancer/ controlAVG controlsAVG pancreatic cancer
786.593 1101 5.24E-14 0.30 15.59 4.61
595.4897 1202 7.48E-14 0.36 5.30 1.88
594.4863 1202 9.91E-14 0.31 14.02 4.40
785.5913 1101 1.39E-13 0.27 33.03 8.93
808.5783 1101 1.63E-13 0.30 15.62 4.75
702.5709 1101 2.39E-13 0.47 9.60 4.48
780.5452 1101 3.57E-13 0.30 22.48 6.68
807.5734 1101 5.49E-13 0.28 34.47 9.70
576.4751 1202 5.61E-13 0.40 4.85 1.93
541.3134 1101 6.66E-13 0.37 6.27 2.30
804.5422 1101 2.04E-12 0.34 6.56 2.26
779.5405 1101 2.66E-12 0.26 53.60 13.93
812.6774 1101 3.81E-12 0.54 5.11 2.77
758.5626 1101 1.17E-11 0.31 23.80 7.28
783.569 1101 1.19E-11 0.36 13.94 4.98
596.5017 1202 2.03E-11 0.36 11.29 4.04
803.5373 1101 2.11E-11 0.33 13.46 4.48
810.5867 1101 3.75E-11 0.39 7.46 2.90
724.5477 1101 3.75E-11 0.49 8.07 3.98
519.3295 1101 7.30E-11 0.41 6.62 2.71
757.556 1101 1.04E-10 0.27 58.48 16.01
600.5117 1203 2.61E-10 1.40 124.61 174.25
809.5796 1101 2.67E-10 0.43 15.81 6.73
829.5516 1101 2.82E-10 0.41 7.32 2.98
523.3661 1101 3.97E-10 0.49 4.95 2.44
784.5742 1101 4.29E-10 0.42 6.06 2.54
806.5632 1101 4.47E-10 0.37 13.07 4.77
601.5151 1203 5.26E-10 1.39 52.15 72.62
805.5549 1101 6.17E-10 0.35 27.28 9.66
833.5864 1101 9.05E-10 0.43 9.23 4.01
723.5203 1202 1.35E-09 0.55 6.92 3.80
749.5374 1202 1.36E-09 0.46 11.63 5.39
782.5612 1101 1.71E-09 0.37 19.17 7.08
827.5401 1101 1.73E-09 0.39 12.52 4.83
801.5147 1101 2.21E-09 0.39 6.00 2.34
834.5868 1101 2.61E-09 0.45 4.76 2.16
781.5566 1101 4.33E-09 0.33 44.71 14.95
828.5397 1101 4.68E-09 0.41 6.34 2.61
831.5652 1101 4.96E-09 0.51 8.53 4.33
592.4709 1202 5.85E-09 0.37 4.97 1.85
759.5383 1101 9.35E-09 0.53 11.72 6.21
240.0997 1202 1.36E-08 0.45 15.83 7.05
1038.915 1203 1.58E-08 0.39 6.28 2.45
588.3269 1202 1.79E-08 0.54 6.01 3.25
587.3214 1202 2.93E-08 0.50 19.54 9.71
545.3454 1101 4.01E-08 0.54 4.67 2.53
382.1601 1201 4.69E-08 1.94 12.90 24.98
326.2048 1202 5.08E-08 2.58 3.05 7.87
360.1782 1201 7.10E-08 1.52 5.83 8.85
280.2404 1202 7.61E-08 2.44 16.22 39.65
281.2432 1202 9.00E-08 2.38 3.68 8.77
214.1204 1203 1.01E-07 1.67 6.67 11.12
302.222 1201 1.19E-07 2.58 13.20 34.07
282.2558 1202 1.47E-07 2.40 31.82 76.36
575.4985 1203 1.73E-07 1.25 61.51 76.85
855.5721 1101 1.74E-07 0.39 4.56 1.77
283.2591 1202 1.89E-07 2.45 6.15 15.06
759.5733 1101 2.33E-07 0.39 31.65 12.32
760.5792 1101 2.65E-07 0.45 13.99 6.28
574.4952 1203 2.84E-07 1.25 162.04 201.84
517.3141 1101 4.79E-07 0.57 16.74 9.61
283.2595 1204 5.17E-07 1.41 11.22 15.84
262.0814 1201 5.40E-07 0.44 10.65 4.71
811.5729 1202 5.45E-07 0.65 6.67 4.34
1040.933 1203 6.01E-07 0.58 10.18 5.93
328.2627 1202 6.71E-07 2.06 16.89 34.73
326.2458 1202 7.57E-07 2.06 7.72 15.91
282.2559 1204 8.36E-07 1.46 56.00 81.98
564.5121 1202 9.99E-07 3.32 3.17 10.53
276.0948 1201 1.00E-06 1.22 9.93 12.12
775.5522 1202 1.02E-06 0.51 7.83 4.02
811.608 1101 1.38E-06 0.49 4.23 2.09
824.69 1203 1.74E-06 0.61 5.01 3.03
495.3325 1101 2.06E-06 0.58 17.63 10.17
508.2256 1201 2.26E-06 1.43 4.64 6.65
562.4962 1202 2.46E-06 2.91 3.06 8.90
329.2658 1202 2.48E-06 1.99 3.85 7.68
518.321 1101 2.57E-06 0.63 4.70 2.95
1016.931 1203 3.03E-06 0.57 58.00 32.85
1017.935 1203 3.05E-06 0.57 45.70 26.16
360.1792 1202 5.30E-06 1.49 36.91 54.94
566.3403 1202 5.63E-06 0.67 29.61 19.78
565.3373 1202 5.77E-06 0.65 118.24 77.43
300.2067 1201 6.14E-06 2.41 2.57 6.20
771.5699 1202 7.10E-06 0.69 6.90 4.76
116.5696 1202 7.19E-06 1.22 5.54 6.78
468.3807 1202 8.42E-06 0.64 5.22 3.33
361.1828 1202 8.72E-06 1.50 7.05 10.58
428.3647 1201 9.73E-06 0.66 10.24 6.78
1255.153 1203 1.04E-05 0.59 7.38 4.36
1200.088 1203 1.52E-05 0.55 8.45 4.64
540.4381 1202 1.58E-05 0.61 5.38 3.27
851.7107 1203 1.63E-05 0.72 8.61 6.17
1018.944 1203 1.71E-05 0.64 38.50 24.48
505.3146 1202 1.95E-05 0.73 6.13 4.50
496.3373 1101 2.20E-05 0.65 4.79 3.10
569.3682 1202 2.30E-05 0.72 39.22 28.31
330.2559 1202 2.43E-05 2.07 4.21 8.70
808.5791 1201 2.54E-05 0.71 46.64 33.33
572.4798 1203 3.15E-05 1.20 18.65 22.42
765.5678 1201 3.27E-05 0.77 5.30 4.06
786.5972 1201 3.39E-05 0.72 29.54 21.13
1228.117 1203 3.63E-05 0.64 24.71 15.87
791.5841 1201 4.14E-05 0.75 5.81 4.35
1229.12 1203 4.19E-05 0.61 13.11 7.98
850.7061 1203 4.30E-05 0.72 13.39 9.66
830.5591 1201 4.47E-05 0.70 13.41 9.34
1201.09 1203 4.63E-05 0.50 9.82 4.92
802.5291 1201 4.75E-05 0.60 12.32 7.38
1041.935 1203 5.64E-05 0.65 7.35 4.79
260.0033 1101 6.07E-05 1.35 7.68 10.34
785.5929 1201 6.59E-05 0.71 70.58 50.30
1227.112 1203 6.68E-05 0.65 32.33 20.98
826.5561 1202 7.07E-05 0.50 15.42 7.74
1199.084 1203 7.39E-05 0.63 10.34 6.53
825.5522 1202 8.54E-05 0.47 32.08 15.06
244.0554 1101 8.97E-05 1.36 8.98 12.19
602.5269 1203 9.14E-05 1.26 208.79 262.81
570.372 1202 9.17E-05 0.76 11.10 8.43
599.4993 1203 9.78E-05 1.25 15.04 18.83
1019.951 1203 9.91E-05 0.67 21.64 14.54
1039.705 1201 1.01E-04 0.73 4.53 3.29
573.4833 1203 1.03E-04 1.19 7.23 8.57
801.5262 1201 1.06E-04 0.55 30.09 16.68
603.5297 1203 1.09E-04 1.25 86.64 108.65
1230.125 1203 1.10E-04 0.50 5.34 2.69
317.9613 1101 1.28E-04 1.39 5.16 7.18
807.5739 1201 1.34E-04 0.74 115.80 86.22
598.4955 1203 1.47E-04 1.25 37.42 46.65
368.1057 1202 1.61E-04 1.35 4.89 6.61
280.2403 1204 1.62E-04 1.24 31.44 39.14
823.5411 1201 1.65E-04 0.77 5.10 3.95
1039.921 1203 1.68E-04 0.52 4.79 2.48
284.9259 1203 1.69E-04 1.26 6.30 7.96
270.0867 1201 1.72E-04 1.19 20.78 24.82
578.5169 1203 1.75E-04 1.33 21.27 28.33
948.836 1204 1.83E-04 0.67 10.17 6.85
446.3395 1202 1.85E-04 0.70 5.27 3.69
577.5149 1203 1.90E-04 1.23 119.24 147.02
633.3245 1202 2.02E-04 0.68 8.26 5.63
590.3408 1202 2.15E-04 0.75 11.13 8.39
837.7209 1204 2.38E-04 0.61 6.81 4.19
469.3616 1201 2.44E-04 0.72 5.54 3.97
468.3581 1201 2.46E-04 0.69 17.82 12.36
856.7505 1203 2.49E-04 1.22 205.07 250.07
576.5113 1203 2.52E-04 1.23 316.44 388.31
522.4639 1203 2.60E-04 0.62 16.82 10.39
787.5989 1101 2.64E-04 0.63 9.66 6.13
589.3368 1202 2.93E-04 0.74 35.28 26.06
300.1186 1202 3.03E-04 1.28 11.97 15.32
831.5997 1202 3.11E-04 0.66 72.40 47.60
270.0323 1101 3.20E-04 1.34 13.66 18.30
281.2435 1204 3.34E-04 1.23 6.03 7.44
84.0575 1202 3.34E-04 1.22 6.64 8.13
856.754 1204 3.41E-04 1.22 44.96 54.67
922.8222 1204 3.47E-04 0.53 8.16 4.32
832.6031 1202 3.48E-04 0.67 34.86 23.36
1202.098 1203 3.56E-04 0.58 7.40 4.27
829.5532 1201 3.74E-04 0.69 34.32 23.60
857.7543 1203 3.97E-04 1.21 114.80 138.68
327.9902 1101 4.25E-04 1.36 5.92 8.05
304.2407 1202 4.27E-04 1.46 8.00 11.67
538.4237 1202 4.40E-04 0.63 6.33 3.97
1020.957 1203 4.47E-04 0.69 7.99 5.52
1250.108 1203 4.49E-04 0.56 5.60 3.16
1253.134 1203 4.55E-04 0.63 11.69 7.34
847.531 1201 4.82E-04 0.78 5.86 4.56
200.1389 1202 5.57E-04 1.34 6.87 9.21
350.2222 1201 5.59E-04 1.74 4.00 6.97
857.7574 1204 5.87E-04 1.20 25.77 30.92
203.1155 1101 6.19E-04 1.49 7.01 10.46
197.0896 1101 7.68E-04 1.34 5.71 7.68
523.4675 1203 8.74E-04 0.64 5.97 3.84
191.5055 1203 9.26E-04 1.31 9.55 12.54
1011.669 1201 9.48E-04 0.78 6.76 5.27
838.7284 1204 9.60E-04 0.62 4.89 3.04
338.0189 1101 9.69E-04 1.34 7.96 10.70
202.045 1101 1.04E-03 1.32 33.71 44.61
302.0945 1201 1.06E-03 1.26 10.37 13.02
873.7819 1203 1.08E-03 1.23 8.50 10.45
1225.096 1203 1.15E-03 0.71 25.00 17.85
446.2526 1204 1.15E-03 2.33 2.87 6.69
898.7043 1203 1.31E-03 0.56 3.34 1.86
382.1083 1101 1.33E-03 1.56 5.59 8.70
970.733 1204 1.38E-03 0.55 6.35 3.49
715.6959 1101 1.42E-03 2.04 5.53 11.27
302.2457 1202 1.45E-03 1.23 9.18 11.33
851.7337 1204 1.56E-03 0.65 5.80 3.78
874.787 1203 1.64E-03 1.29 4.60 5.92
721.5035 1204 1.69E-03 0.48 3.57 1.70
630.799 1101 1.70E-03 2.32 25.23 58.48
1252.12 1203 1.70E-03 0.64 7.72 4.94
268.1284 1201 1.77E-03 1.34 8.63 11.54
780.5454 1201 1.80E-03 0.77 71.95 55.17
750.5425 1204 1.91E-03 0.46 8.04 3.67
749.5388 1204 1.96E-03 0.43 17.32 7.50
947.8263 1204 1.97E-03 0.77 15.18 11.72
853.573 1202 2.04E-03 0.67 26.48 17.62
779.5416 1201 2.06E-03 0.80 169.63 135.27
1224.096 1203 2.07E-03 0.70 9.01 6.26
838.7435 1203 2.13E-03 1.21 8.28 10.01
1226.599 1203 2.20E-03 0.73 20.59 15.07
635.7525 1101 2.21E-03 2.25 34.61 77.78
871.5547 1202 2.24E-03 0.80 8.04 6.45
743.5396 1202 2.25E-03 0.80 14.69 11.72
924.7233 1203 2.30E-03 0.61 9.77 5.92
801.5523 1202 2.44E-03 0.72 7.08 5.07
615.3535 1202 2.48E-03 0.77 7.10 5.50
541.3361 1202 2.58E-03 0.79 104.55 82.62
921.813 1204 2.60E-03 0.75 19.33 14.41
520.448 1203 2.72E-03 0.69 6.51 4.49
903.7636 1204 2.80E-03 1.19 105.15 125.04
744.5425 1202 2.99E-03 0.78 6.66 5.18
318.0931 1202 3.14E-03 0.82 20.17 16.54
758.562 1201 3.16E-03 0.77 64.96 49.94
1254.137 1203 3.19E-03 0.71 8.83 6.24
868.7704 1204 3.38E-03 0.68 3.94 2.67
606.5591 1203 3.47E-03 0.44 4.80 2.11
998.7566 1204 3.50E-03 0.74 10.82 7.99
329.2439 1202 3.53E-03 1.46 7.29 10.65
594.4852 1204 3.63E-03 0.59 11.81 7.00
757.5587 1201 3.64E-03 0.80 161.90 129.94
925.727 1203 3.69E-03 0.58 6.16 3.57
996.7518 1204 3.73E-03 0.67 11.29 7.51
804.5714 1202 3.76E-03 0.74 81.05 59.96
595.4892 1204 3.81E-03 0.61 4.70 2.86
328.2408 1202 3.92E-03 1.46 28.17 41.15
1223.09 1203 4.15E-03 0.73 9.81 7.16
803.5677 1202 4.22E-03 0.74 169.16 125.07
752.5574 1204 4.28E-03 0.54 7.20 3.87
328.2403 1204 4.36E-03 1.40 5.10 7.15
332.1473 1202 4.52E-03 1.21 7.74 9.34
631.798 1101 4.72E-03 1.92 3.52 6.76
775.5532 1204 5.06E-03 0.46 14.20 6.58
777.5709 1204 5.40E-03 0.54 6.39 3.44
636.7532 1101 5.40E-03 2.05 4.43 9.09
867.7649 1204 5.52E-03 0.71 7.81 5.51
597.5066 1204 5.52E-03 0.62 4.55 2.81
908.7907 1204 5.56E-03 0.68 9.63 6.54
763.5578 1204 5.62E-03 0.57 3.17 1.79
596.5027 1204 5.84E-03 0.60 11.58 6.97
777.0402 1204 6.01E-03 0.52 6.89 3.59
542.3394 1202 6.53E-03 0.83 23.67 19.76
723.521 1204 6.76E-03 0.57 7.41 4.19
627.5656 1203 6.89E-03 1.26 5.47 6.87
657.7337 1101 6.92E-03 2.06 20.13 41.54
255.1161 1201 7.01E-03 1.14 27.21 30.97
751.5511 1202 7.02E-03 0.64 7.10 4.57
751.5539 1204 7.02E-03 0.53 15.18 8.11
827.5678 1202 7.35E-03 0.71 67.73 47.91
658.7372 1101 7.35E-03 1.91 2.70 5.15
804.5456 1201 7.48E-03 0.79 26.05 20.68
670.5696 1203 7.50E-03 0.68 10.09 6.81
628.5438 1203 7.58E-03 1.18 7.10 8.39
613.3379 1202 7.62E-03 0.81 36.81 29.89
645.7958 1101 7.76E-03 2.00 3.94 7.88
850.7326 1204 7.89E-03 0.70 6.57 4.60
923.7295 1204 7.93E-03 0.83 13.51 11.27
579.5313 1203 8.30E-03 0.70 12.95 9.10
748.527 1204 8.77E-03 0.52 5.95 3.07
783.5755 1201 9.29E-03 0.79 37.00 29.41
828.5721 1202 9.38E-03 0.73 31.90 23.31
578.5284 1203 9.41E-03 0.71 33.06 23.56
894.7911 1204 9.58E-03 0.77 18.12 14.02
910.7272 1204 9.85E-03 0.83 10.17 8.45
112.0974 1201 1.01E-02 1.19 7.97 9.46
857.6923 1204 1.02E-02 0.49 2.58 1.26
1012.781 1204 1.03E-02 0.71 7.04 4.99
733.5054 1204 1.06E-02 1.35 6.61 8.91
829.5843 1202 1.08E-02 0.75 38.25 28.65
855.7436 1204 1.09E-02 1.15 12.81 14.70
997.7397 1204 1.09E-02 0.69 10.03 6.88
984.7406 1204 1.13E-02 0.73 7.01 5.09
735.6582 1204 1.13E-02 0.74 7.76 5.74
830.5879 1202 1.18E-02 0.77 18.18 13.95
775.5532 1203 1.19E-02 0.57 2.87 1.64
902.7629 1204 1.28E-02 1.16 113.63 131.44
874.7066 1203 1.29E-02 0.76 8.79 6.67
861.749 1203 1.30E-02 0.79 7.93 6.25
243.0714 1101 1.32E-02 1.24 7.52 9.33
256.2403 1202 1.33E-02 1.21 10.40 12.63
766.4792 1204 1.34E-02 0.70 5.88 4.13
214.1205 1201 1.34E-02 1.15 22.10 25.34
854.7397 1204 1.41E-02 1.15 19.42 22.33
1249.105 1203 1.45E-02 0.72 6.51 4.67
795.5181 1201 1.46E-02 0.84 11.33 9.57
854.7358 1203 1.48E-02 1.17 164.45 192.27
946.8194 1204 1.55E-02 0.81 26.05 21.20
719.6256 1204 1.56E-02 1.30 8.46 10.99
919.6496 1101 1.56E-02 1.57 1.25 1.96
1251.119 1203 1.58E-02 0.72 9.37 6.76
855.7392 1203 1.60E-02 1.17 95.69 111.76
671.5731 1203 1.67E-02 0.72 5.22 3.74
839.7464 1203 1.71E-02 1.19 5.07 6.01
933.8137 1204 1.72E-02 0.80 21.43 17.14
725.7228 1101 1.74E-02 1.76 4.71 8.28
916.7735 1204 1.78E-02 1.15 137.59 158.45
468.2336 1201 1.80E-02 1.36 22.33 30.32
804.7208 1203 1.91E-02 0.70 5.47 3.81
304.2375 1201 1.92E-02 1.71 7.28 12.43
922.7285 1204 1.92E-02 0.81 15.80 12.85
609.3259 1202 1.93E-02 0.83 8.39 6.98
755.5497 1201 1.98E-02 0.84 5.36 4.49
972.7481 1204 2.01E-02 0.79 9.99 7.91
827.7082 1203 2.03E-02 0.85 9.17 7.79
494.4321 1203 2.04E-02 0.59 3.30 1.96
232.1309 1202 2.05E-02 1.09 227.50 248.81
803.5414 1201 2.06E-02 0.81 66.42 53.85
826.7047 1203 2.17E-02 0.85 15.48 13.19
720.6272 1204 2.20E-02 1.27 4.46 5.67
807.5764 1203 2.20E-02 0.71 3.47 2.46
922.7081 1203 2.29E-02 0.62 2.64 1.62
986.7568 1204 2.29E-02 0.83 9.18 7.65
348.1191 1201 2.29E-02 0.79 5.78 4.58
813.5888 1202 2.33E-02 0.84 5.27 4.43
233.1345 1202 2.41E-02 1.10 27.50 30.33
784.5806 1201 2.48E-02 0.85 14.21 12.08
973.7482 1204 2.50E-02 0.83 9.22 7.69
724.5252 1204 2.56E-02 0.69 3.95 2.71
1011.77 1204 2.62E-02 0.72 6.37 4.59
858.7644 1203 2.64E-02 1.15 121.34 139.48
835.598 1201 2.84E-02 0.86 6.87 5.90
469.237 1201 2.88E-02 1.28 5.11 6.54
773.5276 1204 2.94E-02 0.74 12.51 9.32
889.7537 1204 2.97E-02 1.13 79.81 90.07
819.5177 1201 3.10E-02 0.86 5.89 5.09
875.7108 1203 3.11E-02 0.78 5.01 3.89
781.5029 1204 3.18E-02 0.75 6.97 5.26
793.7091 1101 3.19E-02 1.68 4.56 7.67
866.7585 1204 3.28E-02 0.79 17.66 13.95
785.5931 1203 3.30E-02 0.78 5.98 4.67
485.904 1101 3.46E-02 1.14 7.86 8.96
1253.123 1201 3.47E-02 0.69 3.56 2.45
481.315 1202 3.56E-02 0.90 9.09 8.20
745.5631 1203 3.64E-02 1.47 7.05 10.35
851.6694 1101 3.64E-02 1.59 1.78 2.84
1010.765 1204 3.71E-02 0.72 8.26 5.97
999.7632 1204 3.72E-02 0.81 8.01 6.52
907.7847 1204 3.78E-02 0.81 23.16 18.73
254.1127 1201 3.80E-02 1.13 215.52 243.63
898.7325 1204 3.80E-02 0.88 13.60 11.95
418.2204 1204 4.01E-02 0.61 12.12 7.44
522.4638 1201 4.01E-02 0.67 3.86 2.59
937.7542 1204 4.06E-02 0.88 18.10 15.92
484.3527 1201 4.09E-02 0.74 11.34 8.43
366.3593 1101 4.15E-02 1.81 2.10 3.80
852.7368 1204 4.16E-02 0.88 7.42 6.52
831.572 1201 4.16E-02 0.84 30.16 25.20
746.5128 1204 4.27E-02 1.27 10.08 12.78
796.5212 1201 4.29E-02 0.85 4.71 3.98
1247.084 1203 4.37E-02 0.71 3.97 2.83
889.8147 1203 4.41E-02 0.65 1.97 1.28
681.5858 1204 4.42E-02 0.78 4.60 3.60
746.5705 1204 4.44E-02 1.31 7.89 10.30
865.752 1204 4.49E-02 0.81 28.03 22.72
960.7432 1204 4.59E-02 0.87 10.60 9.21
950.7364 1203 4.73E-02 0.72 14.31 10.32
78.0516 1202 4.75E-02 1.09 4.89 5.32
774.5419 1204 4.76E-02 0.72 6.38 4.61
428.2404 1201 4.93E-02 1.35 3.83 5.15
879.7629 1204 4.97E-02 0.79 24.59 19.43
909.7882 1203 4.98E-02 1.12 18.12 20.25


[0091] Principal Component Analysis was then performed on the whole populations (90 samples) upon the 362 markers through DISCOVAmetrics™. Figure 2 illustrates the separation resulting from this unsupervised classification between pancreatic cancer (with individual samples in grey) and controls (in black).

[0092] 13C isotopic peaks were identified, such as the first two markers, 786.593 and 595.4897, which are the isotopic peaks of the fourth and third markers respectively, 785.5913 and 594.4863. Table 6 lists the 20 best biomarkers without 13C isotopic peaks. All of these markers except 600.5117 have decreased levels in the pancreatic cancer cohort relative to controls.
Table 6. List of the 20 best FTICR biomarkers of pancreatic cancer, sorted by mass within their analysis mode.
Analysis ModeDetected MassP valueRatio pancreatic cancer/ control
  519.3295 7.30E-11 0.41
  523.3661 3.97E-10 0.49
  541.3134 6.66E-13 0.37
  702.5709 2.39E-13 0.47
  724.5477 3.75E-11 0.49
  757.556 1.04E-10 0.27
  779.5405 2.66E-12 0.26
1101 783.569 1.19E-11 0.36
785.5913 1.39E-13 0.27
  803.5373 2.11E-11 0.33
  805.5549 6.17E-10 0.35
  807.5734 5.49E-13 0.28
  809.5796 2.67E-10 0.43
  812.6774 3.81E-12 0.54
  829.5516 2.82E-10 0.41
  833.5864 9.05E-10 0.43
1202 576.4751 5.61E-13 0.40
594.4863 9.91E-14 0.31
596.5017 2.03E-11 0.36
1203 600.5117 2.61E-10 1.40


[0093] Principal Component Analysis was then performed on the whole populations upon these 20 markers through DISCOVAmetrics. Figure 3 illustrates (a) the separation resulting from this unsupervised classification between pancreatic cancer (with individual samples in grey) and controls (in black), as well as (b) the relative intensities of these 20 biomarkers in both populations.

1B. Logistic regression analysis



[0094] Receiver Operating Characteristic (ROC) analysis was performed on these 20 best FTICR biomarkers. Table 7 summarizes the resulting Areas Under the Curves (AUCs).
Table 7. List of FTICR biomarkers sorted byp-values with corresponding AUCs.
MassesP-valueArea Under the Curve
594.4863 9.91E-14 0.961
785.5913 1.39E-13 0.932
702.5709 2.39E-13 0.909
807.5734 5.49E-13 0.933
576.4751 5.61E-13 0.925
541.3134 6.66E-13 0.921
779.5405 2.66E-12 0.934
812.6774 3.81E-12 0.895
783.569 1.19E-11 0.906
596.5017 2.03E-11 0.932
803.5373 2.11E-11 0.924
724.5477 3.75E-11 0.878
519.3295 7.30E-11 0.899
757.556 1.04E-10 0.916
600.5117 2.61E-10 0.855
809.5796 2.67E-10 0.895
829.5516 2.82E-10 0.877
523.3661 3.97E-10 0.877
805.5549 6.17E-10 0.897
833.5864 9.05E-10 0.888


[0095] At least nine markers display AUC>0.90, which indicates an excellent specificity and sensitivity. Figure 4 illustrates each ROC along with the distribution of sample values for the first six best biomarkers (p-value < E-12).

[0096] There are multiple ways of combining the best biomarkers in the perspective of obtaining a very high sensitivity and specificity with few of them. For example the combination of the six best biomarkers as classified by p-values displays an AUC of 0.985 (Figure 5), with an optimal specificity and sensitivity pair of 92.5% and 88% respectively.

1C. Formula prediction



[0097] Computational assignments of reasonable molecular formulae were performed for the 20 best biomarkers. The assignments were based on a series of mathematical and chemometric rules as previously described (24), which rely on high mass accuracy for precise prediction. The algorithm computes the number of carbons, hydrogens, oxygens, and other elements, based on their exact mass, which can be assigned to a detected accurate mass within defined constraints. Logical putative molecular formulae were computed in Table 8.
Table 8. Putative molecular formulae for the 20 best FTICR biomarkers.
Analysis ModeDetected MassPutative formulaP valueRatio pancreatic cancer / control
  519.3295 C26H60NO7P 7.30E-11 0.41
  523.3661 C26H64NO7P 3.97E-10 0.49
  541.3134 C28H48NO7P or C26H49NO7PNa 6.66E-13 0.37
  702.5709 C39H79N2O6P 2.39E-13 0.47
  724.5477 C41H77N2O6P or C39H78N2O6PNa 3.75E-11 0.49
  757.556 C42H80NO8P 1.04E-10 0.27
  779.5405 C44H78NO8P 2.66E-12 0.26
  783.569 C44H82NO8P 1.19E-11 0.36
1101 785.5913 C44H84NO8P 1.39E-13 0.27
  803.5373 C46H78NO8P or C44H79NO8PNa 2.11E-11 0.33
  805.5549 C46H80NO8P 6.17E-10 0.35
  807.5734 C46H82NO8P 5.49E-13 0.28
  809.5796 C46H84NO8P 2.67E-10 0.43
  812.6774 C47H93N2O6P 3.81E-12 0.54
  829.5516 C48H80NO8P or C46H81NO8PNa 2.82E-10 0.41
  833.5864 C48H84NO8P or C46H86NO8PNa 9.05E-10 0.43
1202 576.4751 C36H64O5 5.61E-13 0.40
594.4863 C36H66O6 9.91E-14 0.31
596.5017 C36H68O6 2.03E-11 0.36
1203 600.5117 C39H68O4 2.61E-10 1.40


[0098] Four main families seem to emerge, three in 1101 analysis mode and one in 1202 analysis mode. In 1101 mode they are reminiscent of choline-related compounds, namely lysophosphatidylcholines for compounds in NO7P phosphatidylcholines for compounds in NO8P, and sphingomyelins for compounds in N2O6P. The next step was the structural validation of these 16 putative choline-related compounds, the three compounds in C36 and the additional compound in 1203 mode.

HPLC-Coupled Tandem Mass Spectrometry



[0099] Tandem mass spectrometric fragmentation fingerprints were generated for the markers mentioned above.

2A. 1202/1204 compounds in C36



[0100] Selected ethyl acetate extracts of serum from the control cohort used in the FTICR-MS work were re-analyzed using HPLC coupled to a quadrupole time-of-flight (Q-TOF) mass spectrometer in APCI negative ion mode (1202 mode) for the three C36 biomarkers, "576", "594" and "596". For a retention time around 25-27 minutes, the MS/MS and MS3 fragmentation data were dominated by peaks resulting from losses of H2O (m/z 557, 575 and 577 respectively) and losses of two molecules of H2O (m/z 539, 557 and 559 respectively), with smaller peaks corresponding to losses of CO2 (m/z 531, 549 and 551 respectively) and losses of CO2 and H2O (m/z 513, 531 and 533) (Table 9; figures 6 to 12).
Table 9. Fragmentation pattern of biomarkers "576", "594" and "596" in negative APCI mode (with m/z 575, 593 and 595 respectively), with daughter ion relative abundance.
Parent mass576.5Parent mass594.5Parent mass596.5
Predicted formulaC36H64O5Predicted formulaC36H66O6Predicted formulaC36H68O6
m/z575m/z593m/z595
MassIntensityMassIntensityMassIntensity
495.4234 100 593.4734 100 279.2176 100
575.5086 100 575.4275 94 595.4591 86
513.4442 80 513.4442 65 315.2409 64
557.4564 80 371.3305 53 577.4549 55
539.4565 60 557.4476 53 515.4361 41
575.3825 60 315.2542 47 297.2472 36
97.0558 40 277.2144 41 559.452 36
403.3057 40 171.1025 35 595.6056 36
415.3021 40 201.101 35 281.228 27
459.3655 40 575.5266 35 313.2118 27
531.4755 40 279.2113 29 171.0829 23
71.0055 20 297.2407 24 576.4453 23
89.0176 20 513.5378 24 141.1259 18
101.0108 20 531.4495 24 577.5812 18
113.0104 20 557.5539 24 169.1396 14
119.0578 20 593.638 24 251.2339 14
123.0715 20 200.091 18 277.2081 14
125.0865 20 281.2217 18 373.3293 14
185.1142 20 313.2716 18 391.3588 14
197.1239 20 415.2715 18 594.507 14
205.193 20 433.3294 18 594.6352 14
251.2101 20 113.0862 12 125.0949 9
277.2081 20 139.1091 12 127.1136 9
279.2301 20 155.1033 12 153.1139 9
295.2963 20 195.1371 12 155.1126 9
297.2213 20 199.0942 12 207.214 9
371.2799 20 233.2058 12 239.2276 9
373.3873 20 251.2279 12 253.2247 9
387.3672 20 261.2057 12 261.2179 9
389.3049 20 263.2417 12 278.2338 9
417.3544 20 295.1996 12 295.2189 9
429.3153 20 311.1893 12 298.2186 9
431.3005 20 391.3737 12 372.3292 9
441.3348 20 403.3434 12 423.3793 9
445.3017 20 421.3739 12 497.4302 9
463.2347 20 495.4067 12 514.4141 9
529.4355 20 549.4484 12 515.5639 9
539.352 20 111.0599 6 516.4506 9
557.5893 20 125.0949 6 533.424 9
  127.1051 6 558.4582 9
141.0992 6 559.6117 9
169.1103 6 595.6698 9
183.0976 6 115.0181 5
    185.1039 6 143.099 5
    221.1523 6 185.1091 5
    283.2708 6 201.1223 5
    289.2268 6 202.1455 5
    309.3185 6 233.2287 5
    331.3406 6 235.147 5
    353.3364 6 239.0883 5
    373.322 6 249.1502 5
    389.3346 6 249.2509 5
    401.2808 6 263.2417 5
    417.3774 6 265.2183 5
    446.3477 6 281.3413 5
    451.3569 6 314.2888 5
    453.4963 6 361.3032 5
    514.4737 6 371.3305 5
    549.5451 6 373.5324 5
    559.0969 6 387.3451 5
    564.3806 6 405.3583 5
    568.1941 6 407.3632 5
    576.3011 6 433.306 5
    592.3951 6 438.3753 5
    594.26 6 483.4343 5
    594.4887 6 497.5474 5
        531.4495 5
        532.5142 5
        533.554 5
        533.6667 5
        540.2675 5
        541.4458 5
        549.6155 5
        551.5353 5
        558.3518 5
        560.3933 5
        561.2821 5
        577.7255 5
        594.9372 5


[0101] Among FTICR biomarkers in Table 5, the presence of other compounds in 1202 mode with a mass differing from the masses above only by two or four suggested that a whole family may be altered in pancreatic cancer. We therefore performed the same analysis as above for 574.5, 578.5, 592.5 and 558.4, respectively predicted to have a formula of C36H62O5, C36H66O5, C36H64O6 and C36H62O4 (Table 10; figures 9 to 12).
Table 10. Fragmentation pattern of biomarkers "558", "574", "578" and "592" in negative APCI mode, with daughter ion relative abundance.
Parent mass592.5Parent mass558.5Parent mass574.5Parent mass578.5
Predicted formulaC36H64O6Predicted formulaC36H62O4Predicted formulaC36H62O5Predicted formulaC36H66O5
m/z591m/z 557m/z573m/z577
MassIntensityMassIntensityMassIntensityMassIntensity
591.3998 100 495.4401 100 573.3857 100 515.402 100
171.0927 75 539.3868 40 125.0991 80 497.4302 67
201.0903 75 557.4298 40 511.3968 80 533.4673 67
511.3543 75 111.0836 30 555.3937 80 541.4196 67
573.4127 75 539.5089 30 171.1025 40 559.4431 67
125.0907 50 279.2176 20 223.1101 40 577.464 67
223.1661 50 97.0632 10 277.1956 40 251.1982 33
255.2113 50 205.1823 10 279.2301 40 283.2393 33
279.1987 50 221.1467 10 457.3247 40 297.1955 33
295.206 50 373.3365 10 493.3789 40 405.4037 33
403.3358 50 494.5049 10 511.5665 40 515.5469 33
497.4637 50 495.5737 10 529.3751 40 576.4904 33
515.4105 50 513.4187 10 537.3752 40    
529.4701 50     555.5264 40    
555.4025 50     113.0782 20    
559.4253 50     205.1823 20    
573.5834 50     295.2447 20    
591.6189 50     385.3239 20    
111.0639 25     389.3346 20    
113.0263 25     401.3484 20    
127.0882 25     415.3709 20    
203.1713 25     429.3309 20    
275.1623 25     443.3555 20    
277.2144 25     519.3887 20    
297.2213 25     574.2218 20    
313.245 25            


[0102] Several classes of metabolites, including various forms of steroids (or bile acids), fatty acids and fat soluble vitamins theoretically fit these elemental compositions.

Preliminary Isolation of C36 Markers and NMR Analysis



[0103] Ethyl acetate extracts of commercial serum subjected to reverse phase flash column chromatography with a step gradient elution; acetonitrile - water 25:75 to 100% acetonitrile resulted in a fraction found to be very rich in two pancreatic cancer C36 markers (m/z 594 and 596) when analyzed by LC/MS and MS/MS. The proton nuclear magnetic resonance (1H NMR) spectrum (Figure 13) of this fraction showed resonances characteristic of compounds with condensed ring systems thought to be pregnane ring. These two markers are thought to have a steroidal backbone and may probably belong to a class of compounds known as bile acids.

2B. Putative choline-related compounds



[0104] In table 6, 16 compounds showed putative formulas belonging to three choline-related families, namely lysophosphatidylcholines (LysoPC) for 519.3, 523.3, and 541.3, phosphatidylcholines (PtdCho) for 757.6, 779.5, 783.6, 785.6, 803.5, 805.6, 807.6, 809.6, 829.6 and 833.6, and sphingomyelins for 702.6, 724.5 and 812.7.

[0105] Selected aqueous extracts of serum from the control cohort used in the FTICR-MS work were re-analyzed using HPLC coupled to a quadrupole time-of-flight (Q-TOF) mass spectrometer in ESI positive ion mode (1101 mode). Multiple fragmentation patterns were observed for the three putative lysophosphatidylcholines (Figures 14 to 16).
Table 11. Fragmentation pattern of putative lysophosphatidylcholines in positive ESI mode, with daughter ion relative abundance.
Accurate / Exact MassMS/MS Parent ion (% intensity)Daughter ions (% intensity)Collision Energy
519.3295 520 (6%) 283 (8%), 209 (3%), 184 (100%), 177 (3%), 175 (8%), 130 (11%), 125 (8%), 109 (6%), 104 (14%), 86 (11%) 40V
523.3661 524 (20%) 506 (11%),185 (3%), 184 (100%), 401 (62%), 86 (2%) 30V
541.3134 542 (14%) Na adduct 483 (88%), 439 (6%), 359 (8%), 337 (22%), 177 (6%), 147 (72%), 421 (6%), 104 (100%), 86 (28%) 40V


[0106] The compound with a mass of 519.3 is confirmed to be a lysophosphatidylcholine with a fatty acid moiety of C18:2, and the two different retention times correspond to two different subspecies: the lower time shows the fragmentation pattern of the 1-linoleoyl-sn-glycero-3-phosphocholine (Figure 14a) whereas the higher shows the fragmentation pattern of the 2-linoleoyl-sn-glycero-3-phosphocholine (Figure 14b).

[0107] The compound with a mass of 523.3 is confirmed to be a lysophosphatidylcholine with a fatty acid moiety of C 18:0, and different retention times correspond to two different subspecies: the lower time shows the fragmentation pattern of the 2-stearoyl-sn-glycero-3-phosphocholine (Figure 15a) whereas the higher shows the fragmentation pattern of the 1-stearoyl-sn-glycero-3-phosphocholine (Figure 15b).

[0108] The compounds with a mass of 541.3 seem to be a mixture of the lysophosphatidylcholines with a fatty acid moiety of C20:5 and of the sodium adduct of the compounds with a mass of 519.3 above mentioned (Figure 16). The lowest retention time shows indeed two fragmentation patterns corresponding to 1-eicosapentaenoyl-sn-glycero-3-phosphocholine (Figure 16a) and 2-eicosapentaenoyl-sn-glycero-3-phosphocholine (Figure 16b). The two higher retention times observed reflect the two retention times observed for 519.3, with the lower corresponding to the fragmentation pattern of the sodium adduct of the 1-linoleoyl-sn-glycero-3-phosphocholine (Figure 16c), and the higher corresponding to the fragmentation pattern of the sodium adduct of the 2-linoleoyl-sn-glycero-3-phosphocholine (Figure 16d).

[0109] In order to further validate the chemical family of these putative lysophosphatidylcholines, the same samples were run in aqueous negative ESI mode (Table 12).
Table 12. Fragmentation pattern of putative lysophosphatidylcholines in negative ESI mode, with daughter ion relative abundance.
Accurate / Exact MassMS/MS Formic acid adduct (% intensity)Daughter ions (% intensity)Collision Energy
519.3295 564.3 (1%) 504 (5%), 279 (100%), 242 (2%), 224 (6%) -35V
523.3661 568.3 (1%) 508 (14%), 283 (100%), 242 (2%), 224 (6%) -35V


[0110] Selected aqueous extracts of serum from the control cohort used in the FTICR-MS work were re-analyzed using HPLC coupled to a Q-TOF mass spectrometer in ESI positive ion mode (1101 mode) for the putative PtdCho (Table 13).
Table 13. Fragmentation pattern of putative phosphatidylcholines in positive ESI mode, with daughter ion relative abundance.
Accurate / Exact MassMS/MS Parent ion (% intensity)Daughter ions (% intensity)Collision Energy
757.5560 758 (47%) 184 (100%) 30V
779.5405 780 (68%) 721 (7%), 712 (4%), 597 (4%), 184 (100%) 30V
783.5690 784 (55%) 184 (100%) 30V
785.5913 786 (66%) 184 (100%) 30V
803.5373 804 26%) (Na adduct) 745 (49%), 621 (100%), 599 (6%), 313 (4%), 147 (17%) 40V
805.5549 806 (95%) 747 (10%), 623 (6%), 184 (100%) 30V
807.5734 808 (80%) 749 (5%), 624 (5%), 184 (100%) 30V
809.5796 810 (100%) 751 (8%), 627 (6%), 184 (89%) 30V
829.5516 830 (47%) (Na adduct) 771 (53%), 647 (100%), 625 (10%), 147 (22%), 86 (7%) 40V
833.5864 834 (96%) 775 (6%), 651 (3%), 415, (2%), 184 (100%) 30V


[0111] Fragmentation pattern of all compounds seems restricted to one main fragment (m/z 184) for all masses, which likely corresponds to choline phosphate (Figures 17 to 20, 22 to 26), except for 803.5 (Figure 21). The fragmentation pattern of 803.5 rather suggests the majority of the compounds at this mass to be the sodium adducts of 781.5566.

[0112] In order to confirm the chemical family of these putative phosphatidylcholines, the same samples were run in aqueous negative ESI mode (Table 14). Fragmentation patterns are shown in figures 27 to 32 that show how to determine the PtdCho side chains.
Table 14. Fragmentation pattern of putative phosphatidylcholines in negative ESI mode, with daughter ion relative abundance.
Accurate / Exact MassMS/MS Formic acid adduct (% intensity)Daughter ions (% intensity)Collision Energy
757.5560 802.5 (1%) 745 (9%), 480 (9%), 279 (100%), 255 (26%) -35V
779.5405 824.5 (12%) 764 (100%), 480 (4%), 301 (30%), 255 (19%) -35V
783.5690 828.6 (16%) 768 (100%), 480 (5%), 305 (15%), 279 (9%), 255 (9%), 224 (2%) -35V
785.5913 830.6 (1%) 770 (11%), 283 (22%), 281 (11%), 279 (100%) -45V
803.5373 848.5 (1%) 788 (100%), 576 (8%), 508 (8%), 492 (8%), 474 (8%), 440 (16%), 301 (16%) -35V
805.5549 850.6 (1%) 790 (33%), 255 (100%) -35V
807.5734 852.6 (1%) 792 (32%), 508 (16%), 480 (12%), 329 (52%), 301 (100%), 283 (56%), 257 (48%), 255 (336%), 224 (16%), 203 12%) -45V
809.5796 854.6 (5%) 794 (23%), 508 (12%), 378 (7%), 303 (100%), 283 (41%), 259 (17%), 242 (9%), 227 (7%), 205 (9%), 168 (7%) -45V
829.5516 852.6 (1%) 792 (32%), 508 (16%), 480 (12%), 329 (52%), 301 (100%), 283 (56%), 257 (48%), 255 (336%), 224 (16%), 203 12%) -45V
833.5864 878.6 (1 %) 818 (33%), 508 (33%), 490 (33%), 327 (67%), 283 (100%) -35V


[0113] Side chain combinations may be unique, such as in 757.6, corresponding to both PtdCho 16:0/18:2 and PtdCho 18:2/16:0 (Figure 27), or multiple, such as in 807.6, corresponding to PtdCho 18:0/20:5, PtdCho 16:0/22:5 and PtdCho 18:1/20:4, all with the same chemical formula C46H82NO8P (Figure 32). Confirmed side chains for all PtdCho biomarkers are reported in Table 15.
Table 15. Assignment of side chains to PtdCho according to MS/MS data analysis
MassFormulaIdentity
757.556 C42H80NO8P PtdCho16:0/18:2 PtdCho18:2/16:0    
779.5405 C44H78NO8P PtdCho18:3/18:2 PtdCho16:0/20:5 PtdCho20:5/16:0 PtdCho20:4/18:1
783.569 C44H82NO8P PtdCho16:0/20:3 PtdCho18:1/18:2 PtdCho18:0/18:3  
785.5913 C44H84NO8P PtdCho18:0/18:2 PtdCho18:1/18:1    
803.5373 C46H78NO8P PtdCho20:5/18:2 PtdCho16:1/22:6 PtdCho22:6/16:1  
805.5549 C46H80NO8P PtdCho22:6/16:0 PtdCho18:2/20:4    
807.5734 C46H82NO8P PtdCho18:0/20:5 PtdCho16:0/22:5 PtdCho18:1/20:4 PtdCho22:5/16:0
809.5796 C46H84NO8P PtdCho18:0/20:4 PtdCho18:1/20:3 PtdCho18:2/20:2 PtdCho16:0/22:4
827.5401 C48H78NO8P Na adduct of 805.55 PtdCho18:3/22:6    
829.5516 C48H80NO8P PtdCho18:2/22:6 Na adduct of 807.57 PtdCho18:3/22:5  
833.5864 C48H84NO8P PtdCho2:6/18:0 Na adduct of 811.6 PtdCho18:1/22:5 PtdCho16:0/24:6


[0114] The fragmentation pattern of the putative sphingomyelins confirmed the presence of a choline phosphate fragment as the major peak for 702.6 and 812.7, suggesting that these two compounds respectively are the common sphingomyelins SM(d18:1/16:0) and SM(d18:1/24:1(15Z)) with the sphingosine (18:1) as the sphingoid base (Figures 33 and 34). The fragmentation pattern of 724.5 suggests that the compound is the sodium adduct of 702.6 above mentioned (Figure 35).

[0115] The sphingomyelin identity of these two compounds was confirmed by a further analysis in aqueous negative ESI mode, through the comparison between the serum compounds with a mass of 702.6 and 812.7 and the commercially available sphingomyelins SM(d18:1/16:0) and SM(d18:1/24:1(15Z)). The fragmentation pattern of the serum compound with a mass of 702.6 detected as a formic acid adduct in negative ESI mode (Figure 36) is indeed identical to the fragmentation pattern of the synthetic SM(d18:1/16:0) (Figure 37). Similarly, the fragmentation pattern of the serum compound with a mass of 812.7 detected as a formic acid adduct in negative ESI mode (Figure 38) is identical to the fragmentation pattern of the synthetic SM(d18:1/24:1(15Z)) (Figure 39).

2C. Other compound



[0116] 600.5117 compound in 1203 analysis mode was further analyzed by tandem mass spectrometry mass fragmentation. The fragmentation pattern, dominated by peaks at 545.5, 527.5 and 263.3, confirms that a compound with the molecular formula indicated in table 6 is present and can be classified as 1-alkenyl-2-acylglycerol with 18:2 at both side chains (Figure 40).

Validation using Multiple Reaction Monitoring Methodology



[0117] Reduced levels of choline-related compounds and C36 biomarkers in the blood of pancreatic cancer patients were further confirmed using a tandem mass spectrometry approach (see methods) in the same populations. The approach is based upon the measurement of parent-daughter fragment ion combinations (referred to as multiple-reaction monitoring; MRM) for quantifying analytes.

3A. MRM for lysophosphatidylcholines



[0118] A tandem-MS approach based upon multiple reaction monitoring was used to confirm differences in LysoPC levels between patients and controls using the same aqueous extracts as for the FTICR-MS analysis, in both positive and negative ElectroSpray Ionization modes (see methods for formulae and transitions). Figure 41 reports the confirmation that the levels in the 3 lysophosphatidylcholines listed in Table 6 and in 20 additional LysoPC are significantly decreased in pancreatic cancer patients relative to controls. The lowestp-values among all LysoPC tested by MRM are obtained for LysoPC present in the 20 best FTICR biomarkers as could be expected, with the minimal value in positive ESI analysis mode, 2.69E-15, obtained for LysoPC18:2, the second best putative LysoPC by FTICR. Overall, the significant decreases observed in 23 LysoPC suggest that the whole family is down-regulated in pancreatic cancer serum.

3B. MRM for PtdCho and Plasmenylphosphocholine (PIsCho)



[0119] The same aqueous extracts as for the FTICR-MS analysis were analyzed by a targeted method for 7 PtdCho out of the 10 listed in Table 6 and 6 additional PtdCho in positive analysis mode, and for 9 PtdCho out of the 10 listed in Table 6 and many additional PtdCho in negative analysis mode. Figures 42a and 42b report the confirmation that the serum levels of all PtdCho tested in both positive and negative ESI analysis modes are significantly decreased in pancreatic cancer patients relative to controls. The best putative PtdCho among FTICR best biomarkers, "785.6", is also the best PtdCho among all tested by MRM in positive ESI analysis mode, with a p-value of 5.77E-18. It is interesting to note that all PtdCho tested are decreased in pancreatic cancer serum independently of their side chains, with a maximal p-value of 5.31E-10 in positive ESI analysis mode, demonstrating that the whole phosphatidylcholine family is collectively down-regulated in pancreatic cancer serum.

[0120] The decrease in PtdCho family incited us to assess the levels of their vinyl ether counterparts, plasmenylphosphocholines (PlsCho), in the same samples. Figure 42c reports that the serum levels of all PlsCho tested in positive Electrospray Ionization analysis mode are very significantly decreased in pancreatic cancer patients relative to controls. PlsCho with a mass of 793.6, which likely is PlsCho 18:0/20:4, shows the lowest p-value, 3.9E-17.

3D. MRM for sphingomyelins



[0121] A tandem-MS approach based upon multiple reaction monitoring was developed to confirm differences in sphingomyelin levels between patients and controls using the same aqueous extracts as for the FTICR-MS analysis. Figure 43 reports that the serum levels of the five sphingomyelins tested (including the two identified by FTICR analysis, SM(d18:1/16:0) and SM(d18:1/24:1(15Z)) are very significantly decreased in pancreatic cancer patients relative to controls. SM(d18:1/24:0), which had not been detected by FTICR, shows the strongest decrease with a p-value of 7.81E-15.

3D. MRM for C36 biomarkers



[0122] A tandem-MS approach based upon multiple reaction monitoring was developed to confirm differences in C36 biomarker levels between patients and controls using the same ethyl acetate extracts as for the FTICR-MS analysis. As explained in 2A, among all masses listed in Table 5, several seemed to belong to a same family in C36, only differing by an H2O molecule or the number of unsaturations, and the tandem-MS method was extended to the whole "C36 family" (see methods for formulae and transitions).

[0123] Figure 44 reports the confirmation that the levels in the seven C36 markers tested are significantly decreased in pancreatic cancer patients relative to controls. The best putative C36 marker among all FTICR biomarkers (which is also the best biomarker of pancreatic cancer), "594", is also the best biomarker among all C36 tested by MRM, with a p-value of 1.42E-11. Again, it is interesting to note that as a whole family, the C36 markers seem down-regulated in pancreatic cancer serum.

Disease stage analysis



[0124] Information regarding disease progression status was included. It was therefore determined whether there were a correlation between disease progression and biomarker decrease. MRM data for the 3 LysoPC, 7 PtdCho and 3 C36 markers of interest were re-analyzed according to cancer stage (Figure 45). This preliminary study on a small amount of patients per stage does not seem to indicate any trends.

Chemoradiation therapy effects on biomarkers



[0125] Information regarding chemoradiation therapy status was included. It was therefore determined whether there was a correlation between this kind of therapy and biomarker decrease. MRM data for the 3 LysoPC, 7 PtdCho and 3 C36 markers of interest were re-analyzed according to therapy status (Figure 46). This preliminary study on a small amount of patients seems to indicate that there is no effect of chemoradiation therapy on biomarkers.

Discussion



[0126] We have performed a comprehensive non-targeted metabolomic profiling of pancreatic cancer serum samples and have identified a very strong signature of this cancer as illustrated by most AUCs above 0.90. The families of markers identified by FTICR as discriminating were validated by targeted analysis. Four families have been identified whose decrease is associated to pancreatic cancer: phosphatidylcholines, lysophosphatidylcholines, sphingomyelins and C36 markers that may be steroidal-like compounds.

[0127] Lysophosphatidylcholines 18:2, 18:3 and 20:5 show the strongest decrease of all LysoPC tested. All 27 PtdCho tested (with nine included in the top list of Table 6) show significantly decreased levels in pancreatic cancer patients relative to controls (Figure 42a,b). Most of the 10 PtdCho in Table 8 are predicted or shown to have 18:2, 20:5 or 22:5 as one of the two side chains, as seen in Table 15. In summary, phosphatidylcholines and lysophosphatidylcholines that contain 18:2, 18:3, 20:5 and in a lesser extent, 22:5, show the strongest decrease.

[0128] The presence of sphingomyelins among the best biomarkers is extremely interesting. The role of sphingomyelin in cell death, growth and differentiation, and therefore in cancer, is well documented (25, 26) and cancer therapeutics targeted to their signaling pathways give very promising preliminary results (27, 28). For example, sphingomyelin addition to pancreatic cancer cell lines has been shown to drastically enhance chemosensitivity to anticancer agents, presumably by redirecting the cell to enter the apoptotic pathway (29).

[0129] Without wishing to be bound in any way by theory, the alteration observed in both phosphatidylcholines and sphingomyelins suggests a role for choline kinase; this cytosolic enzyme is indeed important for the generation of both species and subsequently for cell division (11). The involvement of the choline kinase during tumorigenesis (mediated by Ras effectors serine/threonine kinase (Raf-1), Ral-GDS and PI3K) and the success of its specific inhibitors in antitumoral activity make this kinase a very attractive target in cancer (11, 30). The present results therefore suggest an involvement of choline kinase in pancreatic carcinogenesis.

[0130] The C36 markers described herein have not, to our knowledge, yet been associated to pancreatic cancer. Preliminary NMR studies suggest that these compounds may be steroidal-like or conjugated bile acids. This is very interesting since bile acids are emerging as an important family in cancers of the gastrointestinal tract (31). Mechanistically speaking, although without wishing to be bound by theory, there is a complex balance in the bile between bile salts and phospholipids; the reduced levels in phosphatidylcholines observed in pancreatic cancer may be caused by a reduced export into bile, which could be reflective of MDR3 gene polymorphisms (20). An unbalance observed between phosphatidylcholines and bile acids may therefore reflect some genetic alterations underlying carcinogenesis.

[0131] A major effect of clinical variables on the alterations of biomarkers has not been identified on the whole pancreatic cancer population. Disease stages do not seem to affect the decrease in biomarkers. The observation that there are no stage effects suggests that the metabolic deficiency may precede the development of pancreatic cancer, and therefore supports the utility as an early detection risk screening method. A chemoradiation therapy effect on biomarkers was also not observed, suggesting that this therapy does not affect the underlying mechanism of pancreatic cancer; a normalization of biomarkers after treatment would therefore be a good efficacy indicator of new therapeutics.

[0132] Statistical analysis revealed how discriminating a few biomarkers could be between pancreatic cancer and healthy controls. For example, the six FTICR best biomarkers all present with a p-value lower than 1E-12 and individual AUCs above 0.90. They have been afterwards identified as most likely being a lysophosphatidylcholine, a sphingomyelin, two phosphatidylcholines and two C36 markers (one being the best biomarker, "594", with p = 9.9E-14 and the highest AUC). When these markers are combined, the AUC reaches 0.985, with a specificity of 92.5% and a sensitivity of 88%, illustrating how a blood draw can be a powerful diagnostic tool in pancreatic cancer.

[0133] In summary, we have identified a metabolic dysregulation specific to pancreatic cancer. The characteristic decrease in two main metabolite families, glycerophosphocholine-related compounds (sub grouped in three subfamilies) and previously uncharacterized C36 markers. These metabolites represent useful biomarkers for sensitive and specific detection of pancreatic cancer, which remains the most dreaded cancer because of its extremely low survival rate. The described diagnostic methods, when conducted in conjunction with therapeutic optimization steps, may also be used to design more efficacious drug therapies for the disease.

[0134] One or more currently preferred embodiments have been described by way of example.

References



[0135] 
  1. 1. Boyle, P., and J. Ferlay. 2005. Cancer incidence and mortality in Europe, 2004. Ann Oncol 16: 481-488.
  2. 2. Däbritz, J., R. Preston, J. Hänfler, and H. Oettle. 2009. Follow-up study of K-ras mutations in the plasma of patients with pancreatic cancer: correlation with clinical features and carbohydrate antigen 19-9. Pancreas 38: 534-541.
  3. 3. Klapman, J., and M. P. Malafa. 2008. Early detection of pancreatic cancer: why, who, and how to screen. Cancer Control. 15: 280-287.
  4. 4. Helmstaedter, L., and J. F. Riemann. 2008. Pancreatic cancer--EUS and early diagnosis. Langenbecks Arch Surg 393: 923-927.
  5. 5. Gemmel, C., A. Eickhoff, L. Helmstädter, and J. F. Riemann. 2009. Pancreatic cancer screening: state of the art. Expert Rev Gastroenterol Hepatol. 3: 89-96.
  6. 6. Peracaula, R., S. Barrabés, A. Sarrats, P. M. Rudd, and R. de Llorens. 2008. Altered glycosylation in tumours focused to cancer diagnosis. Dis Markers 25: 207-218.
  7. 7. Ehmann, M., K. Felix, D. Hartmann, M. Schnölzer, M. Nees, S. Vorderwülbecke, R. Bogumil, M. W. Büchler, and H. Friess. 2007. Identification of potential markers for the detection of pancreatic cancer through comparative serum protein expression profiling. Pancreas 34: 205-214.
  8. 8. Barrabés, S., L. Pagès-Pons, C. M. Radcliffe, G. Tabarés, E. Fort, L. Royle, D. J. Harvey, M. Moenner, R. A. Dwek, P. M. Rudd, R. De Llorens, and R. Peracaula. 2008. Glycosylation of serum ribonuclease 1 indicates a major endothelial origin and reveals an increase in core fucosylation in pancreatic cancer. Glycobiology 17: 388-400.
  9. 9. Koopmann, J., C. N. White Rosenzweig, Z. Zhang, M.I. Canto, D. A. Brown, M. Hunter, C. Yeo, D. W. Chan, S. N. Breit, and M. Goggins. 2006. Serum Markers in Patients with Resectable Pancreatic Adenocarcinoma: Macrophage Inhibitory Cytokine 1 versus CA19-9 Clinical Cancer Research 12: 442-446.
  10. 10. Rosty, C., L. Christa, S. Kuzdzal, B. W.M., M. L. Zahurak, F. Camot, D. W. Chan, M. Canto, K. D. Lillemoe, J. L. Cameron, C. J. Yeo, R. H. Hruban, and M. Goggins. 2002. Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer research 62: 1868-1875.
  11. 11. Janardhan, S., P. Srivani, and G. N. Sastry. 2006. Choline kinase: an important target for cancer. Curr Med Chem 13: 1169-1186.
  12. 12. Garcea, G., C. P. Neal, C. J. Pattenden, W. P. Steward, and D. P. Berry. 2005. Molecular prognostic markers in pancreatic cancer: a systematic review. Eur J Cancer 41: 2213-2236.
  13. 13. Bloomston, M., W. L. Frankel, F. Petrocca, S. Volinia, H. Alder, J. P. Hagan, C. G. Liu, D. Bhatt, C. Taccioli, and C. M. Croce. 2007. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297: 1901-1908.
  14. 14. Szafranska, A. E., T. S. Davison, J. John, T. Cannon, B. Sipos, A. Maghnouj, E. Labourier, and S. A. Hahn. 2007. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26: 4442-4452.
  15. 15. Lee, E. J., Y. Gusev, J. Jiang, G. J. Nuovo, M. R. Lerner, W. L. Frankel, D. L. Morgan, R. G. Postier, D. J. Brackett, and T. D. Schmittgen. 2007. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120: 1046-1054.
  16. 16. Tian, M., Y. Z. Cui, G. H. Song, M. J. Zong, X. Y. Zhou, Y. R. Chen, and J. X. Han. 2008. Proteomic analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients BMC Cancer 8: 241.
  17. 17. Warden, C. H., A. Daluiski, X. Bu, D. A. Purcell-Huynh, C. De Meester, B. H. Shieh, D. L. Puppione, R. M. Gray, G. M. Reaven, Y. D. Chen, and e. al. 1993. Evidence for linkage of the apolipoprotein A-II locus to plasma apolipoprotein A-II and free fatty acid levels in mice and humans. Proceedings of the National Academy of Sciences of the United States of America 90: 10886-10890.
  18. 18. Trougakos, I. P., and E. S. Gonos. 2002. Clusterin/apolipoprotein J in human aging and cancer. The international journal of biochemistry & cell biology 34: 1430-1448.
  19. 19. Zuijdgeest-van Leeuwen, S. D., M. S. van der Heijden, T. Rietveld, J. W. van den Berg, H. W. Tilanus, J. A. Burgers, J. H. Wilson, and P. C. Dagnelie. 2002. Fatty acid composition of plasma lipids in patients with pancreatic, lung and oesophageal cancer in comparison with healthy subjects. Clinical Nutrition 21: 225-230.
  20. 20. Khan, S. A., I. J. Cox, A. V. Thillainayagam, D. S. Bansi, H. C. Thomas, and S. D. Taylor-Robinson. 2005. Proton and phosphorus-31 nuclear magnetic resonance spectroscopy of human bile in hepatopancreaticobiliary cancer. Eur J Gastroenterol Hepatol 17: 733-738.
  21. 21. Kolb, A., S. Rieder, D. Born, N. A. Giese, T. Giese, G. Rudofsky, J. Werner, M. W. Büchler, H. Friess, I. Esposito, and J. Kleeff. 2009. Glucagon/insulin ratio as a potential biomarker for pancreatic cancer in patients with new-onset diabetes mellitus. Cancer Biol Ther 8.
  22. 22. Gray, G. R., and D. Heath. 2005. A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolic fingerprinting. Physiologia Plantarum 124: 236-248.
  23. 23. Goodenowe, D. B., L. L. Cook, J. Liu, Y. Lu, D. A. Jayasinghe, P. W. Ahiahonu, D. Heath, Y. Yamazaki, J. Flax, K. F. Krenitsky, D. L. Sparks, A. Lerner, R. P. Friedland, T. Kudo, K. Kamino, T. Morihara, M. Takeda, and P. L. Wood. 2007. Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer's disease and dementia. Journal of lipid research 48: 2485-2498.
  24. 24. Aharoni, A., C. H. Ric de Vos, H. A. Verhoeven, C. A. Maliepaard, G. Kruppa, R. Bino, and D. B. Goodenowe. 2002. Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics 6: 217-234.
  25. 25. Dyatlovitskaya, E. V., and A. G. Kandyba. 2006. Role of biologically active sphingolipids in tumor growth. Biochemistry (Mosc). 71: 10-17.
  26. 26. Clària, J. 2006. Regulation of cell proliferation and apoptosis by bioactive lipid mediators. Recent Pat Anticancer Drug Discov. 1: 369-382.
  27. 27. Billich, A., and T. Baumruker. 2008. Sphingolipid metabolizing enzymes as novel therapeutic targets. Subcell Biochem 49: 487-522.
  28. 28. Modrak, D. E., D. V. Gold, and D. M. Goldenberg. 2006. Sphingolipid targets in cancer therapy. Mol Cancer Ther 5: 200-208.
  29. 29. Modrak, D. E., E. Leon, D. M. Goldenberg, and D. V. Gold. 2009. Ceramide regulates gemcitabine-induced senescence and apoptosis in human pancreatic cancer cell lines. Mol Cancer Res 7: 890-896.
  30. 30. Ramírez de Molina, A., D. Gallego-Ortega, J. Sarmentero-Estrada, D. Lagares, T. Gómez Del Pulgar, E. Bandrés, J. García-Foncillas, and J. C. Lacal. 2008. Choline kinase as a link connecting phospholipid metabolism and cell cycle regulation: implications in cancer therapy. The international journal of biochemistry & cell biology 40: 1753-1763.
  31. 31. Bernstein, H., C. Bernstein, C. M. Payne, and K. Dvorak. 2009. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J Gastroenterol 15: 3329-3340.



Claims

1. A method for diagnosing a patient's risk of developing pancreatic cancer, or the presence of pancreatic cancer in a patient, comprising the steps of:

a) analyzing a blood sample from said patient to obtain quantifying data for one or more than one metabolite marker;

b) comparing the quantifying data for said one or more than one metabolite marker to corresponding data obtained for one or more than one reference blood sample to identify an increase or decrease in the level of said one or more than one metabolite marker in said blood sample; and

c) using said increase or decrease in the level of said one or more than one metabolite marker in said blood sample for diagnosing said change in or risk of developing pancreatic cancer, or the presence of pancreatic cancer in said patient,

wherein a decrease in the level of said one or more than one metabolite marker in said blood sample is identified in the comparing step (b), and
wherein the one or more metabolite marker comprises one or more molecule selected from the molecular formulae consisting of: C36H62O4, C36H62O5, C36H64O5, C36H66O5, C36H64O6, C36H66O6, C36H68O6, C22H48NO7P, C24H50NO7P, C24H48NO7P, C24H46NO7P, C26H54NO7P, C26H52NO7P, C26H50NO7P, C26H48NO7P, C28H56NO7P, C28H54NO7P, C28H52NO7P, C28H50NO7P, C28H48NO7P, C28H46NO7P, C30H56NO7P, C30H54NO7P, C30H52NO7P, C30H50NO7P, C32H58NO7P, C32H54NO7P, C38H76NO7P, C40H82NO7P, C40H80NO7P, C40H78NO7P, C40H70NO7P, C42H78NO8P, C42H80NO8P, C42H82NO8P, C42H84NO8P, C44H78NO8P, C44H80NO8P, C44H82NO8P, C44H84NO8P, C44H86NO8P, C44H88NO8P, C46H78NO8P, C46H80NO8P, C46H82NO8P, C46H84NO8P, C48H80NO8P, C48H82NO8P, C48H84NO8P, C48H86NO8P, C42H80NO7P, C42H82NO7P, C42H84NO7P, C44H82NO7P, C44H84NO7P, C44H86NO7P, C44H88NO7P, C46H82NO7P, C46H84NO7P, C46H86NO7P, C48H84NO7P, C48H86NO7P, C39H79N2O6P, C39H80N2O6P+, C41H81N2O6P, C41H82N2O6P+, C41H83N2O6P, C41H84N2O6P+, C47H93N2O6P, C47H94N2O6P+, C47H95N2O6P, C47H96N2O6P+, and combinations thereof; and
wherein the molecule is:

a lysophosphatidylcholine (LysoPC) selected from the group consisting of LysoPC 14:1, LysoPC 16:0, LysoPC 16:1, LysoPC 16:2, LysoPC 18:0, LysoPC 18:1, LysoPC 18:2, LysoPC 18:3, LysoPC 20:1, LysoPC 20:2, LysoPC 20:3, LysoPC 20:4, LysoPC 20:5, LysoPC 20:6, LysoPC 22:3, LysoPC 22:4, LysoPC 22:5, LysoPC 22:6, LysoPC 24:4, LysoPC 24:6, LysoPC 30:1, LysoPC 32:0, LysoPC 32:1, LysoPC 32:2, LysoPC 32:6 and combinations thereof; or

a phosphatidylcholine having a molecular formula selected from the group consisting of C42H78NO8P, C42H80NO8P, C42H82NO8P, C42H84NO8P, C44H78NO8P, C44H80NO8P, C44H82NO8P, C44H84NO8P, C44H86NO8P, C44H88NO8P, C46H78NO8P, C46H80NO8P, C46H82NO8P, C46H84NO8P, C48H80NO8P, C48H82NO8P, C48H84NO8P, C48H86NO8P, and combinations thereof; or

a plasmenylphosphocholine having a molecular formula selected from the group consisting of C42H80NO7P, C42H82NO7P, C42H84NO7P, C44H82NO7P, C44H84NO7P, C44H86NO7P, C44H88NO7P, C46H82NO7P, C46H84NO7P, C46H86NO7P, C48H84NO7P, C48H86NO7P, and combinations thereof; or

a sphingomyelin having a molecular formula selected from the group consisting of C39H79N2O6P, C39H80N2O6P+, C41H81N2O6P, C41H82N2O6P+, C41H83N2O6P, C41H84N2O6P+, C47H93N2O6P, C47H94N2O6P+, C47H95N2O6P, C47H96N2O6P+, and combinations thereof; or wherein the molecule is characterized by

at least one MS/MS transition for the molecule having the molecular formula of C36H62O4, in negative ionization mode, selected from the group consisting of 557.4 / 495.4, 557.4 / 539.4, 557.4 / 513.3, 557.4 / 279.2, 557.4 / 277.2, 557.4 / 220.7 and 557.4 / 111.2, and combinations thereof; or

at least one MS/MS transition for the molecule having the molecular formula of C36H62O5, in negative ionization mode, selected from the group consisting of 573.5 / 511.4, 573.5 / 555.3, 573.5 / 537.4, 573.5 / 529.4, 573.5 / 519.4, 573.5 / 493.3, 573.5 / 457.4, 573.5 / 455.3, 573.5 / 443.4, 573.5 / 415.4, 573.5 / 413.3, 573.5 / 411.3, 573.5 / 399.3, 573.5 / 397.3, 573.5 / 389.7, 573.5 / 295.2, 573.5 / 279.2, 573.5 / 277.2, 573.5 / 251.2, 573.5 / 231.1, 573.5 / 223.1, 573.5 / 201.1, 573.5 / 171.1, 573.5 / 169.1, 573.5 / 125.1 and 573.5 / 113.1, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C36H64O5, in negative ionization mode, selected from the group consisting of 575.5 / 513.5, 575.5 / 557.5, 575.5 / 539.5, 575.5 / 531.5, 575.5 / 499.5, 575.5 / 495.5, 575.5 / 459.4, 575.5 / 417.4, 575.5 / 415.3, 575.5 / 413.3, 575.5 / 403.3, 575.5 / 295.2, 575.5 / 279.2, 575.5 / 260.2, 575.5 / 251.2, 575.5 / 197.9, 575.5 / 119.4, 575.5 / 113.1, and 575.5 / 97.0, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C36H66O5, in negative ionization mode, selected from the group consisting of 577.5 / 515.4, 577.5 / 559.4, 577.5 / 546.5, 577.5 / 533.5, 577.5 / 497.4, 577.5 / 419.4, 577.5 / 405.5, 577.5 / 297.2 and 577.5 / 281.2, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C36H64O6, in negative ionization mode, selected from the group consisting of 591.5 / 573.4, 591.5 / 555.4, 591.5 / 528.3, 591.5 / 511.2, 591.5 / 476.1, 591.5 / 419.3, 591.5 / 403.1, 591.5 / 387.3, 591.5 / 297.2, 591.5 / 295.2, 591.5 / 274.0, 591.5 / 255.3, 591.5 / 223.6, 591.5 / 203.5, 591.5 / 201.1, 591.5 / 171.0 and 591.5 / 125.3, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C36H66O6, in negative ionization mode, selected from the group consisting of 593.5 / 557.5, 593.5 / 575.4, 593.5 / 549.4, 593.5 / 531.5, 593.5 / 513.4, 593.5 / 495.4, 593.5 / 433.3, 593.5 / 421.4, 593.5 / 415.2, 593.5 / 391.4, 593.5 / 371.3, 593.5 / 315.3, 593.5 / 311.1, 593.5 / 297.2, 593.5 / 281.2, 593.5 / 277.2, 593.5 / 251.2, 593.5 / 201.1, 593.5 / 195.3, 593.5 / 171.1, 593.5 / 139.1 and 593.5 / 133.5, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C36H68O6, in negative ionization mode, selected from the group consisting of 595.5 / 559.5, 595.5 / 577.4, 595.5 / 551.4, 595.5 / 533.4, 595.5 / 515.5, 595.5 / 497.4, 595.5 / 478.4, 595.5 / 433.3, 595.5 / 423.4, 595.5 / 391.3, 595.5 / 372.3, 595.5 / 315.3, 595.5 / 313.2, 595.5 / 298.2, 595.5 / 297.2, 595.5 / 281.2, 595.5 / 279.2, 595.5 / 239.2, 595.5 / 232.9, 595.5 / 171.1, 595.5 / 169.1 and 595.5 / 141.1, and combinations thereof.


 
2. The method of claim 1, wherein the molecule is:

a lysophosphatidylcholine (LysoPC) selected from the group consisting of LysoPC 14:1, LysoPC 16:0, LysoPC 16:1, LysoPC 16:2, LysoPC 18:0, LysoPC 18:1, LysoPC 18:2, LysoPC 18:3, LysoPC 20:1, LysoPC 20:2, LysoPC 20:3, LysoPC 20:4, LysoPC 20:5, LysoPC 20:6, LysoPC 22:3, LysoPC 22:4, LysoPC 22:5, LysoPC 22:6, LysoPC 24:4, LysoPC 24:6, LysoPC 30:1, LysoPC 32:0, LysoPC 32:1, LysoPC 32:2, LysoPC 32:6 and combinations thereof; or

a phosphatidylcholine having a molecular formula selected from the group consisting of C42H78NO8P, C42H80NO8P, C42H82NO8P, C42H84NO8P, C44H78NO8P, C44H80NO8P, C44H82NO8P, C44H84NO8P, C44H86NO8P, C44H88NO8P, C46H78NO8P, C46H80NO8P, C46H82NO8P, C46H84NO8P, C48H80NO8P, C48H82NO8P, C48H84NO8P, C48H86NO8P, and combinations thereof; or

a plasmenylphosphocholine having a molecular formula selected from the group consisting of C42H80NO7P, C42H82NO7P, C42H84NO7P, C44H82NO7P, C44H84NO7P, C44H86NO7P, C44H88NO7P, C46H82NO7P, C46H84NO7P, C46H86NO7P, C48H84NO7P, C48H86NO7P, and combinations thereof; or

a sphingomyelin having a molecular formula selected from the group consisting of C39H79N2O6P, C39H80N2O6P+, C41H81N2O6P, C41H82N2O6P+, C41H83N2O6P, C41H84N2O6P+, C47H93N2O6P, C47H94N2O6P+, C47H95N2O6P, C47H96N2O6P+, and combinations thereof.


 
3. The method of claim 1, wherein the molecule is characterized by:

at least one MS/MS transition for the metabolite having the molecular formula of C36H62O4, in negative ionization mode, selected from the group consisting of 557.4 / 495.4, 557.4 / 539.4, 557.4 / 513.3, 557.4 / 279.2, 557.4 / 277.2, 557.4 / 220.7 and 557.4 / 111.2, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C36H62O5, in negative ionization mode, selected from the group consisting of 573.5 / 511.4, 573.5 / 555.3, 573.5 / 537.4, 573.5 / 529.4, 573.5 / 519.4, 573.5 / 493.3, 573.5 / 457.4, 573.5 / 455.3, 573.5 / 443.4, 573.5 / 415.4, 573.5 / 413.3, 573.5 / 411.3, 573.5 / 399.3, 573.5 / 397.3, 573.5 / 389.7, 573.5 / 295.2, 573.5 / 279.2, 573.5 / 277.2, 573.5 / 251.2, 573.5 / 231.1, 573.5 / 223.1, 573.5 / 201.1, 573.5 / 171.1, 573.5 / 169.1, 573.5 / 125.1 and 573.5 / 113.1, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C36H64O5, in negative ionization mode, selected from the group consisting of 575.5 / 513.5, 575.5 / 557.5, 575.5 / 539.5, 575.5 / 531.5, 575.5 / 499.5, 575.5 / 495.5, 575.5 / 459.4, 575.5 / 417.4, 575.5 / 415.3, 575.5 / 413.3, 575.5 / 403.3, 575.5 / 295.2, 575.5 / 279.2, 575.5 / 260.2, 575.5 / 251.2, 575.5 / 197.9, 575.5 / 119.4, 575.5 / 113.1, and 575.5 / 97.0, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C36H66O5, in negative ionization mode, selected from the group consisting of 577.5 / 515.4, 577.5 / 559.4, 577.5 / 546.5, 577.5 / 533.5, 577.5 / 497.4, 577.5 / 419.4, 577.5 / 405.5, 577.5 / 297.2 and 577.5 / 281.2, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C36H64O6, in negative ionization mode, selected from the group consisting of 591.5 / 573.4, 591.5 / 555.4, 591.5 / 528.3, 591.5 / 511.2, 591.5 / 476.1, 591.5 / 419.3, 591.5 / 403.1, 591.5 / 387.3, 591.5 / 297.2, 591.5 / 295.2, 591.5 / 274.0, 591.5 / 255.3, 591.5 / 223.6, 591.5 / 203.5, 591.5 / 201.1, 591.5 / 171.0 and 591.5 / 125.3, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C36H66O6, in negative ionization mode, selected from the group consisting of 593.5 / 557.5, 593.5 / 575.4, 593.5 / 549.4, 593.5 / 531.5, 593.5 / 513.4, 593.5 / 495.4, 593.5 / 433.3, 593.5 / 421.4, 593.5 / 415.2, 593.5 / 391.4, 593.5 / 371.3, 593.5 / 315.3, 593.5 / 311.1, 593.5 / 297.2, 593.5 / 281.2, 593.5 / 277.2, 593.5 / 251.2, 593.5 / 201.1, 593.5 / 195.3, 593.5 / 171.1, 593.5 / 139.1 and 593.5 / 133.5, and combinations thereof; or

wherein at least one MS/MS transition for the metabolite having the molecular formula of C36H68O6, in negative ionization mode, selected from the group consisting of 595.5 / 559.5, 595.5 / 577.4, 595.5 / 551.4, 595.5 / 533.4, 595.5 / 515.5, 595.5 / 497.4, 595.5 / 478.4, 595.5 / 433.3, 595.5 / 423.4, 595.5 / 391.3, 595.5 / 372.3, 595.5 / 315.3, 595.5 / 313.2, 595.5 / 298.2, 595.5 / 297.2, 595.5 / 281.2, 595.5 / 279.2, 595.5 / 239.2, 595.5 / 232.9, 595.5 / 171.1, 595.5 / 169.1 and 595.5 / 141.1, and combinations thereof; or

at least one MS/MS transition for the lysophosphatidylcholine metabolite having the molecular formula of C26H50NO7P, selected from the group consisting of 520.3 / 184.2 in positive ionization mode, 564.3 / 504.3 in negative ionization mode, 564.3 / 279.3 in negative ionization mode, and combinations thereof; or

at least one MS/MS transition for the lysophosphatidylcholine metabolite having the molecular formula of C26H54NO7P, selected from the group consisting of 524.3 / 184.2 in positive ionization mode, 568.3 / 508.4 in negative ionization mode, 568.3 / 283.3 in negative ionization mode, and combinations thereof; or

at least one MS/MS transition for the lysophosphatidylcholine metabolite having the molecular formula of C28H48NO7P, selected from the group consisting of 542.3 / 184.2 in positive ionization mode 586.3 / 526.3 in negative ionization mode, 586.3 / 301.2 in negative ionization mode, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C42H80NO8P, selected from the group consisting of 758.6 / 184.2 in positive ionization mode 802.6 / 742.6 or 802.6 / 279.2 for PtdCho 16:0/18:2 in negative ionization mode, 802.6 / 742.6 or 802.6 / 255.3 for PtdCho 18:2/16:0 in negative ionization mode, 802.6 / 742.6 or 802.6 / 281.2 for PtdCho 16:1/18:1 in negative ionization mode, 802.6 / 742.6 or 802.6 / 253.2 for PtdCho 18:1/16:1 in negative ionization mode, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C44H78NO8P, selected from the group consisting of 780.6 / 184.2 in positive ionization mode, 824.6 / 764.6 or 824.6 / 279.2 for PtdCho 18:2/18:3 in negative ionization mode, 824.6 / 764.6 or 824.6 / 301.2 for PtdCho 16:0/20:5 in negative ionization mode, 824.6 / 764.6 or 824.6 / 255.2 for PtdCho 20:5/16:0 in negative ionization mode, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C44H82NO8P, selected from the group consisting of 784.6 / 184.2 in positive ionization mode, 828.6 / 768.6 or 828.6 / 305.2 for PtdCho 16:0/20:3 in negative ionization mode, 828.6 / 768.6 or 828.6 / 255.2 for PtdCho 20:3/16:0 in negative ionization mode, 828.6 / 768.6 or 828.6 / 279.2 for PtdCho 18:1/18:2 in negative ionization mode, 828.6 / 768.6 or 828.6 / 281.2 for PtdCho 18:2/18:1 in negative ionization mode, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C44H84NO8P, selected from the group consisting of 786.6 / 184.2 in positive ionization mode, 830.6 / 770.6 or 830.6 / 279.2 for PtdCho 18:0/18:2 in negative ionization mode, 830.6 / 770.6 or 830.6 / 283.2 for PtdCho 18:2/18:0 in negative ionization mode, 830.6 / 770.6 or 830.6 / 281.2 for PtdCho 18:1/18:1 in negative ionization mode, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C46H78NO8P, selected from the group consisting of 804.6 / 184.2 in positive ionization mode, 848.6 / 788.6 or 848.6 / 301.3 for PtdCho 18:2/20:5 in negative ionization mode, 848.6 / 788.6 or 848.6 / 279.2 for PtdCho 20:5/18:2 in negative ionization mode, 848.6 / 788.6 or 848.6 / 327.6 for PtdCho 16:1/22:6 in negative ionization mode, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C46H80NO8P, selected from the group consisting of 806.6 / 184.2 in positive ionization mode, 850.6 / 255.2 for PtdCho 22:6/16:0 in negative ionization mode,850.6 / 303.2 for PtdCho 18:2/20:4 in negative ionization mode, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C46H82NO8P, selected from the group consisting of 808.6 / 184.2 in positive ionization mode, 852.6 / 792.6 or 852.6 / 301.3 for PtdCho 18:0/20:5 in negative ionization mode, 852.6 / 792.6 or 852.6 / 329.3 for PtdCho 16:0 / 22:5 in negative ionization mode, 852.6 / 792.6 or 852.6 / 303.2 for PtdCho 18:1/20:4 in negative ionization mode, 852.6 / 792.6 or 852.6 / 255.2 for PtdCho 22:5/16:0 in negative ionization mode, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C46H84NO8P, selected from the group consisting of 810.6 / 184.2 in positive ionization mode, 854.6 / 794.6 or 854.6 / 303.2 for PtdCho 18:0/20:4 in negative ionization mode, 854.6 / 794.6 or 854.6 / 283.2 for PtdCho 20:4/18:0 in negative ionization mode, 854.6 / 794.6 or 854.6 / 305.3 for PtdCho 18:1/20:3 in negative ionization mode, 854.6 / 794.6 or 854.6 / 307.3 for PtdCho 18:2/20:2 in negative ionization mode, 852.6 / 794.6 or 852.6 / 331.3 for PtdCho 16:0/22:4 in negative ionization mode, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C48H80NO8P, selected from the group consisting of 830.6 / 184.2 in positive ionization mode, 874.6 / 814.6 or 874.6 / 327.3 for PtdCho 18:2/22:6 in negative ionization mode, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C48H82NO8P, of 832.6 / 184.2 in positive ionization mode; or

at least one MS/MS transition for the metabolite having the molecular formula of C48H84NO8P, selected from the group consisting of 834.6 / 184.2 in positive ionization mode, 878.6 / 818.6 or 878.6 / 283.2 for PtdCho 22:6/18:0 in negative ionization mode, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C39H79N2O6P, selected from the group consisting of 703.6 / 184.2 in positive ionization mode, 747.6 / 687.6 or 747.6 / 168.1 in negative ionization mode, and combinations thereof; or

at least one MS/MS transition for the metabolite having the molecular formula of C47H93N2O6P, selected from the group consisting of 813.7 / 184.2 in positive ionization mode, 857.6 / 797.6 or 857.6 / 168.1 in negative ionization mode, and combinations thereof.


 
4. The method of any one of claims 1 to 3, wherein the quantifying data is obtained using a Fourier transform ion cyclotron resonance, time of flight, magnetic sector, quadrupole or triple quadrupole mass spectrometer, and optionally wherein the mass spectrometer is equipped with a chromatographic system.
 
5. The method of any one of claims 1 to 4, wherein the blood sample is a blood serum sample.
 
6. The method of any one of claims 1 to 5, wherein a liquid/liquid extraction is performed on the blood sample whereby non-polar metabolites are dissolved in an organic solvent and polar metabolites are dissolved in an aqueous solvent.
 
7. The method of claim 6, wherein the extracted samples are analyzed by positive or negative electrospray ionization, positive or negative atmospheric pressure chemical ionization, or combinations thereof.
 
8. The method of claim 6 or 7, wherein the extracted samples are analyzed by MS/MS transition; or by extracted ion current (EIC) chromatography and MS/MS transition.
 
9. The method of any one of claims 1 to 8, wherein said one or more than one reference blood sample is from one or more pancreatic cancer-negative humans.
 
10. The method of any one of claims 1 to 9, further comprising:

analyzing a blood sample from said patient to obtain quantifying data for one or more than one internal standard molecule; and

obtaining a ratio for each of the levels of said one or more than one metabolite marker to the level obtained for the one or more than one internal standard molecule;

wherein the comparing step (b) comprises comparing each ratio to one or more corresponding ratios obtained for the one or more than one reference blood sample.
 


Ansprüche

1. Verfahren zur Diagnose des Risikos eines Patienten zur Entwicklung von Bauchspeicheldrüsenkrebs oder des Vorhandenseins von Bauchspeicheldrüsenkrebs bei einem Patienten, umfassend die Schritte:

a) Analysieren einer Blutprobe des Patienten, um Quantifizierungsdaten für einen oder mehr als einen Metabolitenmarker zu erhalten;

b) Vergleichen der Quantifizierungsdaten für den einen oder mehr als einen Metabolitenmarker mit entsprechenden Daten, die für eine oder mehr als eine Referenz-Blutprobe erhalten wurden, um eine Zunahme oder Abnahme des Spiegels des einen oder der mehr als einen Metabolitenmarker in der Blutprobe zu identifizieren; und

c) Verwenden der Zunahme oder Abnahme des Spiegels des einen oder der mehr als einen Metabolitenmarker in der Blutprobe zum Diagnostizieren der Veränderung des Patienten hinsichtlich der Entwicklung von Bauchspeicheldrüsenkrebs oder des Risikos dafür oder des Vorhandenseins von Bauchspeicheldrüsenkrebs in dem Patienten,

wobei eine Abnahme des Spiegels des einen oder der mehr als einen Metabolitenmarker in der Blutprobe in dem Vergleichsschritt (b) festgestellt wird und
wobei der eine oder die mehreren Metabolitenmarker ein oder mehrere Moleküle umfassen, ausgewählt aus den Molekülformeln bestehend aus: C36H62O4, C36H62O5, C36H64O5, C36H66O5, C36H64O6, C36H66O6, C36H68O6, C22H48NO7P, C24H50NO7P, C24H48NO7P, C24H46NO7P, C26H54NO7P, C26H52NO7P, C26H50NO7P, C26H48NO7P, C28H56NO7P, C28H54NO7P, C28H52NO7P, C28H50NO7P, C28H48NO7P, C28H46NO7P, C30H56NO7P, C30H54NO7P, C30H52NO7P, C30H50NO7P, C32H58NO7P, C32H54NO7P, C38H76NO7P, C40H82NO7P, C40H80NO7P, C40H78NO7P, C40H70NO7P, C42H78NO8P, C42H80NO8P, C42H82NO8P, C42H84NO8P, C44H78NO8P, C44H80NO8P, C44H82NO8P, C44H84NO8P, C44H86NO8P, C44H88NO8P, C46H78NO8P, C46H80NO8P, C46H82NO8P, C46H84NO8P, C48H80NO8P, C48H82NO8P, C48H84NO8P, C48H86NO8P, C42H80NO7P, C42H82NO7P, C42H84NO7P, C44H82NO7P, C44H84NO7P, C44H86NO7P, C44H88NO7P, C46H82NO7P, C46H84NO7P, C46H86NO7P, C48H84NO7P, C48H86NO7P, C39H79N2O6P, C39H80N2O6P+, C41H81N2O6P, C41H82N2O6P+, C41H83N2O6P, C41H84N2O6P+, C47H93N2O6P, C47H94N2O6P+, C47H95N2O6P, C47H96N2O6P+ und Kombinationen davon; und
wobei das Molekül ist:

ein Lysophosphatidylcholin (LysoPC) ausgewählt aus der Gruppe bestehend aus LysoPC 14:1, LysoPC 16:0, LysoPC 16:1, LysoPC 16:2, LysoPC 18:0, LysoPC 18:1, LysoPC 18:2, LysoPC 18:3, LysoPC 20:1, LysoPC 20:2, LysoPC 20:3, LysoPC 20:4, LysoPC 20:5, LysoPC 20:6, LysoPC 22:3, LysoPC 22:4, LysoPC 22:5, LysoPC 22:6, LysoPC 24:4, LysoPC 24:6, LysoPC 30:1, LysoPC 32:0, LysoPC 32:1, LysoPC 32:2, LysoPC 32:6 und Kombinationen davon; oder

ein Phosphatidylcholin mit einer Molekülformel ausgewählt aus der Gruppe bestehend aus C42H78NO8P, C42H80NO8P, C42H82NO8P, C42H84NO8P, C44H78NO8P, C44H80NO8P, C44H82NO8P, C44H84NO8P, C44H86NO8P, C44H88NO8P, C46H78NO8P, C46H80NO8P, C46H82NO8P, C46H84NO8P, C48H80NO8P, C48H82NO8P, C48H84NO8P, C48H86NO8P und Kombinationen davon; oder

ein Plasmenylphosphocholin mit einer Molekülformel ausgewählt aus der Gruppe bestehend aus C42H80NO7P, C42H82NO7P, C42H84NO7P, C44H82NO7P, C44H84NO7P, C44H86NO7P, C44H88NO7P, C46H82NO7P, C46H84NO7P, C46H86NO7P, C48H84NO7P, C48H86NO7P und Kombinationen davon; oder

ein Sphingomyelin mit einer Molekülformel ausgewählt aus der Gruppe bestehend aus C39H79N2O6P, C39H80N2O6P+, C41H81N2O6P, C41H82N2O6P+, C41H83N2O6P, C41H84N2O6P+, C47H93N2O6P, C47H94N2O6P+, C47H95N2O6P, C47H96N2O6P+ und Kombinationen davon; oder

wobei das Molekül gekennzeichnet ist durch

wenigstens einen MS/MS-Übergang für das Molekül mit der Molekülformel C36H62O4 im negativen Ionisierungsmodus, ausgewählt aus der Gruppe bestehend aus 557,4 / 495,4, 557,4 / 539,4, 557,4 / 513,3, 557,4 / 279,2, 557,4 / 277,2, 557,4 / 220,7 und 557,4 / 111,2 und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für das Molekül mit der Molekülformel C36H62O5 im negativen Ionisierungsmodus, ausgewählt aus der Gruppe bestehend aus 573,5 / 511,4, 573,5 / 555,3, 573,5 / 537,4, 573,5 / 529,4, 573,5 / 519,4, 573,5 / 493,3, 573,5 / 457,4, 573,5 / 455,3, 573,5 / 443,4, 573,5 / 415,4, 573,5 / 413,3, 573,5 / 411,3, 573,5 / 399,3, 573,5 / 397,3, 573,5 / 389,7, 573,5 / 295,2, 573,5 / 279,2, 573,5 / 277,2, 573,5 / 251,2, 573,5 / 231,1, 573,5 / 223,1, 573,5 / 201,1, 573,5 / 171,1, 573,5 / 169,1, 573,5 / 125,1 und 573,5 / 113,1 und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C36H64O5 im negativen Ionisierungsmodus, ausgewählt aus der Gruppe bestehend aus 575,5 / 513,5, 575,5 / 557,5, 575,5 / 539,5, 575,5 / 531,5, 575,5 / 499,5, 575,5 / 495,5, 575,5 / 459,4, 575,5 / 417,4, 575,5 / 415,3, 575,5 / 413,3, 575,5 / 403,3, 575,5 / 295,2, 575,5 / 279,2, 575,5 / 260,2, 575,5 / 251,2, 575,5 / 197,9, 575,5 / 119,4, 575,5 / 113,1 und 575,5 / 97,0 und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C36H66O5 im negativen Ionisierungsmodus, ausgewählt aus der Gruppe bestehend aus 577,5 / 515,4, 577,5 / 559,4, 577,5 / 546,5, 577,5 / 533,5, 577,5 / 497,4, 577,5 / 419,4, 577,5 / 405,5, 577,5 / 297,2 und 577,5 / 281,2 und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C36H64O6 im negativen Ionisierungsmodus, ausgewählt aus der Gruppe bestehend aus 591,5 / 573,4, 591,5 / 555,4, 591,5 / 528,3, 591,5 / 511,2, 591,5 / 476,1, 591,5 / 419,3, 591,5 / 403,1, 591,5 / 387,3, 591,5 / 297,2, 591,5 / 295,2, 591,5 / 274,0, 591,5 / 255,3, 591,5 / 223,6, 591,5 / 203,5, 591,5 / 201,1, 591,5 / 171,0 und 591,5 / 125,3 und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C36H66O6 im negativen Ionisierungsmodus, ausgewählt aus der Gruppe bestehend aus 593,5 / 557,5, 593,5 / 575,4, 593,5 / 549,4, 593,5 / 531,5, 593,5 / 513,4, 593,5 / 495,4, 593,5 / 433,3, 593,5 / 421,4, 593,5 / 415,2, 593,5 / 391,4, 593,5 / 371,3, 593,5 / 315,3, 593,5 / 311,1, 593,5 / 297,2, 593,5 / 281,2, 593,5 / 277,2, 593,5 / 251,2, 593,5 / 201,1, 593,5 / 195,3, 593,5 / 171,1, 593,5 / 139,1 und 593,5 / 133,5 und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C36H68O6 im negativen Ionisierungsmodus, ausgewählt aus der Gruppe bestehend aus 595,5 / 559,5, 595,5 / 577,4, 595,5 / 551,4, 595,5 / 533,4, 595,5 / 515,5, 595,5 / 497,4, 595,5 / 478,4, 595,5 / 433,3, 595,5 / 423,4, 595,5 / 391,3, 595,5 / 372,3, 595,5 / 315,3, 595,5 / 313,2, 595,5 / 298,2, 595,5 / 297,2, 595,5 / 281,2, 595,5 / 279,2, 595,5 / 239,2, 595,5 / 232,9, 595,5 / 171,1, 595,5 / 169,1 und 595,5 / 141,1 und Kombinationen davon.


 
2. Verfahren gemäß Anspruch 1, wobei das Molekül ist:

ein Lysophosphatidylcholin (LysoPC) ausgewählt aus der Gruppe bestehend aus LysoPC 14:1, LysoPC 16:0, LysoPC 16:1, LysoPC 16:2, LysoPC 18:0, LysoPC 18:1, LysoPC 18:2, LysoPC 18:3, LysoPC 20:1, LysoPC 20:2, LysoPC 20:3, LysoPC 20:4, LysoPC 20:5, LysoPC 20:6, LysoPC 22:3, LysoPC 22:4, LysoPC 22:5, LysoPC 22:6, LysoPC 24:4, LysoPC 24:6, LysoPC 30:1, LysoPC 32:0, LysoPC 32:1, LysoPC 32:2, LysoPC 32:6 und Kombinationen davon; oder

ein Phosphatidylcholin mit einer Molekülformel ausgewählt aus der Gruppe bestehend aus C42H78NO8P, C42H80NO8P, C42H82NO8P, C42H84NO8P, C44H78NO8P, C44H80NO8P, C44H82NO8P, C44H84NO8P, C44H86NO8P, C44H88NO8P, C46H78NO8P, C46H80NO8P, C46H82NO8P, C46H84NO8P, C48H80NO9P, C48H82NO8P, C48H84NO8P, C48H86NO8P und Kombinationen davon; oder

ein Plasmenylphosphocholin mit einer Molekülformel ausgewählt aus der Gruppe bestehend aus C42H80NO7P, C42H82NO7P, C42H84NO7P, C44H82NO7P, C44H84NO7P, C44H86NO7P, C44H88NO7P, C46H82NO7P, C46H84NO7P, C46H86NO7P, C48H84NO7P, C48H86NO7P und Kombinationen davon; oder

ein Sphingomyelin mit einer Molekülformel ausgewählt aus der Gruppe bestehend aus C39H79N2O6P, C39H80N2O6P+, C41H81N2O6P, C41H82N2O6P+, C41H83N2O6P, C41H84N2O6P+, C47H93N2O6P, C47H94N2O6P+, C47H95N2O6P, C47H96N2O6P+ und Kombinationen davon.


 
3. Verfahren gemäß Anspruch 1, wobei das Molekül gekennzeichnet ist durch:

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C36H62O4 im negativen Ionisierungsmodus, ausgewählt aus der Gruppe bestehend aus 557,4 / 495,4, 557,4 / 539,4, 557,4 / 513,3, 557,4 / 279,2, 557,4 / 277,2, 557,4 / 220,7 und 557,4 / 111,2 und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C36H62O5 im negativen Ionisierungsmodus, ausgewählt aus der Gruppe bestehend aus 573,5 / 511,4, 573,5 / 555,3, 573,5 / 537,4, 573,5 / 529,4, 573,5 / 519,4, 573,5 / 493,3, 573,5 / 457,4, 573,5 / 455,3, 573,5 / 443,4, 573,5 / 415,4, 573,5 / 413,3, 573,5 / 411,3, 573,5 / 399,3, 573,5 / 397,3, 573,5 / 389,7, 573,5 / 295,2, 573,5 / 279,2, 573,5 / 277,2, 573,5 / 251,2, 573,5 / 231,1, 573,5 / 223,1, 573,5 / 201,1, 573,5 / 171,1, 573,5 / 169,1, 573,5 / 125,1 und 573,5 / 113,1 und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C36H64O5 im negativen Ionisierungsmodus, ausgewählt aus der Gruppe bestehend aus 575,5 / 513,5, 575,5 / 557,5, 575,5 / 539,5, 575,5 / 531,5, 575,5 / 499,5, 575,5 / 495,5, 575,5 / 459,4, 575,5 / 417,4, 575,5 / 415,3, 575,5 / 413,3, 575,5 / 403,3, 575,5 / 295,2, 575,5 / 279,2, 575,5 / 260,2, 575,5 / 251,2, 575,5 / 197,9, 575,5 / 119,4, 575,5 / 113,1 und 575,5 / 97,0 und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C36H66O5 im negativen Ionisierungsmodus, ausgewählt aus der Gruppe bestehend aus 577,5 / 515,4, 577,5 / 559,4, 577,5 / 546,5, 577,5 / 533,5, 577,5 / 497,4, 577,5 / 419,4, 577,5 / 405,5, 577,5 / 297,2 und 577,5 / 281,2 und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C36H64O6 im negativen Ionisierungsmodus, ausgewählt aus der Gruppe bestehend aus 591,5 / 573,4, 591,5 / 555,4, 591,5 / 528,3, 591,5 / 511,2, 591,5 / 476,1, 591,5 / 419,3, 591,5 / 403,1, 591,5 / 387,3, 591,5 / 297,2, 591,5 / 295,2, 591,5 / 274,0, 591,5 / 255,3, 591,5 / 223,6, 591,5 / 203,5, 591,5 / 201,1, 591,5 / 171,0 und 591,5 / 125,3 und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C36H66O6 im negativen Ionisierungsmodus, ausgewählt aus der Gruppe bestehend aus 593,5 / 557,5, 593,5 / 575,4, 593,5 / 549,4, 593,5 / 531,5, 593,5 / 513,4, 593,5 / 495,4, 593,5 / 433,3, 593,5 / 421,4, 593,5 / 415,2, 593,5 / 391,4, 593,5 / 371,3, 593,5 / 315,3, 593,5 / 311,1, 593,5 / 297,2, 593,5 / 281,2, 593,5 / 277,2, 593,5 / 251,2, 593,5 / 201,1, 593,5 / 195,3, 593,5 / 171,1, 593,5 / 139,1 und 593,5 / 133,5 und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C36H68O6 im negativen Ionisierungsmodus, ausgewählt aus der Gruppe bestehend aus 595,5 / 559,5, 595,5 / 577,4, 595,5 / 551,4, 595,5 / 533,4, 595,5 / 515,5, 595,5 / 497,4, 595,5 / 478,4, 595,5 / 433,3, 595,5 / 423,4, 595,5 / 391,3, 595,5 / 372,3, 595,5 / 315,3, 595,5 / 313,2, 595,5 / 298,2, 595,5 / 297,2, 595,5 / 281,2, 595,5 / 279,2, 595,5 / 239,2, 595,5 / 232,9, 595,5 / 171,1, 595,5 / 169,1 und 595,5 / 141,1 und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Lysophosphatidylcholin-Metaboliten mit der Molekülformel C26H50NO7P, ausgewählt aus der Gruppe bestehend aus 520,3 / 184,2 im positiven Ionisierungsmodus, 564,3 / 504,3 im negativen Ionisierungsmodus, 564,3 / 279,3 im negativen Ionisierungsmodus, und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Lysophosphatidylcholin-Metaboliten mit der Molekülformel C26H54NO7P, ausgewählt aus der Gruppe bestehend aus 524,3 / 184,2 im positiven Ionisierungsmodus, 568,3 / 508,4 im negativen Ionisierungsmodus, 568,3 / 283,3 im negativen Ionisierungsmodus, und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Lysophosphatidylcholin-Metaboliten mit der Molekülformel C28H48NO7P, ausgewählt aus der Gruppe bestehend aus 542,3 / 184,2 im positiven Ionisierungsmodus, 586,3 / 526,3 im negativen Ionisierungsmodus, 586,3 / 301,2 im negativen Ionisierungsmodus, und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C42H80NO8P, ausgewählt aus der Gruppe bestehend aus 758,6 / 184,2 im positiven Ionisierungsmodus, 802,6 / 742,6 oder 802,6 / 279,2 für PtdCho 16:0/18:2 im negativen Ionisierungsmodus, 802,6 / 742,6 oder 802,6 / 255,3 für PtdCho 18:2/16:0 im negativen Ionisierungsmodus, 802,6 / 742,6 oder 802,6 / 281,2 für PtdCho 16:1/18:1 im negativen Ionisierungsmodus, 802,6 / 742,6 oder 802,6 / 253,2 für PtdCho 18:1/16:1 im negativen Ionisierungsmodus, und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C44H78NO8P, ausgewählt aus der Gruppe bestehend aus 780,6 / 184,2 im positiven Ionisierungsmodus, 824,6 / 764,6 oder 824,6 / 279,2 für PtdCho 18:2/18:3 im negativen Ionisierungsmodus, 824,6 / 764,6 oder 824,6 / 301,2 für PtdCho 16:0/20:5 im negativen Ionisierungsmodus, 824,6 / 764,6 oder 824,6 / 255,2 für PtdCho 20:5/16:0 im negativen Ionisierungsmodus, und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C44H82NO8P, ausgewählt aus der Gruppe bestehend aus 784,6 / 184,2 im positiven Ionisierungsmodus, 828,6 / 768,6 oder 828,6 / 305,2 für PtdCho 16:0/20:3 im negativen Ionisierungsmodus, 828,6 / 768,6 oder 828,6 / 255,2 für PtdCho 20:3/16:0 im negativen Ionisierungsmodus, 828,6 / 768,6 oder 828,6 / 279,2 für PtdCho 18:1/18:2 im negativen Ionisierungsmodus, 828,6 / 768,6 oder 828,6 / 281,2 für PtdCho 18:2/18:1 im negativen Ionisierungsmodus, und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C44H84NO8P, ausgewählt aus der Gruppe bestehend aus 786,6 / 184,2 im positiven Ionisierungsmodus, 830,6 / 770,6 oder 830,6 / 279,2 für PtdCho 18:0/18:2 im negativen Ionisierungsmodus, 830,6 / 770,6 oder 830,6 / 283,2 für PtdCho 18:2/18:0 im negativen Ionisierungsmodus, 830,6 / 770,6 oder 830,6 / 281,2 für PtdCho 18:1/18:1 im negativen Ionisierungsmodus, und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C46H78NO8P, ausgewählt aus der Gruppe bestehend aus 804,6 / 184,2 im positiven Ionisierungsmodus, 848,6 / 788,6 oder 848,6 / 301,3 für PtdCho 18:2/20:5 im negativen Ionisierungsmodus, 848,6 / 788,6 oder 848,6 / 279,2 für PtdCho 20:5/18:2 im negativen Ionisierungsmodus, 848,6 / 788,6 oder 848,6 / 327,6 für PtdCho 16:1/22:6 im negativen Ionisierungsmodus, und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C46H80NO8P, ausgewählt aus der Gruppe bestehend aus 806,6 / 184,2 im positiven Ionisierungsmodus, 850,6 / 255,2 für PtdCho 22:6/16:0 im negativen Ionisierungsmodus, 850,6 / 303,2 für PtdCho 18:2/20:4 im negativen Ionisierungsmodus, und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C46H82NO8P, ausgewählt aus der Gruppe bestehend aus 808,6 / 184,2 im positiven Ionisierungsmodus, 852,6 / 792,6 oder 852,6 / 301,3 für PtdCho 18:0/20:5 im negativen Ionisierungsmodus, 852,6 / 792,6 oder 852,6 / 329,3 für PtdCho 16:0 / 22:5 im negativen Ionisierungsmodus, 852,6 / 792,6 oder 852,6 / 303,2 für PtdCho 18:1/20:4 im negativen Ionisierungsmodus, 852,6 / 792,6 oder 852,6 / 255,2 für PtdCho 22:5/16:0 im negativen Ionisierungsmodus, und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C46H84NO8P, ausgewählt aus der Gruppe bestehend aus 810,6 / 184,2 im positiven Ionisierungsmodus, 854,6 / 794,6 oder 854,6 / 303,2 für PtdCho 18:0/20:4 im negativen Ionisierungsmodus, 854,6 / 794,6 oder 854,6 / 283,2 für PtdCho 20:4/18:0 im negativen Ionisierungsmodus, 854,6 / 794,6 oder 854,6 / 305,3 für PtdCho 18:1/20:3 im negativen Ionisierungsmodus, 854,6 / 794,6 oder 854,6 / 307,3 für PtdCho 18:2/20:2 im negativen Ionisierungsmodus, 852,6 / 794,6 oder 852,6 / 331,3 für PtdCho 16:0/22:4 im negativen Ionisierungsmodus, und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C48H80NO8P, ausgewählt aus der Gruppe bestehend aus 830,6 / 184,2 im positiven Ionisierungsmodus, 874,6 / 814,6 oder 874,6 / 327,3 für PtdCho 18:2/22:6 im negativen Ionisierungsmodus, und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C48H82NO8P von 832,6 / 184,2 im positiven Ionisierungsmodus; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C48H84NO8P, ausgewählt aus der Gruppe bestehend aus 834,6 / 184,2 im positiven Ionisierungsmodus, 878,6 / 818,6 oder 878,6 / 283,2 für PtdCho 22:6/18:0 im negativen Ionisierungsmodus, und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C39H79N2O6P, ausgewählt aus der Gruppe bestehend aus 703,6 / 184,2 im positiven Ionisierungsmodus, 747,6 / 687,6 oder 747,6 / 168,1 im negativen Ionisierungsmodus, und Kombinationen davon; oder

wenigstens einen MS/MS-Übergang für den Metaboliten mit der Molekülformel C47H93N2O6P, ausgewählt aus der Gruppe bestehend aus 813,7 / 184,2 im positiven Ionisierungsmodus, 857,6 / 797,6 oder 857,6 / 168,1 im negativen Ionisierungsmodus, und Kombinationen davon.


 
4. Verfahren gemäß einem der Ansprüche 1 bis 3, wobei die Quantifizierungsdaten unter Verwendung eines Fouriertransformations-Ionenzyklotronresonanz-, Flugzeit-, Magnetsektor-, Quadrupol- oder Tripel-Quadrupol-Massenspektrometers erhalten werden, gegebenenfalls wobei das Massenspektrometer mit einem Chromatographiesystem ausgestattet ist.
 
5. Verfahren gemäß einem der Ansprüche 1 bis 4, wobei die Blutprobe eine Blutserum-Probe ist.
 
6. Verfahren gemäß einem der Ansprüche 1 bis 5, wobei eine flüssig/flüssig-Extraktion an der Blutprobe durchgeführt wird, wodurch nichtpolare Metaboliten in einem organischen Lösungsmittel gelöst werden und polare Metaboliten in einem wässrigen Lösungsmittel gelöst werden.
 
7. Verfahren gemäß Anspruch 6, wobei die extrahierten Proben durch positive oder negative Elektrospray-Ionisation, positive oder negative chemische Ionisation bei Atmosphärendruck oder Kombinationen davon analysiert werden.
 
8. Verfahren gemäß Anspruch 6 oder 7, wobei die extrahierten Proben durch MS/MS-Übergang; oder durch extrahierte-Ionen-Strom(EIC)-Chromatographie und MS/MS-Übergang analysiert werden.
 
9. Verfahren gemäß einem der Ansprüche 1 bis 8, wobei die eine oder mehr als eine Referenz-Blutprobe von einem oder mehreren Bauchspeicheldrüsenkrebsnegativen Menschen stammt.
 
10. Verfahren gemäß einem der Ansprüche 1 bis 9, ferner umfassend:

Analysieren einer Blutprobe des Patienten, um Quantifizierungsdaten für ein oder mehr als ein interner-Standard-Molekül zu erhalten; und

für jeden der Spiegel des einen oder der mehr als einen Metabolitenmarker Erhalten eines Verhältnisses zu dem Spiegel, der für das eine oder mehr als eine interner-Standard-Molekül erhalten ist;

wobei der Vergleichsschritt (b) das Vergleichen jedes Verhältnisses mit einem oder mehreren entsprechenden Verhältnissen, die für die eine oder mehr als eine Referenz-Blutprobe erhalten sind, umfasst.


 


Revendications

1. Procédé pour diagnostiquer le risque pour un patient de développer un cancer pancréatique, ou la présence d'un cancer pancréatique chez un patient, comprenant les étapes de :

a) analyse d'un échantillon de sang dudit patient pour obtenir des données de quantification pour un ou plusieurs marqueurs métabolites ;

b) comparaison des données de quantification pour lesdits un ou plusieurs marqueurs métabolites aux données correspondantes obtenues pour un ou plusieurs échantillons de sang de référence pour identifier une augmentation ou diminution du taux desdits un ou plusieurs marqueurs métabolites dans ledit échantillon de sang ; et

c) utilisation de ladite augmentation ou diminution du taux desdits un ou plusieurs marqueurs métabolites dans ledit échantillon de sang pour diagnostiquer un changement de ou un risque de développer un cancer pancréatique, ou la présence de cancer pancréatique chez ledit patient,

dans lequel une diminution du taux desdits un ou plusieurs marqueurs métabolites dans ledit échantillon de sang est identifiée dans l'étape de comparaison (b), et
dans lequel les un ou plusieurs marqueurs métabolites comprennent une ou plusieurs molécules choisies parmi les formules moléculaires constituées de : C36H62O4, C36H62O5, C36H64O5, C36H66O5, C36H64O6, C36H66O6, C36H68O6, C22H48NO7P, C24H50NO7P, C24H48NO7P, C24H46NO7P, C26H54NO7P, C26H52NO7P, C26H50NO7P, C26H48NO7P, C28H56NO7P, C28H54NO7P, C28H52NO7P, C28H50NO7P, C28H48NO7P, C28H46NO7P, C30H56NO7P, C30H54NO7P, C30H52NO7P, C30H50NO7P, C32H58NO7P, C32H54NO7P, C38H76NO7P, C40H82NO7P, C40H80NO7P, C40H78NO7P, C40H70NO7P, C42H78NO8P, C42H80NO8P, C42H82NO8P, C42H84NO8P, C44H78NO8P, C44H80NO8P, C44H82NO8P, C44H84NO8P, C44H86NO8P, C44H88NO8P, C46H78NO8P, C46H80NO8P, C46H82NO8P, C46H84NO8P, C48H80NO8P, C48H82NO8P, C48H84NO8P, C48H86NO8P, C42H80NO7P, C42H82NO7P, C42H84NO7P, C44H82NO7P, C44H84NO7P, C44H86NO7P, C44H88NO7P, C46H82NO7P, C46H84NO7P, C46H86NO7P, C48H84NO7P, C48H86NO7P, C39H79N2O6P, C39H80N2O6P+, C41H81N2O6P, C41H82N2O6P+, C41H83N2O6P, C41H84N2O6P+, C47H93N2O6P, C47H94N2O6P+, C47H95N2O6P, C47H96N2O6P+, et des combinaisons de celles-ci ; et
dans lequel la molécule est :

une lysophosphatidylcholine (LysoPC) choisie dans le groupe constitué de LysoPC 14:1, LysoPC 16:0, LysoPC 16:1, LysoPC 16:2, LysoPC 18:0, LysoPC 18:1, LysoPC 18:2, LysoPC 18:3, LysoPC 20:1, LysoPC 20:2, LysoPC 20:3, LysoPC 20:4, LysoPC 20:5, LysoPC 20:6, LysoPC 22:3, LysoPC 22:4, LysoPC 22:5, LysoPC 22:6, LysoPC 24:4, LysoPC 24:6, LysoPC 30:1, LysoPC 32:0, LysoPC 32:1, LysoPC 32:2, LysoPC 32:6 et des combinaisons de celles-ci ; ou

une phosphatidylcholine ayant une formule moléculaire choisie dans le groupe constitué de C42H78NO8P, C42H80NO8P, C42H82NO8P, C42H84NO8P, C44H78NO8P, C44H80NO8P, C44H82NO8P, C44H84NO8P, C44H86NO8P, C44H88NO8P, C46H78NO8P, C46H80NO8P, C46H82NO8P, C46H84NO8P, C48H80NO8P, C48H82NO8P, C48H84NO8P, C48H86NO8P, et des combinaisons de celles-ci ; ou

une plasménylphosphocholine ayant une formule moléculaire choisie dans le groupe constitué de C42H80NO7P, C42H82NO7P, C42H84NO7P, C44H82NO7P, C44H84NO7P, C44H86NO7P, C44H88NO7P, C46H82NO7P, C46H84NO7P, C46H86NO7P, C48H84NO7P, C48H86NO7P, et des combinaisons de celles-ci ; ou

une sphingomyéline ayant une formule moléculaire choisie dans le groupe constitué de C39H79N2O6P, C39H80N2O6P+, C41H81N2O6P, C41H82N2O6P+, C41H83N2O6P, C41H84N2O6P+, C47H93N2O6P, C47H94N2O6P+, C47H95N2O6P, C47H96N2O6P+, et des combinaisons de celles-ci ; ou

dans lequel la molécule est caractérisée par au moins une transition MS/MS pour la molécule ayant la formule moléculaire de C36H62O4, en mode d'ionisation négative, choisie dans le groupe constitué de 557,4/495,4, 557,4/539,4, 557,4/513,3, 557,4/279,2, 557,4/277,2, 557,4/220,7 et 557,4/111,2, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour la molécule ayant la formule moléculaire de C36H62O5, en mode d'ionisation négative, choisie dans le groupe constitué de 573,5/511,4, 573,5/555,3, 573,5/537,4, 573,5/529,4, 573,5/519,4, 573,5/493,3, 573,5/457,4, 573,5/455,3, 573,5/443,4, 573,5/415,4, 573,5/413,3, 573,5/411,3, 573,5/399,3, 573,5/397,3, 573,5/389,7, 573,5/295,2, 573,5/279,2, 573,5/277,2, 573,5/251,2, 573,5/231,1, 573,5/223,1, 573,5/201,1, 573,5/171,1, 573,5/169,1, 573,5/125,1 et 573,5/113,1, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C36H64O5, en mode d'ionisation négative, choisie dans le groupe constitué de 575,5/513,5, 575,5/557,5, 575,5/539,5, 575,5/531,5, 575,5/499,5, 575,5/495,5, 575,5/459,4, 575,5/417,4, 575,5/415,3, 575,5/413,3, 575,5/403,3, 575,5/295,2, 575,5/279,2, 575,5/260,2, 575,5/251,2, 575,5/197,9, 575,5/119,4, 575,5/113,1, et 575,5/97,0, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C36H66O5, en mode d'ionisation négative, choisie dans le groupe constitué de 577,5/515,4, 577,5/559,4, 577,5/546,5, 577,5/533,5, 577,5/497,4, 577,5/419,4, 577,5/405,5, 577,5/297,2 et 577,5/281,2, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C36H64O6, en mode d'ionisation négative, choisie dans le groupe constitué de 591,5/573,4, 591,5/555,4, 591,5/528,3, 591,5/511,2, 591,5/476,1, 591,5/419,3, 591,5/403,1, 591,5/387,3, 591,5/297,2, 591,5/295,2, 591,5/274,0, 591,5/255,3, 591,5/223,6, 591,5/203,5, 591,5/201,1, 591,5/171,0 et 591,5/125,3, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C36H66O6, en mode d'ionisation négative, choisie dans le groupe constitué de 593,5/557,5, 593,5/575,4, 593,5/549,4, 593,5/531,5, 593,5/513,4, 593,5/495,4, 593,5/433,3, 593,5/421,4, 593,5/415,2, 593,5/391,4, 593,5/371,3, 593,5/315,3, 593,5/311,1, 593,5/297,2, 593,5/281,2, 593,5/277,2, 593,5/251,2, 593,5/201,1, 593,5/195,3, 593,5/171,1, 593,5/139,1 et 593,5/133,5, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C36H68O6, en mode d'ionisation négative, choisie dans le groupe constitué de 595,5/559,5, 595,5/577,4, 595,5/551,4, 595,5/533,4, 595,5/515,5, 595,5/497,4, 595,5/478,4, 595,5/433,3, 595,5/423,4, 595,5/391,3, 595,5/372,3, 595,5/315,3, 595,5/313,2, 595,5/298,2, 595,5/297,2, 595,5/281,2, 595,5/279,2, 595,5/239,2, 595,5/232,9, 595,5/171,1, 595,5/169,1 et 595,5/141,1, et des combinaisons de celles-ci.


 
2. Procédé de la revendication 1, dans lequel la molécule est :

une lysophosphatidylcholine (LysoPC) choisie dans le groupe constitué de LysoPC 14:1, LysoPC 16:0, LysoPC 16:1, LysoPC 16:2, LysoPC 18:0, LysoPC 18:1, LysoPC 18:2, LysoPC 18:3, LysoPC 20:1, LysoPC 20:2, LysoPC 20:3, LysoPC 20:4, LysoPC 20:5, LysoPC 20:6, LysoPC 22:3, LysoPC 22:4, LysoPC 22:5, LysoPC 22:6, LysoPC 24:4, LysoPC 24:6, LysoPC 30:1, LysoPC 32:0, LysoPC 32:1, LysoPC 32:2, LysoPC 32:6 et des combinaisons de celles-ci ; ou

une phosphatidylcholine ayant une formule moléculaire choisie dans le groupe constitué de C42H78NO8P, C42H80NO8P, C42H82NO8P, C42H84NO8P, C44H78NO8P, C44H80NO8P, C44H82NO8P, C44H84NO8P, C44H86NO8P, C44H88NO8P, C46H78NO8P, C46H80NO8P, C46H82NO8P, C46H84NO8P, C48H80NO8P, C48H82NO8P, C48H84NO8P, C48H86NO8P, et des combinaisons de celles-ci ; ou

une plasménylphosphocholine ayant une formule moléculaire choisie dans le groupe constitué de C42H80NO7P, C42H82NO7P, C42H84NO7P, C44H82NO7P, C44H84NO7P, C44H86NO7P, C44H88NO7P, C46H82NO7P, C46H84NO7P, C46H86NO7P, C48H84NO7P, C48H86NO7P, et des combinaisons de celles-ci ; ou

une sphingomyéline ayant une formule moléculaire choisie dans le groupe constitué de C39H79N2O6P, C39H80N2O6P+, C41H81N2O6P, C41H82N2O6P+, C41H83N2O6P, C41H84N2O6P+, C47H93N2O6P, C47H94N2O6P+, C47H95N2O6P, C47H96N2O6P+, et des combinaisons de celles-ci.


 
3. Procédé de la revendication 1, dans lequel la molécule est caractérisée par :

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C36H62O4, en mode d'ionisation négative, choisie dans le groupe constitué de 557,4/495,4, 557,4/539,4, 557,4/513,3, 557,4/279,2, 557,4/277,2, 557,4/220,7 et 557,4/111,2, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C36H62O5, en mode d'ionisation négative, choisie dans le groupe constitué de 573,5/511,4, 573,5/555,3, 573,5/537,4, 573,5/529,4, 573,5/519,4, 573,5/493,3, 573,5/457,4, 573,5/455,3, 573,5/443,4, 573,5/415,4, 573,5/413,3, 573,5/411,3, 573,5/399,3, 573,5/397,3, 573,5/389,7, 573,5/295,2, 573,5/279,2, 573,5/277,2, 573,5/251,2, 573,5/231,1, 573,5/223,1, 573,5/201,1, 573,5/171,1, 573,5/169,1, 573,5/125,1 et 573,5/113,1, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C36H64O5, en mode d'ionisation négative, choisie dans le groupe constitué de 575,5/513,5, 575,5/557,5, 575,5/539,5, 575,5/531,5, 575,5/499,5, 575,5/495,5, 575,5/459,4, 575,5/417,4, 575,5/415,3, 575,5/413,3, 575,5/403,3, 575,5/295,2, 575,5/279,2, 575,5/260,2, 575,5/251,2, 575,5/197,9, 575,5/119,4, 575,5/113,1, et 575,5/97,0, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C36H66O5, en mode d'ionisation négative, choisie dans le groupe constitué de 577,5/515,4, 577,5/559,4, 577,5/546,5, 577,5/533,5, 577,5/497,4, 577,5/419,4, 577,5/405,5, 577,5/297,2 et 577,5/281,2, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C36H64O6, en mode d'ionisation négative, choisie dans le groupe constitué de 591,5/573,4, 591,5/555,4, 591,5/528,3, 591,5/511,2, 591,5/476,1, 591,5/419,3, 591,5/403,1, 591,5/387,3, 591,5/297,2, 591,5/295,2, 591,5/274,0, 591,5/255,3, 591,5/223,6, 591,5/203,5, 591,5/201,1, 591,5/171,0 et 591,5/125,3, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C36H66O6, en mode d'ionisation négative, choisie dans le groupe constitué de 593,5/557,5, 593,5/575,4, 593,5/549,4, 593,5/531,5, 593,5/513,4, 593,5/495,4, 593,5/433,3, 593,5/421,4, 593,5/415,2, 593,5/391,4, 593,5/371,3, 593,5/315,3, 593,5/311,1, 593,5/297,2, 593,5/281,2, 593,5/277,2, 593,5/251,2, 593,5/201,1, 593,5/195,3, 593,5/171,1, 593,5/139,1 et 593,5/133,5, et des combinaisons de celles-ci ; ou

dans lequel au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C36H68O6, en mode d'ionisation négative, choisie dans le groupe constitué de 595,5/559,5, 595,5/577,4, 595,5/551,4, 595,5/533,4, 595,5/515,5, 595,5/497,4, 595,5/478,4, 595,5/433,3, 595,5/423,4, 595,5/391,3, 595,5/372,3, 595,5/315,3, 595,5/313,2, 595,5/298,2, 595,5/297,2, 595,5/281,2, 595,5/279,2, 595,5/239,2, 595,5/232,9, 595,5/171,1, 595,5/169,1 et 595,5/141,1, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite lysophosphatidylcholine ayant la formule moléculaire de C26H50NO7P, choisie dans le groupe constitué de 520,3/184,2 en mode d'ionisation positive, 564,3/504,3 en mode d'ionisation négative, 564,3/279,3 en mode d'ionisation négative, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite lysophosphatidylcholine ayant la formule moléculaire de C26H54NO7P, choisie dans le groupe constitué de 524,3/184,2 en mode d'ionisation positive, 568,3/508,4 en mode d'ionisation négative, 568,3/283,3 en mode d'ionisation négative, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite lysophosphatidylcholine ayant la formule moléculaire de C28H48NO7P, choisie dans le groupe constitué de 542,3/184,2 en mode d'ionisation positive 586,3/526,3 en mode d'ionisation négative, 586,3/301,2 en mode d'ionisation négative, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C42H80NO8P, choisie dans le groupe constitué de 758,6/184,2 en mode d'ionisation positive, 802,6/742,6 ou 802,6/279,2 pour PtdCho 16:0/18:2 en mode d'ionisation négative, 802,6/742,6 ou 802,6/255,3 pour PtdCho 18:2/16:0 en mode d'ionisation négative, 802,6/742,6 ou 802,6/281,2 pour PtdCho 16:1/18:1 en mode d'ionisation négative, 802,6/742,6 ou 802,6/253,2 pour PtdCho 18:1/16:1 en mode d'ionisation négative, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C44H78NO8P, choisie dans le groupe constitué de 780,6/184,2 en mode d'ionisation positive, 824,6/764,6 ou 824,6/279,2 pour PtdCho 18:2/18:3 en mode d'ionisation négative, 824,6/764,6 ou 824,6/301,2 pour PtdCho 16:0/20:5 en mode d'ionisation négative, 824,6/764,6 ou 824,6/255,2 pour PtdCho 20:5/16:0 en mode d'ionisation négative, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C44H82NO8P, choisie dans le groupe constitué de 784,6/184,2 en mode d'ionisation positive, 828,6/768,6 ou 828,6/305,2 pour PtdCho 16:0/20:3 en mode d'ionisation négative, 828,6/768,6 ou 828,6/255,2 pour PtdCho 20:3/16:0 en mode d'ionisation négative, 828,6/768,6 ou 828,6/279,2 pour PtdCho 18:1/18:2 en mode d'ionisation négative, 828,6/768,6 ou 828,6/281,2 pour PtdCho 18:2/18:1 en mode d'ionisation négative, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C44H84NO8P, choisie dans le groupe constitué de 786,6/184,2 en mode d'ionisation positive, 830,6/770,6 ou 830,6/279,2 pour PtdCho 18:0/18:2 en mode d'ionisation négative, 830,6/770,6 ou 830,6/283,2 pour PtdCho 18:2/18:0 en mode d'ionisation négative, 830,6/770,6 ou 830,6/281,2 pour PtdCho 18:1/18:1 en mode d'ionisation négative, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C46H78NO8P, choisie dans le groupe constitué de 804,6/184,2 en mode d'ionisation positive, 848,6/788,6 ou 848,6/301,3 pour PtdCho 18:2/20:5 en mode d'ionisation négative, 848,6/788,6 ou 848,6/279,2 pour PtdCho 20:5/18:2 en mode d'ionisation négative, 848,6/788,6 ou 848,6/327,6 pour PtdCho 16:1/22:6 en mode d'ionisation négative, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C46H80NO8P, choisie dans le groupe constitué de 806,6/184,2 en mode d'ionisation positive, 850,6/255,2 pour PtdCho 22:6/16:0 en mode d'ionisation négative, 850,6/303,2 pour PtdCho 18:2/20:4 en mode d'ionisation négative, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C46H82NO8P, choisie dans le groupe constitué de 808,6/184,2 en mode d'ionisation positive, 852,6/792,6 ou 852,6/301,3 pour PtdCho 18:0/20:5 en mode d'ionisation négative, 852,6/792,6 ou 852,6/329,3 pour PtdCho 16:0/22:5 en mode d'ionisation négative, 852,6/792,6 ou 852,6/303,2 pour PtdCho 18:1/20:4 en mode d'ionisation négative, 852,6/792,6 ou 852,6/255,2 pour PtdCho 22:5/16:0 en mode d'ionisation négative, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C46H84NO8P, choisie dans le groupe constitué de 810,6 /184,2 en mode d'ionisation positive, 854,6/794,6 ou 854,6/303,2 pour PtdCho 18:0/20:4 en mode d'ionisation négative, 854,6/794,6 ou 854,6/283,2 pour PtdCho 20:4/18:0 en mode d'ionisation négative, 854,6/794,6 ou 854,6/305,3 pour PtdCho 18:1/20:3 en mode d'ionisation négative, 854,6/794,6 ou 854,6/307,3 pour PtdCho 18:2/20:2 en mode d'ionisation négative, 852,6/794,6 ou 852,6/331,3 pour PtdCho 16:0/22:4 en mode d'ionisation négative, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C48H80NO8P, choisie dans le groupe constitué de 830,6/184,2 en mode d'ionisation positive, 874,6/814,6 ou 874,6/327,3 pour PtdCho 18:2/22:6 en mode d'ionisation négative, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C48H82NO8P, de 832,6/184,2 en mode d'ionisation positive ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C48H84NO8P, choisie dans le groupe constitué de 834,6/184,2 en mode d'ionisation positive, 878,6/818,6 ou 878,6/283,2 pour PtdCho 22:6/18:0 en mode d'ionisation négative, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C39H79N2O6P, choisie dans le groupe constitué de 703,6/184,2 en mode d'ionisation positive, 747,6/687,6 ou 747,6/168,1 en mode d'ionisation négative, et des combinaisons de celles-ci ; ou

au moins une transition MS/MS pour le métabolite ayant la formule moléculaire de C47H93N2O6P, choisie dans le groupe constitué de 813,7 /184,2 en mode d'ionisation positive, 857,6/797,6 ou 857,6/168,1 en mode d'ionisation négative, et des combinaisons de celles-ci.


 
4. Procédé de l'une quelconque des revendications 1 à 3, dans lequel les données de quantification sont obtenues en utilisant un spectromètre de masse à résonance de cyclotron d'ion à transformée de Fourier, à temps de vol, à secteur magnétique, à quadripôle, à triple quadripôle, et éventuellement dans lequel le spectromètre de masse est équipé d'un système chromatographique.
 
5. Procédé de l'une quelconque des revendications 1 à 4, dans lequel l'échantillon de sang est un échantillon de sérum sanguin.
 
6. Procédé de l'une quelconque des revendications 1 à 5, dans lequel une extraction liquide/liquide est effectuée sur l'échantillon de sang de telle manière que les métabolites non polaires soient dissous dans un solvant organique et les métabolites polaires soient dissous dans un solvant aqueux.
 
7. Procédé de la revendication 6, dans lequel les échantillons extraits sont analysés par ionisation electrospray positive ou négative, ionisation chimique à pression atmosphérique négative, ou des combinaisons de celles-ci.
 
8. Procédé de la revendication 6 ou 7, dans lequel les échantillons extraits sont analysés par transition ; ou par chromatographie à courant ionique extrait (EIC) et transition MS/MS.
 
9. Procédé de l'une quelconque des revendications 1 à 8, dans lequel lesdits un ou plusieurs échantillons de sang de référence est d'un ou plusieurs humains négatifs pour le cancer pancréatique.
 
10. Procédé de l'une quelconque des revendications 1 à 9, comprenant en outre :

l'analyse d'un échantillon de sang dudit patient pour obtenir des données de quantification pour une ou plusieurs molécules d'étalon interne ; et

l'obtention d'un rapport pour chacun des taux desdits un ou plusieurs marqueurs métabolites au taux obtenu pour les une ou plusieurs molécules d'étalon interne ;

dans lequel l'étape de comparaison (b) comprend la comparaison de chaque rapport à un ou plusieurs rapports correspondants obtenus pour les un ou plusieurs échantillons de sang de référence.


 




Drawing
































































































































































































































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description