(19)
(11)EP 2 494 641 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.01.2016 Bulletin 2016/02

(21)Application number: 10768792.3

(22)Date of filing:  14.09.2010
(51)International Patent Classification (IPC): 
H01M 8/04(2006.01)
H01M 8/12(2006.01)
H01M 8/06(2006.01)
(86)International application number:
PCT/FI2010/050704
(87)International publication number:
WO 2011/051544 (05.05.2011 Gazette  2011/18)

(54)

METHOD AND ARRANGEMENT FOR CONTROLLING ANODE RECIRCULATION

VERFAHREN UND ANORDNUNG ZUR STEUERUNG DER ANODENREZIRKULATION

PROCÉDÉ ET AGENCEMENT PERMETTANT DE COMMANDER UNE RECIRCULATION ANODIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 30.10.2009 FI 20096128

(43)Date of publication of application:
05.09.2012 Bulletin 2012/36

(73)Proprietor: Convion Oy
02150 Espoo (FI)

(72)Inventor:
  • HAKALA, Tuomas
    FI-00330 Helsinki (FI)

(74)Representative: LEITZINGER OY 
Tammasaarenkatu 1
00180 Helsinki
00180 Helsinki (FI)


(56)References cited: : 
JP-A- 11 260 386
US-A1- 2002 039 673
JP-A- 2006 318 938
US-A1- 2005 106 429
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    The field of the invention



    [0001] Especially because of the environmental problems, new energy sources, that are environmentally friendly and having good efficiency, have been developed. Fuel cell devices are promising future energy conversion devices by means of which fuel, for example bio gas, is directly transformed to electricity via a chemical reaction in an environmentally friendly process.

    The state of the art



    [0002] Fuel cell, as presented in fig 1, comprises an anode side 100 and a cathode side 102 and an electrolyte material 104 between them. In solid oxide fuel cells (SOFCs) oxygen is fed to the cathode side 102 and it is reduced to a negative oxygen ion by receiving electrons from the anode. The negative oxygen ion goes through the electrolyte material 104 to the anode side 100 where it reacts with the used fuel producing water and also typically carbon dioxide (CO2). Between the anode 100 and the cathode 102 is an external electric circuit 111 comprising a load 110 for the fuel cell.

    [0003] In figure 2 is presented a SOFC device as an example of a high temperature fuel cell device. SOFC devices can utilize for example natural gas, bio gas, methanol or other hydrocarbon containing compounds as fuel. SOFC device system in figure 2 comprises of more than one, typically multiple fuel cells in one or more stack formation 103 (SOFC stack(s)). A larger SOFC device system comprises many fuel cells in several stacks 103. Each fuel cell comprises of anode 100 and cathode 102 structures as presented in figure 1. Part of the used fuel may be recirculated in feedback arrangement 109. SOFC device in fig 2 also comprises a fuel heat exchanger 105 and a reformer 107. Heat exchangers are used for controlling thermal conditions in the fuel cell process and there can be more than one of them in different locations of a SOFC device. The extra thermal energy in circulating gas is recovered in one or more heat exchangers 105 to be utilized in the SOFC device or externally. Reformer 107 is a device that converts the fuel such as for example natural gas to a composition suitable for fuel cells, for example to a composition containing all or at least some of the following: hydrogen, methane, carbon dioxide, carbon monoxide, inert gases and water. Anyway in each SOFC device it is though not necessary to have a reformer.

    [0004] By using measurement means 115 (such as fuel flow meter, current meter and temperature meter) necessary measurements for the operation of the SOFC device are carried out. Only part of the anode exhaust gas is recirculated in the feedback arrangement 109 and the other part of the gas is oxidized in a post oxidation device such as a burner.

    [0005] Fuel cells are electrochemical devices converting the chemical energy of reactants directly to electricity and heat. Fuel cell systems have the potential to significantly exceed the electrical and CHP (Combined production of Heat and Power) efficiency of traditional energy production technologies of comparable size. Fuel cell systems are widely appreciated as a key future energy production technology.

    [0006] In the solid oxide fuel cell (SOFC) system, for example a partially reformed hydrogen rich fuel gas mixture is fed to the anode side of the fuel cells while air is lead to the cathode sides. Fuel oxidation reactions take place and hydrogen and other oxidizable compounds are converted into water and carbon dioxide while electric current is generated. Since reforming of hydrocarbon fuel requires steam, it is beneficial to recover water formed as the product of said fuel oxidation and to use said water for fuel reforming in the reformer 107, thus omitting a need for an external water feed to the system once the system is already up and generating electricity.
    A practical method for recovering water formed as the product of fuel oxidation reactions in the fuel cell is anode off-gas recirculation. This method has an additional advantage of improved overall fuel utilization compared to single passing operation of the fuel cells.

    [0007] In the prior art anode off-gas recirculation requires a compressor or other device for creating a pressure boost enough to overcome pressure drops in the fuel cell system and to provide mass flow of water vapour adequate for fuel steam reforming, key control parameter being Oxygen-to-Carbon (O/C) ratio of the fuel gas mixture.

    [0008] In one prior art system embodiment a high pressurized fuel feed is used as a motive stream in an jet-ejector to entrain anode tail gas and to increase pressure of the fuel gas mixture to overcome pressure losses in the fuel cell system components. For example in patent application document JP2008282599 (A) is presented this kind of system topology. This kind of system topologies require high pressure of the fuel feedstock and due to the fixed geometry of the jet-ejector, these topologies have a limited capability for controlling the re-circulation ratio and the resultant Oxygen-to-Carbon (O/C) ratio.

    [0009] Recirculation carried out by a fan or a compressor provides added flexibility and controllability to the system but requires sophisticated, complex and potentially unreliable machinery. Both of the aforementioned methods often rely on inferred and thus inaccurate determination of Oxygen-to-Carbon (O/C) ratio since measurement of high temperature gas stream composition is difficult and complicated.

    [0010] Another arrangement for controlling oxygen-to-carbon relationship in a fuel cell system is disclosed in Document US2005/106429.

    Short description of the invention



    [0011] The object of the invention is to accomplish a practical Oxygen-to-Carbon (O/C) relationship management in the fuel cell system by utilizing conventional system components. This is achieved by an arrangement for controlling Oxygen-to-Carbon (O/C) relationship in a fuel cell system for producing electricity with fuel cells, each fuel cell in the fuel cell system comprising an anode side, a cathode side and an electrolyte between the anode side and the cathode side, and the fuel cell system comprises means for feeding gas used as fuel to the anode side and means for recirculating part of the anode side gas. The arrangement for controlling Oxygen-to-Carbon (O/C) relationship comprises means for providing water to the arrangement, at least one water pump for pumping the provided water to facilitate a water flow, means for evaporating water from said facilitated water flow for generating pressurized steam having at least the motive pressure for a steam jet-ejector, and said at least one steam jet-ejector for injecting at least part of said steam to the fuel cell system and entraining part of the essentially low pressure anode exhaust gas stream in said anode side gas recirculation and compressing the gas mixture to an intermediate pressure of the fuel feed-in stream for controlling Oxygen-to-Carbon (O/C) relationship in the fuel side of the fuel cell system.

    [0012] The focus of the invention is also a method for controlling Oxygen-to-Carbon (O/C) relationship in a fuel cell system for producing electricity with fuel cells, in which method gas used as fuel is fed to the anode side and part of said gas is recirculated. Oxygen-to-Carbon (O/C) relationship is controlled by providing water to the recirculation, pumping the provided water amount to facilitate a water flow, evaporating water from said facilitated water flow for generating pressurized steam having at least the motive pressure for a steam jet-ejector, and by utilizing said at least one steam jet-ejector for injecting at least part of said steam to the fuel cell system and entraining part of the essentially low pressure anode exhaust gas stream in said anode side gas recirculation and compressing the gas mixture to an intermediate pressure of the fuel feed-in stream for controlling Oxygen-to-Carbon (O/C) relationship in the fuel side of the fuel cell system.

    [0013] The invention is based on pumping a provided water to facilitate a water flow in the anode recirculation and evaporating water from said facilitated water flow for generating pressurized steam having at least the motive pressure for a steam jet-ejector, which injects at least part of said steam to the fuel cell system and entrains part of the essentially low pressure anode exhaust gas stream in said anode side gas recirculation and compresses the gas mixture to an intermediate pressure of the fuel feed-in stream for controlling Oxygen-to-Carbon (O/C) relationship in the fuel side of the fuel cell system.

    [0014] The benefit of the invention is that a successful control of Oxygen-to-Carbon (O/C) relationship is accomplished by utilizing conventional system components and thus fuel utilization is increased in the fuel cell system.

    Short description of figures



    [0015] 
    Figure 1
    presents a. single fuel cell structure.
    Figure 2
    presents an example of a SOFC device.
    Figure 3
    presents a first preferred embodiment according to the present invention.
    Figure 4
    presents a second preferred embodiment according to the present invention.

    Detailed description of the invention



    [0016] The preferred embodiments of the present invention are described in the following description and in figures 3 and 4. In figure 3 is presented a first preferred embodiment according to the present invention, in which embodiment is recirculated a cooled, dry anode gas fraction at a known temperature and water content. In figure 4 is presented a second preferred embodiment, (not according to the present invention), in which embodiment is recirculated a hot anode gas.

    [0017] At least for a start-up of the fuel cell system the arrangement according to the invention comprises as means 112 for providing water to the arrangement a water tank 112 as an external water source 112. Preferably also the anode exhaust gas stream is used as a water source 112 thus it comprises water, which is an oxidation product of fuel cell reactions. The anode exhaust stream or a part of it is lead to a condenser 116 and liquid water is formed. Thus the arrangement achieves independence from other water feeds.once the system has already been started up and is in most situations producing water in fuel cell reactions. In this kind of preferred embodiment is facilitated O/C management without external water feed to the system and the condenser 116 is a necessary part of the arrangement.

    [0018] The condenser 116 operates by condensing at least part of the water vapour fraction of the anode exhaust gas to liquid and/or condensing at least part of the water vapour fraction of the at least partially post oxidized anode exhaust gas to liquid. The arrangement can also comprise of a water storage 112 sufficient for fuel cell system start-up and needs of transient operational modes.

    [0019] The arrangement according to the invention comprises of at least a water pump 118, as means 120 for evaporating water a steam generator 120, preferably a high pressure steam generator, and a steam jet-ejector 122, which is for example a jet pump. Also a boiler can be used as the steam generator 120. The jet-ejector can be considered in the broadest sense as a fluid dynamic device operating on the principle of interchanging momentum between a motive stream and a propelled stream and comprising of at least a nozzle designed to increase fluid velocity while decreasing pressure and which flow is directed to a diffuser designed to reduce fluid velocity and increase pressure of it.

    [0020] The water pump 118 pumps at a known mass flow value a water amount to facilitate a water flow in the anode gas recirculation according to the invention. The mass flow value is known based on a measurement made before the fuel cell system operates or online with the fuel system operation. Then the steam generator 120 generates pressurized steam of said water flow by evaporating water. This steam is having at least the motive pressure for a steam jet-ejector and 122 for using said steam as a motive stream to said at least one steam jet-ejector 122 for ejecting at least part of said pressurized steam according to the entrainment ratio of the steam jet-ejector. The at least one steam jet-ejector 122 injects at least part of said steam to the fuel cell system and entraining part of the essentially low pressure anode exhaust gas stream in said anode side gas recirculation and compresses the gas mixture to an intermediate pressure of the fuel feed-in 108 stream for controlling Oxygen-to-Carbon (O/C) relationship in the fuel side of the fuel cell system.

    [0021] The at least one steam jet-ejector 122 entrains said recirculated gas into the steam stream from means 116 for condensing after at least partial water separation by said means 116 for condensing. Said steam jet-ejector 122 can also entrain said recirculated gas into the steam stream from anode exhaust stream prior to condensing by means for condensing (116) or prior to oxidation by means for post oxidation.

    [0022] As well as described with SOFCs the present invention can also be utilized with MCFCs (Molten Carbonate Fuel Cells) and other fuel cells. MCFCs are high temperature fuel cells that use an electrolyte composed of a molten carbonate salt mixture suspended in a porous, chemically inert ceramic matrix.

    [0023] Although the invention has been presented in reference to the attached figures and specification, the invention is by no means limited to those, as the invention is subject to variations within the scope allowed for by the claims.


    Claims

    1. An arrangement for controlling Oxygen-to-Carbon (O/C) relationship in a fuel cell system for producing electricity with fuel cells, each fuel cell in the fuel cell system comprising an anode side (100), a cathode side (102) and an electrolyte (104) between the anode side and the cathode side, and the fuel cell system comprises means (108) for feeding gas used as fuel to the anode side, means (112) for providing water to the arrangement, at least one water pump (118) for pumping the provided water to facilitate a water flow, means (120) for evaporating water from said facilitated water flow for generating pressurized steam having at least the motive pressure for a steam jet-ejector (122),
    characterized by, that the arrangement for controlling the Oxygen-to-Carbon (O/C) relationship comprises:

    - means (116) for condensing at least part of water vapour fraction of essentially low pressure anode exhaust gas to liquid, which is provided to the means (112) for providing water to the arrangement,

    - means (109) for recirculating part of the anode side gas as a cooled and substantially dry gas,

    - and said at least one steam jet-ejector (122) for injecting at least part of the pressurized steam to the fuel cell system and entraining part of the essentially low pressure anode exhaust gas stream in said anode side gas recirculation and compressing the gas mixture to an intermediate pressure of the fuel feed-in stream for controlling the Oxygen-to-Carbon (O/C) relationship in the fuel side of the fuel cell system.


     
    2. An arrangement in accordance with claim 1, characterized by, that the arrangement comprises means for condensing (116) at least part of the water vapour fraction of the at least partially post oxidized anode exhaust gas to liquid, to provide the means for providing water (112) to the arrangement.
     
    3. An arrangement in accordance with claim 1, characterized by, that the arrangement comprises of a water source (112) sufficient for fuel cell system start-up and needs of transient operational modes.
     
    4. An arrangement in accordance with claim 1, characterized by, that the arrangement comprises of said at least one steam jet-ejector (122) for entraining said recirculated gas into the steam stream from means (116) for condensing after at least partial water separation by said means (116) for condensing.
     
    5. An arrangement in accordance with claim 1, characterized by, that the arrangement comprises said at least one steam jet-ejector (122) for entraining said recirculated gas into the steam stream from anode exhaust stream prior to condensing by means for condensing (116).
     
    6. An arrangement in accordance with claim 1, characterized by, that the arrangement comprises of said at least one steam jet-ejector (122) for entraining said recirculated gas into the steam stream from anode exhaust stream prior to oxidation by means for post oxidation.
     
    7. A method for controlling Oxygen-to-Carbon (O/C) relationship in a fuel cell system for producing electricity with fuel cells, in which method gas used as fuel is fed to the anode side (100), is provided water to the fuel cell system, is pumped the provided water amount to facilitate a water flow, is evaporated water from said facilitated water flow for generating pressurized steam having at least the motive pressure for a steam jet-ejector (122), characterized by, that Oxygen-to-Carbon (O/C) relationship is controlled:

    - by providing water to the fuel cell system by condensing at least part of water vapour fraction of essentially low pressure anode exhaust gas to liquid,

    - by recirculating part of the anode side gas as a cooled and substantially dry gas,

    - and by utilizing said at least one steam jet-ejector (122) for injecting at least part of the pressurized steam to the fuel cell system and by entraining part of the essentially low pressure anode exhaust gas stream to said anode side gas recirculation and by compressing the gas mixture to an intermediate pressure of the fuel feed-in stream for controlling Oxygen-to-Carbon (O/C) relationship.


     
    8. A method in accordance with claim 7, characterized by, that that water is provided to the recirculation by condensing at least part of the water vapour fraction of the at least partially post oxidized anode exhaust gas to liquid.
     
    9. A method in accordance with claim 7, characterized by, that in the method is utilized a water source (112) sufficient for fuel cell system start-up and needs of transient operational modes.
     
    10. An arrangement in accordance with claim 7, characterized by, that said recirculated gas is entrained into the steam stream from condensation after at least partial water separation made in condensation.
     
    11. A method in accordance with claim 7, characterized by, that said recirculated gas is entrained into the steam stream from anode exhaust stream prior to condensing.
     
    12. A method in accordance with claim 7, characterized by, that said recirculated gas is entrained into the steam stream from anode exhaust stream prior to post oxidation.
     


    Ansprüche

    1. Anordnung zur Steuerung des Sauerstoff/Kohlenstoffverhältnisses (O/C) in einem Brennstoffzellensystem zur Erzeugung von Elektrizität mit Brennstoffzellen, wobei jede Brennstoffzelle in dem Brennstoffzellensystem eine Anodenseite (100), eine Kathodenseite (102) und einen Elektrolyt (104) zwischen der Anodenseite und der Kathodenseite umfasst und das Brennstoffzellensystem Mittel (108) zum Zuführen von Gas, das als Brennstoff verwendet wird, zur Anodenseite, Mittel (112) zum Bereitstellen von Wasser für die Anordnung, mindestens eine Wasserpumpe (118) zum Pumpen des bereitgestellten Wassers zum Erleichtern einer Wasserströmung und Mittel (120) zum Verdampfen von Wasser von der erleichterten Wasserströmung zum Erzeugen von Druckdampf umfasst, der mindestens den Treibdruck für eine Dampfstrahlpumpe (122) aufweist,
    dadurch gekennzeichnet, dass die Anordnung zum Steuern des Sauerstoff/Kohlenstoffverhältnisses (O/C) Folgendes umfasst:

    - Mittel (116) zum Kondensieren von zumindest einem Teil des Wasserdampfanteils von Anodenabgas mit im Wesentlichen niedrigem Druck in Flüssigkeit, die den Mitteln (112) zum Bereitstellen von Wasser für die Anordnung bereitgestellt wird,

    - Mittel (109) zum Rezirkulieren eines Teils des Gases auf der Anodenseite als ein gekühltes und im Wesentlichen trockenes Gas,

    - und die mindestens eine Dampfstrahlpumpe (122) zum Einpressen von zumindest einem Teil des Druckdampfs in das Brennstoffzellensystem und Mitreißen eines Teils des Anodenabgasstroms mit im Wesentlichen niedrigem Druck in die Rezirkulation des Gases auf der Anodenseite und Verdichten des Gasgemischs auf einen Zwischendruck des Brennstoffzufuhrstroms zur Steuerung des Sauerstoff/Kohlenstoff-Verhältnisses (O/C) in der Brennstoffseite des Brennstoffzellensystems.


     
    2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Anordnung Mittel (116) zum Kondensieren von zumindest einem Teil des Wasserdampfanteils des zumindest teilweise nachoxidierten Anodenabgases in Flüssigkeit zum Bereitstellen der Mittel zum Bereitstellen von Wasser (112) für die Anordnung umfasst.
     
    3. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Anordnung eine Wasserquelle (112) umfasst, die für den Start des Brennstoffzellensystems und die Anforderungen von Übergangsbetriebsarten ausreicht.
     
    4. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Anordnung mindestens eine Dampfstrahlpumpe (122) zum Mitreißen des rezirkulierten Gases in den Dampfstrom von Mitteln (116) zum Kondensieren nach einer zumindest partiellen Wassertrennung durch die Mittel (116) zum Kondensieren umfasst.
     
    5. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Anordnung mindestens eine Dampfstrahlpumpe (122) zum Mitreißen des rezirkulierten Gases in den Dampfstrom vom Anodenabgasstrom vor dem Kondensieren durch Mittel zum Kondensieren (116) umfasst.
     
    6. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Anordnung mindestens eine Dampfstrahlpumpe (122) zum Mitreißen des rezirkulierten Gases in den Dampfstrom von dem Anodenabgasstrom vor der Oxidation durch Mittel zur Nachoxidation umfasst.
     
    7. Verfahren zum Steuern des Sauerstoff/Kohlenstoff-Verhältnisses (O/C) in einem Brennstoffzellensystem zum Erzeugen von Elektrizität mit Brennstoffzellen, wobei in dem Verfahren Gas, das als Brennstoff verwendet wird, der Anodenseite (100) zugeführt wird, dem Brennstoffzellensystem Wasser bereitgestellt wird, die bereitgestellte Wassermenge gepumpt wird, um eine Wasserströmung zu erleichtern, Wasser von der erleichterten Wasserströmung verdampft wird, um Druckdampf zu erzeugen, der zumindest den Treibdruck für eine Dampfstrahlpumpe (122) aufweist, dadurch gekennzeichnet, dass das Sauerstoff/Kohlenstoff-Verhältnis (O/C) gesteuert wird:

    - durch Bereitstellen von Wasser für das Brennstoffzellensystem durch Kondensieren von zumindest einem Teil des Wasserdampfanteils von Anodenabgas mit im Wesentlichen niedrigem Druck in Flüssigkeit,

    - durch Rezirkulieren eines Teils des Gases auf der Anodenseite als ein gekühltes und im Wesentlichen trockenes Gas,

    - und durch Verwenden der mindestens einen Dampfstrahlpumpe (122) zum Einpressen von zumindest einem Teil des Druckdampfs in das Brennstoffzellensystem und durch Mitreißen eines Teils des Anodenabgasstroms mit im Wesentlichen niedrigem Druck zu der Gasrezirkulation auf der Anodenseite und durch Verdichten des Gasgemischs auf einen Zwischendruck des Brennstoffzufuhrstroms zum Steuern des Sauerstoff/Kohlenstoff-Verhältnisses (O/C).


     
    8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass dieses Wasser der Rezirkulation durch Kondensieren von zumindest einem Teil des Wasserdampfanteils des zumindest teilweise nachoxidierten Anodenabgases in Flüssigkeit bereitgestellt wird.
     
    9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass in dem Verfahren eine Wasserquelle (112) verwendet wird, die für den Start des Brennstoffzellensystems und die Anforderungen von Übergangsbetriebsarten ausreicht.
     
    10. Anordnung nach Anspruch 7, dadurch gekennzeichnet, dass das rezirkulierte Gas in den Dampfstrom zur Kondensation mitgerissen wird, nachdem zumindest eine partielle Wassertrennung in der Kondensation vorgenommen wurde.
     
    11. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das rezirkulierte Gas in den Dampfstrom von dem Anodenabgasstrom vor dem Kondensieren mitgerissen wird.
     
    12. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das rezirkulierte Gas in den Dampfstrom von dem Anodenabgasstrom vor der Nachoxidation mitgerissen wird.
     


    Revendications

    1. Agencement pour réguler le rapport oxygène/carbone (O/C) dans un système de piles à combustible pour produire de l'électricité avec des piles à combustible, chaque pile à combustible dans le système de piles à combustible comprenant un côté d'anode (100), un côté de cathode (102) et un électrolyte (104) entre le côté d'anode et le côté de cathode, et le système de piles à combustible comprenant un moyen (108) pour alimenter le côté d'anode avec un gaz utilisé en tant que combustible, un moyen (112) pour fournir de l'eau à l'agencement, au moins une pompe à eau (118) pour pomper l'eau fournie afin de faciliter un écoulement d'eau, un moyen (120) pour faire s'évaporer l'eau dudit écoulement d'eau facilité afin de générer une vapeur sous pression ayant au moins la pression motrice pour un éjecteur de jet de vapeur (122),
    caractérisé en ce que l'agencement pour réguler le rapport oxygène/carbone (O/C) comprend :

    - un moyen (116) pour la condensation d'au moins une partie de la fraction de vapeur d'eau du gaz d'échappement d'anode sensiblement de basse pression pour donner du liquide, lequel est fourni au moyen (112) pour fournir du liquide à l'agencement,

    - un moyen (109) pour la remise en circulation d'une partie du gaz du côté d'anode en tant que gaz refroidi et sensiblement sec,

    - et ledit au moins un éjecteur de jet de vapeur (122) pour injecter au moins une partie de la vapeur sous pression dans le système de piles à combustible et entraîner une partie du flux de gaz d'échappement d'anode sensiblement de basse pression dans ladite recirculation de gaz du côté d'anode et comprimer le mélange de gaz à une pression intermédiaire du flux d'entrée de combustible pour réguler le rapport oxygène/carbone (O/C) du côté du combustible du système de piles à combustible.


     
    2. Agencement selon la revendication 1, caractérisé en ce que l'agencement comprend un moyen pour la condensation (116) d'au moins une partie de la fraction de vapeur d'eau du gaz d'échappement d'anode au moins partiellement post-oxydé pour donner du liquide, afin de fournir le moyen pour fournir de l'eau (112) à l'agencement.
     
    3. Agencement selon la revendication 1, caractérisé en ce que l'agencement comprend une source d'eau (112) suffisante pour le démarrage du système de piles à combustible et des besoins de modes de fonctionnement transitoires.
     
    4. Agencement selon la revendication 1, caractérisé en ce que l'agencement comprend ledit au moins un éjecteur de jet de vapeur (122) pour entraîner ledit gaz de recirculation dans le flux de vapeur du moyen (116) pour la condensation après au moins une séparation partielle d'eau grâce audit moyen (116) pour la condensation.
     
    5. Agencement selon la revendication 1, caractérisé en ce que l'agencement comprend ledit au moins un éjecteur de jet de vapeur (122) pour entraîner ledit gaz de recirculation dans le flux de vapeur du flux d'échappement d'anode avant la condensation grâce au moyen pour la condensation (116).
     
    6. Agencement selon la revendication 1, caractérisé en ce que l'agencement comprend ledit au moins un éjecteur de jet de vapeur (122) pour entraîner ledit gaz de recirculation dans le flux de vapeur du flux d'échappement d'anode avant l'oxydation grâce au moyen pour la post-oxydation.
     
    7. Procédé pour réguler le rapport oxygène/carbone (O/C) dans un système de piles à combustible pour produire de l'électricité avec des piles à combustible, dans lequel procédé du gaz utilisé en tant que combustible alimente le côté d'anode (100), de l'eau étant fournie au système de piles à combustible, la quantité d'eau fournie étant pompée pour faciliter un écoulement d'eau, l'eau étant soumise à évaporation à partir dudit écoulement d'eau facilité pour générer de la vapeur sous pression ayant au moins la pression motrice pour un éjecteur de jet de vapeur (122),
    caractérisé en ce que le rapport oxygène/carbone (O/C) est régulé :

    - en fournissant de l'eau au système de piles à combustible grâce à la condensation d'au moins une partie de fraction de vapeur d'eau de gaz d'échappement d'anode sensiblement de basse pression pour donner du liquide,

    - en remettant en circulation une partie du gaz du côté d'anode en tant que gaz refroidi et sensiblement sec,

    - et en utilisant ledit au moins un éjecteur de jet de vapeur (122) pour injecter au moins une partie de la vapeur sous pression dans le système de piles à combustible et en entraînant une partie du flux de gaz d'échappement d'anode sensiblement de basse pression vers ladite recirculation de gaz du côté d'anode et en comprimant le mélange de gaz à une pression intermédiaire du flux d'entrée de combustible pour réguler le rapport oxygène/carbone (O/C).


     
    8. Procédé selon la revendication 7, caractérisé en ce que cette eau est fournie à la recirculation grâce à la condensation d'au moins une partie de la fraction de vapeur d'eau du gaz d'échappement d'anode au moins partiellement post-oxydé pour donner du liquide.
     
    9. Procédé selon la revendication 7, caractérisé en ce que dans le procédé, on utilise une source d'eau (112) suffisante pour le démarrage du système de piles à combustible et des besoins de modes de fonctionnement transitoires.
     
    10. Agencement selon la revendication 7, caractérisé en ce que ledit gaz remis en circulation est entraîné dans le flux de vapeur provenant de la condensation après une séparation au moins partielle d'eau réalisée lors de la condensation.
     
    11. Procédé selon la revendication 7, caractérisé en ce que ledit gaz de recirculation est entraîné dans le flux de vapeur provenant du flux d'échappement d'anode avant la condensation.
     
    12. Procédé selon la revendication 7, caractérisé en ce que ledit gaz de recirculation est entraîné dans le flux de vapeur provenant du flux d'échappement d'anode avant la post-oxydation.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description