(19)
(11)EP 2 486 420 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.08.2020 Bulletin 2020/35

(21)Application number: 10765477.4

(22)Date of filing:  04.10.2010
(51)Int. Cl.: 
G01S 5/02  (2010.01)
G01S 5/10  (2006.01)
(86)International application number:
PCT/GB2010/051654
(87)International publication number:
WO 2011/042726 (14.04.2011 Gazette  2011/15)

(54)

IMPROVEMENTS IN OR RELATING TO RADIO POSITIONING

VERBESSERUNGEN IM ZUSAMMENHANG MIT FUNKPOSITIONIERUNG

AMÉLIORATIONS RELATIVES À LA RADIOLOCALISATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 05.10.2009 GB 0917388
05.10.2009 EP 09275092
05.10.2009 GB 0917384
05.10.2009 EP 09275091
27.11.2009 GB 0920772
27.11.2009 EP 09177349
07.06.2010 GB 201009486
07.06.2010 EP 10275059
10.08.2010 GB 201013413

(43)Date of publication of application:
15.08.2012 Bulletin 2012/33

(73)Proprietor: BAE Systems PLC
London SW1Y 5AD (GB)

(72)Inventor:
  • FARAGHER, Ramsey, Michael
    Chelmsford Essex CM2 8HN (GB)

(74)Representative: BAE SYSTEMS plc Group IP Department 
P.O. Box 87 Warwick House
Farnborough Aerospace Centre Farnborough Hampshire GU14 6YU
Farnborough Aerospace Centre Farnborough Hampshire GU14 6YU (GB)


(56)References cited: : 
EP-A2- 0 437 822
US-A- 5 502 450
US-A- 4 024 383
US-B1- 7 388 541
  
  • CHUN YANG ET AL: "Self-Calibrating Position Location Using Signals of Opportunity", 22ND INTERNATIONAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION, SAVANNAH, GA, SEPTEMBER 22-25, 2009,, 22 September 2009 (2009-09-22), pages 1055-1063, XP007917393,
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the invention



[0001] The present invention relates to a method and system for radio positioning of a mobile receiver by using a virtual positioning reference. The method and system can advantageously utilise radio signals originating from terrestrial unsynchronised radio transmitters, for example, television, cellular, wi-fi, public radio and the like.

Background to the invention



[0002] A commonly used resource for outdoor navigation is satellite positioning technology, otherwise known as a Global Navigation Satellite System (GNSS). One example of a fully operational GNSS is the United States NAVSTAR Global Positioning System (GPS) - which will be referred to below when generally discussing satellite positioning technology. However, it will be appreciated that satellite positioning technologies other than GPS may be used in its place.

[0003] The operation of GPS is well known in the art, and generally employs a GPS receiver arranged to receive signals from a number of GPS satellites. Each satellite broadcasts its own location and providing the GPS receiver can receive the broadcasted signals from a sufficient number and distribution of satellites, the GPS receiver can infer its own position.

[0004] An entity wanting to self-localise may therefore employ a positioning system having a GPS receiver. However, in the event that a GPS receiver is not able to infer its position - for example due to signal interference, then it may be possible for the positioning system to make use of other positioning resources.

[0005] For example, a navigation system can navigate using radio signals transmitted by terrestrial radio transmitters such as cellular telephone base stations, television and the like. The signals transmitted by such radio transmitters have distinguishing radio signal characteristics - such as repeated and unique code words - that can be exploited by a suitable positioning system for navigation. These radio signal characteristics along with information about the location the transmitters can be used to determine the position of an entity using known localisation techniques such as multilateration and Enhanced Observed Time Difference (EOTD) as is known in the art.

[0006] The regular or otherwise predictably repeated code words are used to allow the receiver of those signals to synchronise with the transmitter. Once synchronised with a set of transmitters, a receiver can therefore determine the relative arrival times of the code words from the available set. As the receiver moves and this set of relative times varies, the receiver can determine its position accordingly. This process is relatively straightforward for transmitters that are synchronised with one another (as is the case with GPS).

[0007] However, terrestrial radio signal transmitters that are available to a receiver are not usually synchronised - even if they are set up to transmit the same radio signal type, with the same code word repeat rate. For radio signal transmitters of different types (e.g. different bandwidths and/or frequencies) - e.g. a cellular transmitter versus a DAB transmitter - synchronisation is highly improbable.

[0008] As can be observed from a navigation system such a GPS, synchronisation between the radio signal sources is very useful for radio localisation - but is often not possible in an environment in which opportunistic unsynchronised terrestrial radio signals are the only radio signal sources available for localisation.

[0009] One known solution in the art is to compensate for the lack of synchronisation by calculating clock offsets (relative to an imaginary universal 'absolute' clock) for each transmitter and storing these values for use as clock corrections. In particular, a navigation system can make use of the following Equation 1 to calculate transmitter clock offsets for use in 'emulating' synchronicity:

where:

c is the known speed of the radio waves;

t represents the arrival time (measured at the receiver position using a clock local to the mobile receiver) of a transmission from a transmitter;

r and b are vectors of the positions of the receiver and transmitter respectively. For example, each vector could be the "x, y" values in an 2D Cartesian environment;

ε represents the error of the clock local to the mobile receiver, and;

α represents the transmitter clock offset.



[0010] Prior art navigations systems that attempt to make use of unsynchronised radio transmitters for navigation can therefore calculate the transmitter clock offset α and local clock error ε via the mobile receiver collecting timing measurements at a number of different known mobile receiver positions relative to a stationary transmitter having a known location.

[0011] However, the calculation of the transmitter clock offset α and local clock error ε values can be computationally expensive, especially when considering that multiple transmitters are required for effective self-localisation. This is especially the case in a system that has the capability of dealing with imperfect data (for example by applying a localisation estimation filter). In such a case, a state vector will need to be maintained including and calculating the offset values for every transmitter, and the errors/uncertainties associated with them.

[0012] Furthermore, if a relatively cheap and simple navigation device is employed, the local onboard clock is not likely to be stable. Therefore, the calculated value of a local clock error at one instance does not necessarily apply at another instance, adversely affecting the position calculation. Therefore, it would be beneficial to negate the effect of local clock error.

[0013] Whilst it is possible to obtain a highly stable clock reference using atomic clock references, or via a GPS fix, these are not necessarily practical solutions. Atomic clock references are heavy, expensive and unsuitable for a portable navigation device. A stable timing reference can be obtained via GPS, but this relies on a continuous GPS fix, and so is not possible under conditions in which a GPS signal cannot be obtained.

[0014] EP0437822 relates to a method of determining the position of a radio receiver by receiving a sequence of radio signals from a stationary radio transmitter and determining a transit time difference between the two signals.

[0015] US4024383 relates to a system for accurate navigation of a vehicle by first logging the distance of an initial vehicle position from a number of known locations, then, when the vehicle has moved to a new position, determining the difference in propagation time of EM wave energy transmitted from those known locations to determine a change in distance of the vehicle therefrom and, thus, its new position.

[0016] Chun Yang et al: "Self-Calibrating Position Location Using Signals of Opportunity", 22nd International Meeting of the Satellite Division of the Institute of Navigation, Savannah, GA, 22 September 2009 relates to a self-calibration mechanism for a system that uses signals of opportunity to locate a user.

[0017] It is possible to formulate a local clock error model with which an attempt can be made to compensate for the likely error in an unstable local clock. However, the model needs to be calculated/calibrated for the eccentricities of each local clock independently and updated over time. To do this is computationally expensive, and so undesirable in a portable system in which processing power and battery life are valuable resources.

[0018] These are problems associated with the prior art devices that make use of the above Equation 1. Accordingly, it is desirable to provide a relatively cheap, portable navigation device able to utilise terrestrial radio signal transmitters for self-localisation in the event that a GPS signal cannot be obtained. To save on battery usage and overall weight, it is also desirable to reduce the computational burden involved with self-localisation of such a device beyond those making use of the above Equation 1.

[0019] It is an object of the present invention to alleviate the above-mentioned problems.

[0020] According to a first aspect of the present invention there is provided a method for radio positioning of a mobile receiver according to claim 1. Optional features are set out in the dependent claims.

[0021] Advantageously, the method exploits the clock stability of the transmitter from which a virtual positioning reference is established. The clock offset associated with the transmitter will not change over the time during which the mobile receiver is moving between the first and second position. Assuming a stable transmitter clock, it is possible to relieve the mobile receiver from the computational burden of needing to calculate the transmitter clock offset. This value is simply eliminated during the step of determining the time difference between when the virtual positioning reference is predicted to receive the second instance of the code word and when the mobile receiver actually receives the second instance of the code word. In other words, because a differential method is used for determining the position of the mobile receiver, it is not necessary to calculate the transmitter clock offset. This will only be valid if the transmitter clocks exhibit high levels of stability since the creation of the most recent virtual positioning reference. Modern digital opportunistic signal sources such as cellular, DAB, DVB, etc transmissions exhibit such high stabilities and would allow such a method to be utilised for many hours after establishing a virtual reference.

[0022] For the avoidance of doubt, it will be understood that the determined time difference is associated with the change in position of the mobile receiver from the first position to the second position relative to the transmitter.

[0023] The present invention is particularly applicable to radio positioning using radio signals of opportunity - i.e. those which may not have been previously encountered, or at least have initially unknown characteristics. Therefore, it is advantageous for the mobile receiver, preferably when at the first known position, to establish a profile of any initially unknown radio signal. For example, the profile may comprise identifying characteristics of the radio signal such as specific code words that allow a confident association with the radio signal with a particular transmitter. Furthermore, the method preferably comprises determining the repeat rate of the terrestrial radio signal transmitter to predict when the virtual positioning reference will receive a second instance of the code word. As mentioned, characteristics such as the code word repeat rate may be determined by analysing the radio signal originating from the transmitter.

[0024] Advantageously, the use of a primary positioning resource such as a GPS receiver allows the mobile receiver to confidently determine an initial first position. Where a GPS receiver is the primary positioning resource, this is when the GPS receiver is able to receive GPS signals from a sufficient number of satellites. Under certain conditions, for example when the mobile receiver is operating under foliage, indoors or otherwise in environments where the GPS signal is subject to interference, the mobile receiver can then fall back on to radio positioning using terrestrial radio signals.

[0025] It will be noted that such radio signals are generally not set up specifically to allow navigation, and so can be difficult to utilise over the long term. For example, terrestrial transmitters in a given geographical area tend not to be of the same type (e.g. of different frequencies, signal structures, and bandwidths) and are not synchronised with one another. Thus, it is preferred for GPS as the primary positioning resource to be used to self-localise whenever possible, the secondary terrestrial-transmitter-based radio-localisation only taking effect for the short periods for which the primary positioning resource is rendered ineffective.

[0026] Preferably, the method comprises calculating the time difference using a differential positioning module local to the mobile receiver. Preferably, the differential positioning module is arranged to calculate differential corrections relative to real/actual reference base stations.

[0027] Advantageously, the same differential positioning module can be used in conjunction with both virtual positioning references and real reference base stations. This is useful because the mobile receiver may be able to receive information from a real reference base station and use this to localise and/or improve localisation. In doing so, the calculations necessary can be performed through the same differential positioning module, reducing the complexity of the mobile receiver. In practice, if the differential calculation module is implemented in hardware, the reduced physical circuitry ('silicon real estate') can increase the portability of the mobile device. Potentially, this may also reduce the computational burden on a general-purpose processor of the mobile receiver.

[0028] Advantageously, the method can be used with current systems that require a real reference receiver to bridge any gaps caused by communication drop out. The moving receiver, on losing contact with the reference receiver, can generate the expected measurements from the reference and carry on using the same positioning algorithms, filters and processes until communication with the real reference is established. This method will provide the highest level of accuracy if the communications drop outs are short enough such that the transmitter clocks remain highly stable during the communication drop-out period.

[0029] Preferably, the method comprises establishing a plurality of virtual positioning references at known locations spaced from one another. Advantageously, this improves the determination of the location of the mobile receiver. For example, the effect of multipath interference is reduced with an increased number of virtual positioning references due to low likelihood of the same multipath error occurring at every spaced reference position.

[0030] Advantageously, the ability of the mobile receiver to self localise is improved with a greater number of transmitters that are geographically spaced from one another.

[0031] Advantageously, by limiting the radio signal capture window, the amount of data that the mobile receiver will need to log is reduced. The capture length limit is defined by the minimum time in which it is possible to guarantee that a code word will be received from a transmitter.

[0032] Advantageously, clock errors are removed by this virtual position reference technique as long as the transmitter clock offset values α are stable during the time period over which the mobile receiver is moving between the first known position and the second unknown position.

[0033] In effect the measurements expected at the first position at the new moment in time are calculated (and are an estimate of the measurements that would have been made if the mobile receiver had stayed at that original first position). This calculation is possible because the repeat rate of the transmitter's code word is known and its transmitter reference is highly stable. The receiver's motion relative to the starting point and the transmitter can be inferred immediately by taking the difference in the times of arrival of the real second measurement and the estimated measurement from the virtual positioning reference.

[0034] Advantageously, receiving transmissions from a plurality of transmitters allows a 'single difference' calculation to be performed to remove any effect of a local clock error. Thus it is not necessarily required to undertake the computationally burdensome task of establishing a local clock error model.

[0035] The single different calculation, can be determined by taking the differences between pairs of measurements from different transmitters. This leaves the effects of multipath interference, signal geometry and measurement noise as the main sources of error.

[0036] An example of a single-difference measurement between pairs of transmitter measurements is shown as follows:



[0037] As can be seen, local clock errors can thus be removed. Assuming no other available data, the minimum number of transmitters required for a two-dimensional position estimate is three, and the minimum number of transmitters required for a three-dimensional position estimate is four.

[0038] For the avoidance of doubt, the value of tref can be determined by adding a multiple of the repeat rate of the code word transmission to the original time at which the first instance of the code word was measured by the mobile receiver at the first position. More particularly:

where tstart is the time at which the first instance of the code word is received by the mobile receiver at the first position, P is the period between transmitter code-word broadcasts to a perfect clock, N is the number of transmitter code words expected to have been broadcast since the first timing measurement tstart.

[0039] According to a second aspect of the present invention there is provided a mobile receiver arranged to self-localise using radio positioning according to claim 10. Optional features are set out in the dependent claims.

[0040] It will be understood that different aspects of the present invention may be combined where the context allows.

Brief description of the figures



[0041] Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings in which:

Figure 1 shows a schematic diagram of a mobile receiver according to a first embodiment of the present invention;

Figure 2 is a schematic diagram showing a simplified 2D example of the mobile receiver of Figure 1 placed within an operational environment in which a virtual positioning reference is established relative to a single terrestrial transmitter prior to the mobile receiver entering into an area in which a primary positioning resource of the mobile receiver is rendered ineffective;

Figure 3 is a schematic diagram showing the same simplified 2D example of Figure 2, but where two virtual positioning references are established prior to the mobile receiver entering into the area in which the primary positioning resource of the mobile receiver is rendered ineffective; and

Figure 4 is a schematic diagram showing a 2D example of the mobile receiver of Figure 1 placed within an operational environment similar to those shown in Figures 2 and 3, and in which there are multiple terrestrial transmitters and an actual/real reference base station.


Detailed description of the preferred embodiment



[0042] Referring to Figure 1 there is schematically shown a mobile receiver 2 according to a first embodiment of the present invention. The mobile receiver 2 comprises a primary positioning resource in the form of a GPS receiver 20, a terrestrial radio signal receiver 22, an Inertial Measurement Unit (IMU) 24, an interface module 26, a database 28, a general purpose processor 30, a user interface module 32, a position display module 34 and a secondary processor 35 in the form of a differential positioning module dedicated to performing differential timing and distance calculations. The mobile receiver 2 is also equipped with a clock incorporated as part of the processor 30.

[0043] The GPS receiver 20 and terrestrial receiver 22 collect data from respective GPS and terrestrial radio signals as is known in the art, and send their data to the processor 30. The processor 30 also receives data from the IMU 24, and optionally, the interface module 26. The interface module 26 may arranged to be connected to other devices, for example receivers arranged to receive radio signals other than those that can be received by the terrestrial radio signal receiver 22. In particular, the interface module 26 can allow the mobile receiver 2 to receive information from a reference base station 4 - also as shown in Figure 4.

[0044] The terrestrial radio signal receiver 22 is arranged to receive radio signals with a frequency of between 3MHz and 3000MHz and so is able to receive radio signals transmitted from sources such as a GSM transmitter 7, a television UHF transmitter 8 and a FM radio station VHF transmitter 9 as shown in Figure 4.

[0045] The terrestrial radio signal receiver 22 is arranged as a multi-channel system with approximately ten flexible channels with selectable antenna able to tune to any frequency within the above stated range and gather data over a radio signal capture window as will be described below. The terrestrial radio signal receiver 22 comprises one or more scanning channels per waveband constantly sweeping the band picking out the set of strongest signals and determining what they are, the modulation scheme, identification, etc and maintaining a priority list for the flexible channels based on signal strength, bandwidth, range, fundamental accuracy, location, etc.

[0046] The processor 30 is arranged to store the received data in the database 28. The processor 30 is also arranged to process the data received from input modules 20, 22, 24, 26, and store the resulting processed data in the database 28.

[0047] The database 28 also stores map images which are preloaded onto the database 28 and fetched by the processor 30 when needed.

[0048] Processed data comprises positional data which, together with the appropriate map images may be outputted by the processor to the position display module 34 which can then display an appropriate map to a user showing the location of the mobile receiver 2 on that map. The user interface 32 can also be used by the user to configure the processor 30, and so the operation of the mobile receiver 2.

[0049] The GPS receiver 20 receives GPS radio signals from a number of GPS satellites. Any radio signals that are received are fed to the processor 30 for processing and storage in the database 28. Using prior known techniques, the processor can use data from the GPS receiver 20 to determine the position of the mobile receiver 2, and display the position of the mobile receiver 2 to a user, for example overlaid on a suitable map image.

[0050] At the same time, the terrestrial radio signal receiver 22 may receive radio signals from a number of terrestrial radio signal transmitters. These radio signals are also fed to the processor 30.

[0051] In order to use the terrestrial radio signals for self-localisation, the mobile receiver 2, needs to have access to information about the location of the transmitters of the terrestrial radio signals received by the terrestrial receiver 22. This information may be preloaded in the database 28, or obtained via an external source (for example, by downloading the information, or by a user inputting this information via the user interface 32 after a survey of the area containing the transmitters).

[0052] The Inertial Measurement Unit (IMU) 24 also passes IMU information to the processor relating to the speed, acceleration and orientation of the mobile receiver 2.

[0053] Therefore, it can be seen that the mobile receiver 2 receives and logs information from a number of different sources relating to its state and the state of its environment.

[0054] The state information that is received by the mobile receiver 2 is stored in the database 28 and processed by the processor 30 as a number of different variables. For example, there may be variables associated with:
  1. a) the distance between the mobile receiver 2 and each of the terrestrial radio signal transmitters 7, 8, 9;
  2. b) the strength of the radio signal received by the mobile receiver 2 from each transmitter 7, 8, 9;
  3. c) the timing offset between onboard clock of the mobile receiver 2 and the reference unit 4 as shown in Figure 4;
  4. d) the absolute position of the mobile receiver 2 on Earth as derived from the GPS receiver 20;
  5. e) GPS time as derived from the GPS receiver 20; and
  6. f) speed, acceleration, orientation as derived from the inertial measurement unit 24;
as well as others, as will be apparent to a person skilled in the art.

[0055] Such input variables accessible by the mobile receiver 2 can be used to reinforce one another. For example, if the GPS receiver 20 provides successive updates about the position of the mobile receiver 2 whilst it is moving, then this can be used to determine the speed of the mobile receiver 2. The speed of the mobile receiver 2 may also be derived from the inertial measurement unit 24. As well as providing redundancy, it is possible for variables to be correlated with one another in a synergistic manner. Another example is the correlating a number of variables relating to the distance of the mobile receiver 2 to different geographically spaced transmitters (as shown in Figure 4). These distance variables can thus be used synergistically to determine the position of the mobile receiver 2 using a trigonometric relationship. It will be understood that more complicated relationships between variables can be established and also used to minimise uncertainty about variables values.

[0056] In particular, variable values and associated variance values are stored as a state vector within the database 28. The processor 30 applies algorithms to the state vector so that variable values and variances values are modified in response to an update to linked variable values. Variables can be linked to one another algorithmically via their associations with parameters such as time, velocity and position. Thus, simply by receiving and logging additional information relating to one variable can improve the estimated values of another.

[0057] It will be understood that state information about the mobile receiver 2 and other entities such as transmitters can be incorporated into the state vector of the mobile receiver 2 to aid localisation.

[0058] Furthermore, as the state vector is updated, predictions can be made about the future states using past trends. For example, if the mobile receiver 2 is moving at a constant velocity, it can be assumed that it will continue to do so unless contradicting data is received. Using this method, erroneous data (from example, resulting from radio signal interference) can be discarded. The predictions can be made using a Bayesian estimator such as a Kalman filter, loaded with assumptions and/or models about the behaviour of the mobile receiver 2 and other entities.

[0059] A specific example of the mobile receiver in operation will now be given.

[0060] Referring to Figure 2, there is shown a simplified 2D example in which the mobile unit 2 is arranged to establish a virtual positioning reference at position M1 prior to entering a region 10 in which its primary positioning resource - in the form of the GPS receiver 20 - is rendered ineffective. The mobile receiver 2 can then use the established virtual positioning reference to aid localisation using differential radio positioning relative to the single GSM transmitter 7.

[0061] At the first position M1 of the receiver 2, the receiver is able to determine its position using the GPS receiver 20. Whilst at that position, the receiver 2 also receives radio signals originating from the terrestrial GSM radio signal transmitter 7. The nature of this transmitter 7 is such that the radio signals that it transmits multiple instances of the same code word. These are usually used by mobile telephone handsets to be able to synchronise with the GSM transmitter. However, in the present example, these code words are used by the mobile receiver 2 for the purpose of radio localisation.

[0062] In particular, the mobile receiver 2 opens a radio signal capture window. In this capture window, the code words from the radio signal transmitter 7 manifest themselves as a regularly repeating series of waveforms that are substantially unique to the transmitter 7. The mobile receiver 2 is thus able to confidently associate those received waveforms with the GSM radio signal transmitter 7, and also determine the repeat rate of those code words.

[0063] In subsequent radio signal capture windows opened by the mobile receiver 2, assuming that the mobile receiver 2 has not moved any distance away from the GSM radio signal transmitter 7, the waveforms representing those code words will appear at predictable locations within the capture window - in other words at predictable times.

[0064] However, if the mobile receiver 2 has moved towards the GSM transmitter 7, the occurrence of the code words will be shifted earlier in time, and if the mobile receiver 2 has moved away from the GSM transmitter 7, the occurrence of the code words will be shifted later in time. The amount the code words have shifted in time corresponds to the distance travelled by the mobile receiver 2 relative to the GSM transmitter 7.

[0065] In any case, when the mobile receiver 2 is at the first position, the virtual positioning reference is established by logging in the database 28 the position as determined by the GPS receiver 20 against the time at which a first instance of a code word is received by the transmitter 7. The time at which the first instance of the code word is received by the mobile receiver 2 is determined by the local clock of processor 30 of the mobile receiver 2.

[0066] Once the virtual positioning reference is established, the mobile receiver 2 is then able to enter into the region 10 to position M2 in which GPS is unavailable (for example, under a dense canopy) and self-localise using the transmitter 7. The local clock of the mobile receiver 2 is run during movement of the mobile receiver 2 between the first position M1 and the second position M2. Once the mobile receiver 2 is at the second position M2, a second radio signal capture window is opened.

[0067] Assuming that the mobile receiver 2 is within range of the GSM transmitter 7, code words originating from the GSM transmitter 7 will be visible in the second opened radio signal capture window. In particular, a second instance of a code word will be present within the radio signal capture window at a give time period elapsed from when the first instance of the code word was received. This is again measured by the clock local to the mobile receiver 2. The time difference between when the first instance of the code word was received and when the second instance of the code word is received relates to the time elapsed during movement of the mobile receiver 2 from the first position M1 to the second position M2 as well as the shift in the position of the code word as a result of the change in relative distance from the transmitter 7. The virtual positioning reference is used to determine the shift in position of the code word resulting only from the change in distance of the mobile receiver 2 relative to the transmitter 7.

[0068] This can be done because, as stated, the code words are repeated at a regular and therefore predictable repeat rate. Therefore the mobile receiver 2 can predict when a second instance of a code word would have been received by the virtual positioning reference - essentially acting as a virtual reference base station. This will be an integer multiple of the code word repeat rate added onto the time at which the first instance of the code word was received. It will be understood that the value of the integer multiplier can be determined in relation to the time elapsed since the first instance of the code word was received by the mobile receiver 2.

[0069] In any case, the time at which the virtual positioning reference is predicted to receive the second instance of the code word is differenced from the time when the second instance of the code word is actually received by the mobile receiver 2. The remaining time value is that relating to relative movement between the mobile receiver 2 and the transmitter 7. This is represented schematically in Figure 2 as the difference between the radius of the smaller dashed circle (i.e. the distance of the mobile receiver 2 at the first position M1 away from the transmitter 7) and the radius of the larger dashed circle (i.e. the new distance of the mobile receiver 2 at the second position M2 away from the transmitter 7). The difference in time as a result of the change in distance of the mobile receiver 2 is simply factored with the known speed of the radio wave to determine the distance travelled relative to the GSM transmitter (and therefore the new distance away from the GSM transmitter 7).

[0070] The differential calculations are processed directly by the dedicated differential positioning module 35, leaving the main general purpose processor 30 free for other processing tasks. As the differential positioning module 35 is specifically set up to process these differential calculations, the overall computation and power consumption of the mobile receiver 2 is reduced more than if the general purpose processor 30 were to have to process these differential calculations. Thus, the presence of the differential positioning module 35 means that the positioning determination can be advantageously implemented in hardware rather than in software to be executed on the processor 30. As will be described in more detail below relation to Figure 4, the same dedicated differential positioning module 35 can be used to perform differential calculations on data received by an actual reference base station 4 as well as a virtual positioning reference.

[0071] In the simplified 2D example shown in Figure 2, there is only one transmitter 7 shown. However, in practice it is likely that multiple transmitters will be required to determine the exact location of the mobile receiver 2 through trigonometric calculations as are known in the art. However, it is not strictly necessary for there to be more than one transmitter assuming the mobile receiver has access to other input variables. For example, if the mobile receiver 2 has received information from the Inertial Measurement Unit (IMU) 24 that it has moved in a straight line at a known bearing from position M1 to M2, then in fact only a single transmitter is needed to self-localise.

[0072] Referring to Figure 3, the mobile receiver 2 can make use of the GSM transmitter 7 to self-localise in a more robust manner than as shown in Figure 2 by establishing additional virtual positioning references at spaced locations M0 and M1. By doing so, location-influenced radio signal errors such as multipath errors can be mitigated. For example, if location M1 is near a tall building, radio wave reflections from the building may affect the accurate determination of the location of the mobile receiver 2 (via GPS) and/or the exact time at which code words from the GSM transmitter 7 are actually received. If an additional virtual positioning reference is established at position M0, then erroneous virtual positioning reference data can be minimised. With further virtual positioning references, these errors can even be identified and eliminated.

[0073] Referring to Figure 4, the mobile receiver 2 is shown in an environment in which there are multiple terrestrial radio transmitters - the GSM transmitter 7, the television UHF transmitter 8 and the FM radio station VHF transmitter 9. These transmitters are geographically spaced around a region 10 in which the mobile receiver 2 is unable to localise using GPS. The approximate frequency ranges of these transmitters are as follows:
TransmitterApproximate frequency range
GSM transmitter 7 850MHz - 960MHz and
  1805MHz-1880 MHz (UK bands)
TV UHF transmitter 8 400 MHz to 850 MHz
VHF transmitter 9 88 MHz to 108 MHz


[0074] Thus, it can be seen that the transmitters are of different types and frequencies, and also have different code words and code word repeat rates. Thus, when establishing the virtual positioning reference in respect of each of these transmitters, the opening of a radio signal capture window will have to be for a period in which guarantees the mobile receiver 2 to have received a code word for each transmitter. This can be done by analysing the code word repeat rate of each of the transmitters 7, 8, 9, determining the slowest repeat rate out of the three transmitters, and then setting the period for which the radio signal capture window to be just larger than this slowest repeat period. Since opening a radio signal capture window can involve receiving, storing and processing a high level of uncompressed radio signal data, it is advantageous not to exceed this limit so as to minimise storage usage of the database 28 local to the mobile receiver 2.

[0075] Alternatively, given a suitably-agile radio receiver, the timings generated by the virtual reference receiver can be used to predict when each transmitter's code word is expected to arrive at the receiver, and so the receiver can be programmed to capture small amounts of data on each radio band in the required hopping sequence. This reduces the amount of superfluous data captured by using a fixed length capture window across all bands.

[0076] Also shown in Figure 4 is an actual reference base station 4. As mentioned, the same dedicated differential positioning module 35 can be used to perform differential calculations on data received by this actual reference base station 4 as well as the virtual positioning references established by the mobile receiver 2. In particular, instead of the mobile receiver 2 predicting when a code word would be received at a virtual positioning reference, the reference base station 4 instead transmits to the mobile receiver 2 when it actually does receive a particular instance of a code word. This can be fed through the differential positioning module 35 of the mobile receiver 2 in the same way as data logged at the mobile receiver 2 in respect of the virtual positioning reference. This relies on synchronicity between the mobile receiver 2 and the reference base station 4.

[0077] In summary, the method described above of establishing a virtual positioning reference takes advantage of the fact that most modern opportunistic digital signal sources (e.g cellular, DAB, DVB, etc) use highly stable frequency/timing references. Many of such opportunistic radio signal sources often have a minimum timing stability specification that must be adhered to. As a result of this the transmitter clock offset α values remain sufficiently constant for long periods of time (many hours to many days, and in some circumstances, over a week). Thus instead of calculating, storing and even sharing transmitter clock offset values α as is suffered by the prior art, merely the raw timing measurements and location of where the measurements are taken need be stored.

[0078] This more elegant method reduces the computational burden of calculating the transmitter clock offset values α. In particular, the mobile device 2 can start from a known location and log the timing signals originating from a stable, stationary terrestrial transmitter 7. The mobile navigation device can then move to a second unknown location where its primary positioning system is rendered ineffective (e.g. by electronic interference, terrain, indoor activity etc) - but it is still possible to receive the timing signals.

[0079] When the mobile receiver 2 moves to a new location and GPS is denied, the opportunistic reference timing measurements are updated according to the elapsed time of the local clock to provide an estimate of the opportunistic timing measure that would be measured at that given moment at the reference position if the mobile receiver was still there.


Claims

1. A method for radio positioning of a mobile receiver (2), the mobile receiver receiving transmissions from a plurality of geographically spaced terrestrial radio signal transmitters (7, 8, 9), each transmitter of said plurality of transmitters having a known position and transmitting predictably repeated code words that are distinguishable from one another and have different code word repeat rates, the method comprising:

when the mobile receiver is at a first known position (M1), the first known position being derived via a primary positioning resource (20) local to the mobile receiver establishing, in respect of each of said plurality of transmitters, a virtual positioning reference by logging the first known position of the mobile receiver together with a local time at which a first instance of a respective code word is received by the mobile receiver from the respective transmitter, the local time being measured relative to a clock local to the mobile receiver, and determining for each of said transmitters a repeat rate of the respective code word;

running the local clock during movement of the mobile receiver from the first known position to a second unknown position (M2), the second unknown position being a position at which the primary positioning resource of the mobile receiver is rendered ineffective; and

when the mobile receiver is at the second unknown position, opening a radio signal capture window for a period limited to that of the most slowly repeating code word and using the local clock to determine the time shift of a code word in the radio signal capture window by measuring the difference between when a second instance of the code word is predicted to be received at the virtual positioning reference and when the mobile receiver actually receives the second instance of the code word, using the time shift to determine a distance travelled by the mobile receiver relative to the respective transmitter, and thereby determining the second unknown position of the mobile receiver.


 
2. A method according to claim 1, comprising calculating differential corrections relative to real reference base stations.
 
3. A method according to claim 1 or claim 2, comprising establishing a plurality of virtual positioning references at known locations geographically spaced from one another.
 
4. A method according to any one of the preceding claims, comprising applying the equation:

where:

c is the known speed of the radio waves;

tnew represents the time, measured at the mobile receiver using the local clock, at which the second instance of the code word is received by the mobile receiver at the second position;

tref represents the time, measured at the mobile receiver using the local clock, at which the virtual positioning reference is predicted to receive the second instance of the code word;

rnew is the new (second unknown) position of the mobile receiver;

b is the position of the stationary transmitter;

rref is the reference (first known) position of the mobile receiver;

α represents the transmitter clock offset;

εref represents the error of the local clock when the reference measurements (tref) were established

εnew represents the error of the local clock.


 
5. A method according to any one of the preceding claims, comprising removing local clock errors by receiving transmissions from two transmitters 'A' and 'B' and applying the equation:


 
6. A method according to any one of the preceding claims, comprising estimating the position of the mobile receiver by applying a Bayesian estimation filter.
 
7. A method according to claim 6, wherein the Bayesian estimation filter comprises a Kalman filter or a particle filter.
 
8. A method according to claim 6 or claim 7, wherein the application of the Bayesian estimation filter comprises loading the filter with:

error models associated with the transmitter and/or the receiver; and/or

information from an inertial measurement unit about the movement of the mobile receiver.


 
9. A method according to any one of the preceding claims, comprising receiving radio signals of different types, for example, television, cellular, wi-fi and public radio signals.
 
10. A mobile receiver (2) arranged to self-localise using radio positioning, the mobile receiver comprising:

a terrestrial radio signal receiver (22) arranged to receive transmissions from a plurality of geographically spaced terrestrial radio signal transmitters (7, 8, 9), each transmitter of said plurality of transmitters having a known position and transmitting predictably repeated code words that are distinguishable from one another and have different code word repeat rates;

a primary positioning resource (20) arranged to derive a first known position (M1) of the mobile receiver;

a local clock;

a database (28); and

a processor (35) configured to:

when the mobile receiver is at the first known position, log, in the database, the first known position of the mobile receiver together with a first local time at which a first instance of a respective code word is received by the mobile receiver from a respective terrestrial radio signal transmitter to establish, in respect of each of said plurality of transmitters, a virtual positioning reference, wherein the local time is measured relative to the local clock;

determine, for each of said transmitters, a repeat rate of the respective code word;

when the mobile receiver is at a second unknown position (M2), the second unknown position being a position at which the primary positioning resource of the mobile receiver is rendered ineffective, open a radio signal capture window for a period limited to that of the most slowly repeating code word, wherein the local clock is run during movement of the mobile receiver from the first known position to the second unknown position;

measure, using the local clock, the difference between when a second instance of a code word is predicted to be received at the virtual positioning reference and when the mobile receiver actually receives the second instance of the code word, to determine a time shift of the code word in the radio signal capture window; and

use the time shift to determine a distance travelled by the mobile receiver relative to the respective transmitter, and thereby determine the second unknown position of the mobile receiver.


 
11. A mobile receiver according to claim 10, wherein the processor is configured to calculate differential corrections relative to real reference base stations.
 
12. A mobile receiver according to claim 10 or claim 11, wherein the processor is configured to establish a plurality of virtual positioning references at known locations geographically spaced from one another.
 
13. A mobile receiver according to any one of claims 10 to 12, wherein processor is configured to apply the equation:

where:

c is the known speed of the radio waves;

tnew represents the time, measured at the mobile receiver using the local clock, at which the second instance of the code word is received by the mobile receiver at the second position;

tref represents the time, measured at the mobile receiver using the local clock, at which the virtual positioning reference is predicted to receive the second instance of the code word;

rnew is the new (second unknown) position of the mobile receiver;

b is the position of the stationary transmitter;

rref is the reference (first known) position of the mobile receiver;

α represents the transmitter clock offset;

εref represents the error of the local clock when the reference measurements (tref) were established

εnew represents the error of the local clock.


 
14. A mobile receiver according to any one of claims 10 to 13, wherein the processor is configured to remove local clock errors by receiving transmissions from two transmitters 'A' and 'B' and applying the equation:


 
15. A mobile receiver according to any one of claims 10 to 14, comprising a Bayesian estimation filter, wherein the processor is configured to apply the Bayesian estimation filter to estimate the position of the mobile receiver.
 
16. A mobile receiver according to claim 15, wherein the Bayesian estimation filter comprises a Kalman filter or a particle filter.
 
17. A mobile receiver according to claim 15 or claim 16, wherein the application of the Bayesian estimation filter comprises loading the filter with:

error models associated with the transmitter and/or the receiver; and/or

information from an inertial measurement unit about the movement of the mobile receiver.


 
18. A mobile receiver according to any one claims 10 to 17, wherein the terrestrial radio receiver is configured to receive radio signals of different types, for example, television, cellular, wi-fi and public radio signals.
 


Ansprüche

1. Verfahren zur Funkortung eines mobilen Empfängers (2), wobei der mobile Empfänger Sendungen von mehreren geografisch beabstandeten terrestrischen Funksignalsendern (7, 8, 9) empfängt, wobei jeder Sender der mehreren Sender eine bekannte Position aufweist und vorhersagbar wiederholte Codewörter sendet, die voneinander unterscheidbar sind und unterschiedliche Codewort-Wiederholungsraten aufweisen, wobei das Verfahren Folgendes umfasst:

wenn sich der mobile Empfänger an einer ersten bekannten Position (M1) befindet, wobei die erste bekannte Position mittels einer primären Ortungsressource (20) abgeleitet wird, die sich am Ort des mobilen Empfängers befindet, Erstellen, in Bezug auf jeden der mehreren Sender, einer virtuellen Ortungsreferenz durch Protokollieren der ersten bekannten Position des mobilen Empfängers zusammen mit einer Ortszeit, zu der eine erste Instanz eines entsprechenden Codeworts durch den mobilen Empfänger von dem entsprechenden Sender empfangen wird, wobei die Ortszeit relativ zu einer Uhr gemessen wird, die sich am Ort des mobilen Empfängers befindet, und Bestimmen einer Wiederholungsrate des entsprechenden Codeworts für jeden der Sender,

Laufenlassen der örtlichen Uhr während der Bewegung des mobilen Empfängers von der ersten, bekannten Position zu einer zweiten, unbekannten Position (M2), wobei die zweite, unbekannte Position eine Position ist, an der die primäre Ortungsressource des mobilen Empfängers unwirksam wird, und

wenn sich der mobile Empfänger an der zweiten, unbekannten Position befindet, Öffnen eines Funksignal-Erfassungsfensters für eine Zeitspanne, die auf die des sich am langsamsten wiederholenden Codeworts begrenzt ist und die örtliche Uhr verwendet, um eine Zeitverschiebung eines Codewortes in dem Funksignal-Erfassungsfenster durch Messen der Differenz zwischen dem Zeitpunkt, für den der Empfang einer zweiten Instanz des Codeworts an der virtuellen Ortungsreferenz vorhergesagt wird, und einem Zeitpunkt, zu dem der mobile Empfänger die zweite Instanz des Codeworts tatsächlich empfängt, zu bestimmen, Verwenden der Zeitverschiebung, um eine Entfernung zu bestimmen, die von dem mobilen Empfänger relativ zum entsprechenden Sender zurückgelegt wurde, und dadurch Bestimmen der zweiten, unbekannten Position des mobilen Empfängers.


 
2. Verfahren nach Anspruch 1, das Berechnen von Differentialkorrekturen relativ zu realen Referenzbasisstationen umfassend.
 
3. Verfahren nach Anspruch 1 oder Anspruch 2, das Erstellen mehrerer virtueller Ortungsreferenzen an bekannten Stellen, die geografisch voneinander beabstandet sind, umfassend.
 
4. Verfahren nach einem der vorhergehenden Ansprüche, das Anwenden folgender Gleichung umfassend:

wobei:

• c die bekannte Geschwindigkeit der Funkwellen ist,

• tnew die Zeit darstellt, die an dem mobilen Empfänger unter Verwendung der örtlichen Uhr gemessen wird, zu der die zweite Instanz des Codeworts von dem mobilen Empfänger an der zweiten Position empfangen wird,

• tref die Zeit darstellt, die an dem mobilen Empfänger unter Verwendung der örtlichen Uhr gemessen wird, zu welcher der Empfang der zweiten Instanz des Codeworts durch die virtuelle Ortungsreferenz vorhergesagt ist,

• rnew die neue (zweite, unbekannte) Position des mobilen Empfängers ist,

• b die Position des stationären Senders ist,

• rref die (erste, bekannte) Referenzposition des mobilen Empfängers ist,

• α den Senderuhrversatz darstellt,

• εref den Fehler der örtlichen Uhr, als die Referenzmessungen (tref) erstellt wurden, darstellt,

• εnew den Fehler der örtlichen Uhr darstellt.


 
5. Verfahren nach einem der vorhergehenden Ansprüche, das Entfernen von Fehlern der örtlichen Uhr durch Empfangen von Sendungen von zwei Sendern 'A' und ,B' und Anwenden folgender Gleichung umfassend:


 
6. Verfahren nach einem der vorhergehenden Ansprüche, das Schätzen der Position des mobilen Empfängers durch Anwenden eines Bayesschen Schätzfilters umfassend.
 
7. Verfahren nach Anspruch 6, wobei der Bayessche Schätzfilter einen Kalman-Filter oder einen Partikelfilter umfasst.
 
8. Verfahren nach Anspruch 6 oder Anspruch 7, wobei das Anwenden des Bayesschen Schätzfilters das Beladen des Filters mit Folgendem umfasst:

Fehlermodellen, die dem Sender und/oder dem Empfänger zugeordnet sind, und/oder

Informationen von einer inertialen Messeinheit über die Bewegung des mobilen Empfängers.


 
9. Verfahren nach einem der vorhergehenden Ansprüche, das Empfangen von Funksignalen anderer Arten, zum Beispiel Fernseh-, Mobilfunk- Wi-Fi- und Rundfunksignale, umfassend.
 
10. Mobiler Empfänger (2), der dafür angeordnet ist, sich unter Verwendung von Funkortung selbst zu lokalisieren, wobei der mobile Empfänger Folgendes umfasst:

einen terrestrischen Funksignalempfänger (22), der dafür angeordnet ist, Sendungen von mehreren geografisch beabstandeten terrestrischen Funksignalsendern (7, 8, 9) zu empfangen, wobei jeder Sender der mehreren Sender eine bekannte Position aufweist und vorhersagbar wiederholte Codewörter sendet, die voneinander unterscheidbar sind und unterschiedliche Codewort-Wiederholungsraten aufweisen,

eine primäre Ortungsressource (20), die dafür angeordnet ist, eine erste bekannte Position (M1) des mobilen Empfängers abzuleiten,

eine örtliche Uhr,

eine Datenbank (28) und

einen Prozessor (35), der für Folgendes konfiguriert ist:

wenn sich der mobile Empfänger an der ersten, bekannten Position befindet, Protokollieren der ersten, bekannten Position des mobilen Empfängers zusammen mit einer ersten Ortszeit, zu der eine erste Instanz eines entsprechenden Codeworts durch den mobilen Empfänger von einem entsprechenden terrestrischen Funksignalsender empfangen wird, in der Datenbank, um in Bezug auf jeden der mehreren Sender eine virtuelle Ortungsreferenz zu erstellen, wobei die Ortszeit relativ zur örtlichen Uhr gemessen wird,

Bestimmen einer Wiederholungsrate des entsprechenden Codeworts für jeden der Sender,

wenn sich der mobile Empfänger an der zweiten, unbekannten Position (M2) befindet, wobei die zweite, unbekannte Position eine Position ist, an der die primäre Ortungsressource des mobilen Empfängers unwirksam wird, Öffnen eines Funksignal-Erfassungsfensters für eine Zeitspanne, die auf die des sich am langsamsten wiederholenden Codeworts begrenzt ist, wobei die örtliche Uhr während der Bewegung des mobilen Empfängers von der ersten, bekannten Position zur zweiten, unbekannten Position läuft,

Messen der Differenz zwischen dem Zeitpunkt, für den der Empfang einer zweiten Instanz eines Codeworts an der virtuellen Ortungsreferenz vorhergesagt wird, und einem Zeitpunkt, zu dem der mobile Empfänger die zweite Instanz des Codeworts tatsächlich empfängt, um eine Zeitverschiebung des Codeworts in dem Funksignal-Erfassungsfenster zu bestimmen, und

Verwenden der Zeitverschiebung, um eine Entfernung zu bestimmen, die von dem mobilen Empfänger relativ zum entsprechenden Sender zurückgelegt wurde, und dadurch Bestimmen der zweiten, unbekannten Position des mobilen Empfängers.


 
11. Mobiler Empfänger nach Anspruch 10, wobei der Prozessor dafür konfiguriert ist, Differentialkorrekturen relativ zu realen Referenzbasisstationen zu berechnen.
 
12. Mobiler Empfänger nach Anspruch 10 oder Anspruch 11, wobei der Prozessor dafür konfiguriert ist, mehrere virtuelle Ortungsreferenzen an bekannten Stellen, die geografisch voneinander beabstandet sind, zu erstellen.
 
13. Mobiler Empfänger nach einem der Ansprüche 10 bis 12, wobei der Prozessor dafür konfiguriert ist, die folgende Gleichung anzuwenden:

wobei:

• c die bekannte Geschwindigkeit der Funkwellen ist,

• tnew die Zeit darstellt, die an dem mobilen Empfänger unter Verwendung der örtlichen Uhr gemessen wird, zu der die zweite Instanz des Codeworts von dem mobilen Empfänger an der zweiten Position empfangen wird,

• tref die Zeit darstellt, die an dem mobilen Empfänger unter Verwendung der örtlichen Uhr gemessen wird, zu welcher der Empfang der zweiten Instanz des Codeworts durch die virtuelle Ortungsreferenz vorhergesagt ist,

• rnew die neue (zweite, unbekannte) Position des mobilen Empfängers ist,

• b die Position des stationären Senders ist,

• rref die (erste, bekannte) Referenzposition des mobilen Empfängers ist,

• α den Senderuhrversatz darstellt,

• εref den Fehler der örtlichen Uhr, als die Referenzmessungen (tref) erstellt wurden, darstellt,

• εnew den Fehler der örtlichen Uhr darstellt.


 
14. Mobiler Empfänger nach einem der Ansprüche 10 bis 13, wobei der Prozessor dafür konfiguriert ist, Fehler der örtlichen Uhr durch Empfangen von Sendungen von zwei Sendern ,A' und ,B' und Anwenden folgender Gleichung zu entfernen:


 
15. Mobiler Empfänger nach einem der Ansprüche 10 bis 14, einen Bayesschen Schätzfilter umfassend, wobei der Prozessor dafür konfiguriert ist, den Bayesschen Schätzfilter anzuwenden, um die Position des mobilen Empfängers zu schätzen.
 
16. Mobiler Empfänger nach Anspruch 15, wobei der Bayessche Schätzfilter einen Kalman-Filter oder einen Partikelfilter umfasst.
 
17. Mobiler Empfänger nach Anspruch 15 oder Anspruch 16, wobei das Anwenden des Bayesschen Schätzfilters das Beladen des Filters mit Folgendem umfasst:

Fehlermodellen, die dem Sender und/oder dem Empfänger zugeordnet sind, und/oder

Informationen von einer inertialen Messeinheit über die Bewegung des mobilen Empfängers.


 
18. Mobiler Empfänger nach einem der Ansprüche 10 bis 17, wobei der terrestrische Funkempfänger dafür konfiguriert ist, Funksignale anderer Arten, zum Beispiel Fernseh-, Mobilfunk- Wi-Fi- und Rundfunksignale, zu empfangen.
 


Revendications

1. Procédé de radiolocalisation d'un récepteur mobile (2), le récepteur mobile recevant des transmissions en provenance d'une pluralité d'émetteurs de signaux radio terrestres géographiquement espacés (7, 8, 9), chaque émetteur de ladite pluralité d'émetteurs présentant une position connue et transmettant des mots de code répétés de manière prévisible qui peuvent être distingués les uns des autres et présentent des taux de répétition de mots de code différents, le procédé comprenant les étapes ci-dessous consistant à :

lorsque le récepteur mobile se trouve à une première position connue (M1), la première position connue étant dérivée par l'intermédiaire d'une ressource de positionnement primaire (20) locale au récepteur mobile, établir, en ce qui concerne chacun émetteur de ladite pluralité d'émetteurs, une référence de positionnement virtuel, en enregistrant la première position connue du récepteur mobile conjointement avec une heure locale à laquelle une première instance d'un mot de code respectif est reçue par le récepteur mobile, en provenance de l'émetteur respectif, l'heure locale étant mesurée par rapport à une horloge locale au récepteur mobile, et déterminer, pour chacun desdits émetteurs, un taux de répétition du mot de code respectif ;

faire fonctionner l'horloge locale pendant un déplacement du récepteur mobile, de la première position connue à une seconde position inconnue (M2), la seconde position inconnue étant une position à laquelle la ressource de positionnement primaire du récepteur mobile est rendue inefficace ; et

lorsque le récepteur mobile se trouve à la seconde position inconnue, ouvrir une fenêtre de capture de signal radio pendant une période limitée à celle du mot de code se répétant le plus lentement, et utiliser l'horloge locale pour déterminer le décalage temporel d'un mot de code dans la fenêtre de capture de signal radio en mesurant la différence entre le moment où il est prédit qu'une seconde instance du mot de code sera reçue au niveau de la référence de positionnement virtuel et le moment où le récepteur mobile reçoit effectivement la seconde instance du mot de code, en utilisant le décalage temporel en vue de déterminer une distance parcourue par le récepteur mobile par rapport à l'émetteur respectif, et déterminer par conséquent la seconde position inconnue du récepteur mobile.


 
2. Procédé selon la revendication 1, comprenant l'étape consistant à calculer des corrections différentielles par rapport à des stations de base de référence réelles.
 
3. Procédé selon la revendication 1 ou 2, comprenant l'étape consistant à établir une pluralité de références de positionnement virtuel à des emplacements connus géographiquement espacés les uns des autres.
 
4. Procédé selon l'une quelconque des revendications précédentes, comprenant l'étape consistant à appliquer l'équation ci-dessous :

où :

• « c » est la vitesse connue des ondes radio ;

• « tnew » représente l'heure, mesurée au niveau du récepteur mobile à l'aide de l'horloge locale, à laquelle la seconde instance du mot de code est reçue par le récepteur mobile à la seconde position ;

• « tref » représente l'heure, mesurée au niveau du récepteur mobile à l'aide de l'horloge locale, à laquelle il est prédit que la référence de positionnement virtuel recevra la seconde instance du mot de code ;

• « rnew » est la nouvelle seconde position (inconnue) du récepteur mobile ;

• « b » est la position de l'émetteur stationnaire ;

• « rref » est la première position de référence (connue) du récepteur mobile ;

• « α » représente le décalage d'horloge d'émetteur ;

• « εref » représente l'erreur de l'horloge locale lors de l'établissement des mesures de référence (tref) ; et

• « εnew » représente l'erreur de l'horloge locale.


 
5. Procédé selon l'une quelconque des revendications précédentes, comprenant l'étape consistant à supprimer des erreurs d'horloge locale en recevant des transmissions en provenance de deux émetteurs « A » et « B », et en appliquant l'équation ci-dessous :


 
6. Procédé selon l'une quelconque des revendications précédentes, comprenant l'étape consistant à estimer la position du récepteur mobile en appliquant un filtre d'estimation bayésien.
 
7. Procédé selon la revendication 6, dans lequel le filtre d'estimation bayésien comprend un filtre de Kalman ou un filtre à particules.
 
8. Procédé selon la revendication 6 ou 7, dans lequel l'étape d'application du filtre d'estimation bayésien consiste à charger le filtre avec :

des modèles d'erreur associés à l'émetteur et/ou au récepteur ; et/ou

des informations provenant d'une unité de mesure inertielle concernant le déplacement du récepteur mobile.


 
9. Procédé selon l'une quelconque des revendications précédentes, comprenant l'étape consistant à recevoir des signaux radio de différents types, par exemple des signaux radio de télévision, des signaux radio cellulaires, des signaux radio wi-fi et des signaux radio publiques.
 
10. Récepteur mobile (2) agencé de manière à se localiser automatiquement en utilisant une radiolocalisation, le récepteur mobile comprenant :

un récepteur de signaux radio terrestre (22) agencé de manière à recevoir des transmissions en provenance d'une pluralité d'émetteurs de signaux radio terrestres géographiquement espacés (7, 8, 9), chaque émetteur de ladite pluralité d'émetteurs présentant une position connue et transmettant des mots de code répétés de manière prévisible qui peuvent être distingués les uns des autres et présentent des taux de répétition de mots de code différents ;

une ressource de positionnement primaire (20) agencée de manière à dériver une première position connue (M1) du récepteur mobile ;

une horloge locale ;

une base de données (28) ; et

un processeur (35) configuré de manière à :

lorsque le récepteur mobile se trouve à la première position connue, enregistrer, dans la base de données, la première position connue du récepteur mobile conjointement avec une heure locale à laquelle une première instance d'un mot de code respectif est reçue par le récepteur mobile, en provenance d'un émetteur de signaux radio terrestre respectif, en vue d'établir, relativement à chaque émetteur de ladite pluralité d'émetteurs, une référence de positionnement virtuel, dans lequel l'heure locale est mesurée par rapport à l'horloge locale ;

déterminer, pour chacun desdits émetteurs, un taux de répétition du mot de code respectif ;

lorsque le récepteur mobile se trouve à une seconde position inconnue (M2), la seconde position inconnue étant une position à laquelle la ressource de positionnement primaire du récepteur mobile est rendue inefficace, ouvrir une fenêtre de capture de signal radio pendant une période limitée à celle du mot de code se répétant le plus lentement, dans lequel l'horloge locale est exécutée pendant un déplacement du récepteur mobile, de la première position connue à la seconde position inconnue ;

mesurer, en utilisant l'horloge locale, la différence entre le moment où il est prédit qu'une seconde instance du mot de code sera reçue au niveau de la référence de positionnement virtuel et le moment où le récepteur mobile reçoit effectivement la seconde instance du mot de code, en vue de déterminer un décalage temporel du mot de code dans la fenêtre de capture de signal radio ; et

utiliser le décalage temporel en vue de déterminer une distance parcourue par le récepteur mobile par rapport à l'émetteur respectif, et déterminer par conséquent la seconde position inconnue du récepteur mobile.


 
11. Récepteur mobile selon la revendication 10, dans lequel le processeur est configuré de manière à calculer des corrections différentielles par rapport à des stations de base de référence réelles.
 
12. Récepteur mobile selon la revendication 10 ou 11, dans lequel le processeur est configuré de manière à établir une pluralité de références de positionnement virtuel à des emplacements connus géographiquement espacés les uns des autres.
 
13. Récepteur mobile selon l'une quelconque des revendications 10 à 12, dans lequel le processeur est configuré de manière à appliquer l'équation ci-dessous :

où :

• « c » est la vitesse connue des ondes radio ;

• « tnew » représente l'heure, mesurée au niveau du récepteur mobile à l'aide de l'horloge locale, à laquelle la seconde instance du mot de code est reçue par le récepteur mobile à la seconde position ;

• « tref » représente l'heure, mesurée au niveau du récepteur mobile à l'aide de l'horloge locale, à laquelle il est prédit que la référence de positionnement virtuel recevra la seconde instance du mot de code ;

• « rnew » est la nouvelle seconde position (inconnue) du récepteur mobile ;

• « b » est la position de l'émetteur stationnaire ;

• « rref » est la première position de référence (connue) du récepteur mobile ;

• « α » représente le décalage d'horloge d'émetteur ;

• « εref » représente l'erreur de l'horloge locale lors de l'établissement des mesures de référence (tref) ; et

• « εnew » représente l'erreur de l'horloge locale.


 
14. Récepteur mobile selon l'une quelconque des revendications 10 à 13, dans lequel le processeur est configuré de manière à supprimer des erreurs d'horloge locale en recevant des transmissions en provenance de deux émetteurs « A » et « B » et en appliquant l'équation ci-dessous :


 
15. Récepteur mobile selon l'une quelconque des revendications 10 à 14, comprenant un filtre d'estimation bayésien, dans lequel le processeur est configuré de manière à appliquer le filtre d'estimation bayésien afin d'estimer la position du récepteur mobile.
 
16. Récepteur mobile selon la revendication 15, dans lequel le filtre d'estimation bayésien comprend un filtre de Kalman ou un filtre à particules.
 
17. Récepteur mobile selon la revendication 15 ou 16, dans lequel l'application du filtre d'estimation bayésien comprend le chargement du filtre avec :

des modèles d'erreur associés à l'émetteur et/ou au récepteur ; et/ou

des informations provenant d'une unité de mesure inertielle concernant le déplacement du récepteur mobile.


 
18. Récepteur mobile selon l'une quelconque des revendications 10 à 17, dans lequel le récepteur de signaux radio terrestre est configuré de manière à recevoir des signaux radio de différents types, par exemple des signaux radio de télévision, des signaux radio cellulaires, des signaux radio wi-fi et des signaux radio publiques.
 




Drawing















REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description