(19)
(11)EP 2 496 968 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
02.09.2020 Bulletin 2020/36

(21)Application number: 10829200.4

(22)Date of filing:  05.11.2010
(51)International Patent Classification (IPC): 
G01V 1/36(2006.01)
(86)International application number:
PCT/US2010/055736
(87)International publication number:
WO 2011/057151 (12.05.2011 Gazette  2011/19)

(54)

SYSTEM AND METHOD FOR SEISMIC BEAM FORMATION THAT ACCOUNTS FOR EQUIPMENT MISALIGNMENT

SYSTEM UND VERFAHREN ZUR SEISMISCHEN STRAHLFORMUNG UNTER BERÜCKSICHTIGUNG VON GERÄTEFEHLAUSRICHTUNGEN

SYSTÈME ET PROCÉDÉ DE FORMATION DE FAISCEAUX SISMIQUES PRENANT EN COMPTE LE DÉFAUT D'ALIGNEMENT DE L'ÉQUIPEMENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 05.11.2009 US 613442

(43)Date of publication of application:
12.09.2012 Bulletin 2012/37

(73)Proprietor: Chevron U.S.A. Inc.
San Ramon, CA 94583 (US)

(72)Inventors:
  • HILL, Norman Ross
    Houston, TX 77009 (US)
  • WANG, Yue
    Danville, CA 94506 (US)

(74)Representative: Haseltine Lake Kempner LLP 
Redcliff Quay 120 Redcliff Street
Bristol BS1 6HU
Bristol BS1 6HU (GB)


(56)References cited: : 
US-A- 5 719 822
US-A1- 2006 227 662
US-A- 6 021 379
US-B2- 6 681 184
  
  • N. Ross Hill ET AL: "Beam methods for predictive suppression of seismic multiples in deep water", SEG Technical Program Expanded Abstracts, 6 November 2002 (2002-11-06), page 2118, XP055147728, DOI: 10.1190/1.1817122 Retrieved from the Internet: URL:http://library.seg.org/doi/pdf/10.1190 /1.1817122
  • SAMUEL H. GRAY: "Gaussian beam migration of common-shot records", GEOPHYSICS, vol. 70, no. 4, 7 July 2005 (2005-07-07), pages S71-S77, XP055361633, US ISSN: 0016-8033, DOI: 10.1190/1.1988186
  • HILL N R: "PRESTACK GAUSSIAN-BEAM DEPTH MIGRATION", GEOPHYSICS, SOCIETY OF EXPLORATION GEOPHYSICISTS, US, vol. 66, no. 4, 17 April 2001 (2001-04-17) , pages 1240-1250, XP001127724, ISSN: 0016-8033, DOI: 10.1190/1.1487071
  • ZHAO,MING ET AL.: "Application of a model-based multiple attenuation method to a Gulf of Mexico deepwater dataset", THE LEADING EDGE, vol. 24, no. 3, March 2005 (2005-03), page 285, XP002768954, DOI: 10.1190/1.1895314
  • QIYU HAN ET AL: "Common image gathers in the plane-wave domain: a prestack Gaussian beam migration algorithm", SEG TECHNICAL PROGRAM EXPANDED ABSTRACTS 2005, 2005, pages 2021-2024, XP055361694, DOI: 10.1190/1.2148106
  • JONATHAN LIU ET AL: "Multi-arrival Kirchhoff beam migration", SEG TECHNICAL PROGRAM EXPANDED ABSTRACTS 2008, 2008, pages 2311-2315, XP055361708, DOI: 10.1190/1.3059344
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] The invention relates to processing seismic data in a manner that models seismic energy propagating through a geologic volume of interest and corrects for equipment misalignment present during data acquisition.

BACKGROUND OF THE INVENTION



[0002] Seismic field acquisition typically has some degree of irregularity in positions of the sources and/or detectors. For example, cultural obstacles such as drilling and production facilities cause irregularities in both marine and land recording geometries. For marine data, another cause of irregularity is cable feather.

[0003] Techniques for modeling seismic energy as beams are known. Generally, these techniques assume a regular acquisition mesh. Misalignment of equipment during acquisition of data is generally partially corrected by preprocessing steps before using conventional beam formation techniques.

[0004] Reference may be made to:

N. Ross Hill et al, "Beam methods for predictive suppression of seismic multiples in deep water", SEG Technical Program Expanded Abstracts; or

Samuel H. Gray, "Gaussian beam migration of common-shot records", GEOPHYSICS, US, vol. 70, no. 4.


SUMMARY OF THE INVENTION



[0005] The present invention is defined by the independent claims, to which reference should now be made. Specific embodiments are defined in the dependent claims.

[0006] There is disclosed herein a computer system configured to stack a plurality of traces of seismic energy through a geologic volume. In one embodiment, the system comprises one or more processors operatively linked with electronic storage media that stores a plurality of traces of seismic energy, wherein the individual traces of seismic energy are derived from recordings made at individual ones of a plurality of actual detector locations of seismic energy propagating through the geologic volume of interest from an actual source location. The one or more processors are configured to execute on or more computer program modules. The computer program modules comprise a beam module, a beam pairing module, an offset dip module, a source/detector dip module, a shift module, and a stack module. The beam module is configured to perform ray-tracings for midpoint-offset beaming locations at or near the geologic volume of interest, and to determine beam parameters for beams of seismic energy propagating along the traced rays, wherein a ray-tracing for a given midpoint-offset beaming location results in the tracing of rays from a source location corresponding to the given midpoint-offset beaming location and the tracing of rays from a detector location corresponding to the given midpoint-offset beaming location, and wherein the source location and the detector location corresponding to the given midpoint-offset beaming location are arranged on meshpoints of a regular, predetermined mesh. The beam pairing module is configured to identify, for midpoint-offset beaming locations at or near the geologic volume of interest, sets of beam pairs for a plurality of midpoint dips such that an individual beam pair includes a beam from the source location corresponding to the given midpoint-offset beaming location and a beam from the detector location corresponding to the given midpoint-offset beaming location. The beam pairing module is further configured to identify a set of beam pairs for each value of midpoint dip such that the sum of the initial dip of the beam from the source location and the initial dip of the beam from the detector location equals the value of the midpoint dip. The offset dip module is configured to determine, for individual midpoint dips at individual midpoint-offset beaming locations, offset dips that makes total travel times stationary for beam pairs in the sets of beam pairs for the individual midpoint dips at the individual midpoint-offset beaming locations. The source/detector dip module is configured to determine, for individual midpoint dips at individual midpoint-offset beaming locations, beam dip at the source location and beam dip at the detector location as a function of time, wherein for the given midpoint dip at the given midpoint-offset beaming location the source/detector dip module determines the beam dip at the source location and the beam dip at the detector location as a function of time based on the offset dips determined for the beam pairs in the set of beam pairs for the given midpoint dip at the given midpoint-offset beaming location. The shift module is configured to apply time shifts to the traces of seismic data that effectively shift the one or more actual source locations and actual detector locations of the traces of seismic data to source locations and detector locations arranged on the stations of the regular recording mesh, wherein the time shifts are time varying, and wherein the time shifts applied to the traces of seismic data for the given midpoint dip at or near the given midpoint-offset beaming location are determined based on beam dip as a function of time at the source location corresponding to the given midpoint-offset beaming location and the beam dip as a function of time at the detector location corresponding to the given midpoint-offset beaming location. The stack module is configured to slant stack the traces of seismic data to which the shift module has applied a time shift.

[0007] These and other objects, features, and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention. As used in the specification and in the claims, the singular form of "a", "an", and "the" include plural referents unless the context clearly dictates otherwise.

BRIEF DESCRIPTION OF THE DRAWINGS



[0008] 

FIG. 1 illustrates a system configured to process seismic data representing the propagation of seismic energy through a geologic volume of interest, in accordance with one or more embodiments of the invention.

FIG. 2 illustrates a method of processing seismic data representing the propagation of seismic energy through a geologic volume of interest, in accordance with one or more embodiments of the invention.

FIG. 3 illustrates a method of processing seismic data representing the propagation of seismic energy through a geologic volume of interest, in accordance with one or more embodiments of the invention.

FIG. 4 illustrates a pair of source and detector rays through a geologic volume of interest, according to one or more embodiments of the invention.

FIG. 5 illustrates misalignment of actual source and detector locations with source and detector stations on a regular, predetermined mesh, in accordance with one or more embodiments of the invention.


DETAILED DESCRIPTION OF THE INVENTION



[0009] FIG. 1 illustrates a system 10 configured to process seismic data representing the propagation of seismic energy through a geologic volume of interest. The seismic energy propagates through the geologic volume of interest from one or more source locations at or near the geologic volume of interest to one or more detector locations at or near the geologic volume of interest. In processing the seismic data, system 10 models the seismic energy as beams (e.g., Gaussian beams). The processing performed by system 10 (i) corrects for misalignment of the one or more source locations and/or the one or more detector locations with a regularly spaced mesh of recording stations, and (ii) steers the seismic data based on the modeled beams. In one embodiment, system 10 comprises electronic storage 12, a user interface 14, one or more information resources 16, one or more processors 18, and/or other components.

[0010] In one embodiment, electronic storage 12 comprises electronic storage media that electronically stores information. The electronic storage media of electronic storage 12 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with system 10 and/or removable storage that is removably connectable to system 10 via, for example, a port (e.g., a USB port, a firewire port, etc.) or a drive (e.g., a disk drive, etc.). Electronic storage 12 may include one or more of optically readable storage media (e.g., optical disks, etc.), magnetically readable storage media (e.g., magnetic tape, magnetic hard drive, floppy drive, etc.), electrical charge-based storage media (e.g., EEPROM, RAM, etc.), solid-state storage media (e.g., flash drive, etc.), and/or other electronically readable storage media. Electronic storage 12 may store software algorithms, information determined by processor 18, information received via user interface 14, information received from information resources 16, and/or other information that enables system 10 to function properly. Electronic storage 12 may be a separate component within system 10, or electronic storage 12 may be provided integrally with one or more other components of system 10 (e.g., processor 18).

[0011] User interface 14 is configured to provide an interface between system 10 and a user through which the user may provide information to and receive information from system 10. This enables data, results, and/or instructions and any other communicable items, collectively referred to as "information," to be communicated between the user and the system 10. As used herein, the term "user" may refer to a single individual or a group of individuals who may be working in coordination. Examples of interface devices suitable for inclusion in user interface 14 include a keypad, buttons, switches, a keyboard, knobs, levers, a display screen, a touch screen, speakers, a microphone, an indicator light, an audible alarm, and a printer. In one embodiment, user interface 14 actually includes a plurality of separate interfaces.

[0012] It is to be understood that other communication techniques, either hard-wired or wireless, are also contemplated by the present invention as user interface 14. For example, the present invention contemplates that user interface 14 may be integrated with a removable storage interface provided by electronic storage 12. In this example, information may be loaded into system 10 from removable storage (e.g., a smart card, a flash drive, a removable disk, etc.) that enables the user(s) to customize the implementation of system 10. Other exemplary input devices and techniques adapted for use with system 10 as user interface 14 include, but are not limited to, an RS-232 port, RF link, an IR link, modem (telephone, cable or other). In short, any technique for communicating information with system 10 is contemplated by the present invention as user interface 14.

[0013] The information resources 16 include one or more sources of information related to the geologic volume of interest and/or the process of generating an image of the geologic volume of interest. By way of non-limiting example, one of information resources 16 may include seismic data acquired at or near the geologic volume of interest, information derived therefrom, and/or information related to the acquisition. The seismic data may include individual traces of seismic data, or the data recorded at on one channel of seismic energy propagating through the geologic volume of interest from a source. The information derived from the seismic data may include, for example, a velocity model, beam properties associated with beams used to model the propagation of seismic energy through the geologic volume of interest, Green's functions associated with beams used to model the propagation of seismic energy through the geologic volume of interest, and/or other information. Information related to the acquisition of seismic data may include, for example, data related to the position and/or orientation of a source of seismic energy, the positions and/or orientations of one or more detectors of seismic energy, the time at which energy was generated by the source and directed into the geologic volume of interest, and/or other information.

[0014] Processor 18 is configured to provide information processing capabilities in system 10. As such, processor 18 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information. Although processor 18 is shown in FIG. 1 as a single entity, this is for illustrative purposes only. In some implementations, processor 18 may include a plurality of processing units. These processing units may be physically located within the same device or computing platform, or processor 18 may represent processing functionality of a plurality of devices operating in coordination.

[0015] As is shown in FIG. 1, processor 18 may be configured to execute one or more computer program modules. The one or more computer program modules may include one or more of a beam module 20, a beam pairing module 22, an offset dip module 24, a source/detector dip module 26, a displacement module 28, a shift module 30, a filter module 32, a stack module 34, and/or other modules. Processor 18 may be configured to execute modules 20, 22, 24, 26, 28, 30, 32, and/or 34 by software; hardware; firmware; some combination of software, hardware, and/or firmware; and/or other mechanisms for configuring processing capabilities on processor 18.

[0016] It should be appreciated that although modules 20, 22, 24, 26, 28, 30, 32, and 34 are illustrated in FIG. 1 as being co-located within a single processing unit, in implementations in which processor 18 includes multiple processing units, one or more of modules 20, 22, 24, 26, 28, 30, 32, and/or 34 may be located remotely from the other modules. The description of the functionality provided by the different modules 20, 22, 24, 26, 28, 30, 32, and/or 34 described below is for illustrative purposes, and is not intended to be limiting, as any of modules 20, 22, 24, 26, 28, 30, 32, and/or 34 may provide more or less functionality than is described. For example, one or more of modules 20, 22, 24, 26, 28, 30, 32, and/or 34 may be eliminated, and some or all of its functionality may be provided by other ones of modules 20, 22, 24, 26, 28, 30, 32, and/or 34. As another example, processor 18 may be configured to execute one or more additional modules that may perform some or all of the functionality attributed below to one of modules 20, 22, 24, 26, 28, 30, 32, and/or 34.

[0017] The beam module 20 is configured to perform ray-tracings through the geologic volume of interest to determine central rays for beams of seismic energy that are propagated through the geologic volume of interest. The ray-tracings are performed by beam module 20 based on the recording geometry of the seismic data and/or information derived from the acquisition of the seismic data. The seismic data and/or the related information (e.g., recording geometry, etc.) may be obtained by beam module 20 from one of information resources 16, from electronic storage 12, from a user via user interface 14, and/or otherwise obtained. In one embodiment, beam module 20 uses a velocity model of the geologic volume of interest. The velocity model may be obtained from an external source, such as one of information resources 16.

[0018] In one embodiment, the ray-tracings performed by beam module 20 correspond to individual midpoint-offset beaming locations. In other words, the ray-tracings performed by beam module 20 correspond to individual sets of source location/detector location. As such, a given ray-tracing performed by beam module 20 will result in rays being traced in a plurality of directions from each of the source and detector locations corresponding to the given ray-tracing. For a given offset, the midpoint and angular sampling for the rays may be determined by relations such as those provided as equations (26) and (27) of Hill, N. R., 2001, Prestack Gaussian-beam depth migration: Geophysics, vol. 66, pp. 1240-1250 ("Hill").

[0019] In addition to determining central rays from the ray-tracings described above, beam module 20 is configured to determine other beam properties of the beams with central rays determined in the ray-tracings. The other beam properties may include one or more of travel time, beam width, amplitude, velocity, phase, raypath direction, and/or other beam properties at all points touched by a given beam. In one embodiment, beam module 20 determines the beam properties for Gaussian beams.

[0020] The beam pairing module 22 is configured to identify beam pairs for a given midpoint-offset beaming location based on midpoint dip. To identify such beam pairs, beam pairing module 22 analyzes sets of beams for which beam properties have been determined by beam module 20. In particular, for a given midpoint offset beaming location, beam pairing module 22 analyzes the beams traced from the source location corresponding to the given midpoint offset beaming location and the beams traced from the detector location corresponding to the given midpoint offset beaming location. In analyzing these beams, beam pairing module 22 pairs beams from the source location with beams from the detector location such that the sum of the dips of the paired beams, which is the midpoint dip of the beam pair, is constant.

[0021] Midpoint dip may be defined according to the following relationship:

wherein Pm represents midpoint dip, Ps represents beam dip at the source location, and Pd represents beam dip at the detector location. The source and detector dips are defined as:

where θs and θd are the takeoff angles of the source ray and the detector rays, as is illustrated in FIG. 4, and Vs and Vd are the seismic velocities at the source and detector positions. Midpoint dip is the slope of an event traveltime as a function of midpoint when offset is held constant.

[0022] In one embodiment, in identifying beam pairs for a given midpoint-offset beaming location, beam pairing module 22 pairs beams from the source location with beams from the detector location such that the identified beam pairs have a predetermined midpoint dip. In this embodiment, beam pairing module 22 may make multiple passes through the beams for the given midpoint-offset beaming location to identify beam pairs at a plurality of different midpoint dips.

[0023] The offset dip module 24 is configured to determine offset dip for beam pairs identified by beam pairing module 22 that makes total travel time stationary with respect to offset dip. Generally, offset dip can be expressed as:

where Ph represents offset dip.

[0024] As will be appreciated, this determination is made for an individual beam pair separately for different points in the geologic volume of interest that are touch by both beams included in the individual beam pair. For instance, for a given beam pair at a given point ri within the geologic volume of interest that is touched by both beams in the given beam pair, offset dip module 24 determines offset dip for the given beam pair such that the total travel time of the beam pair through the given point ri is stationary. The total travel time can be expressed as a function of midpoint dip and offset dip as follows:

wherein Ttotal represents total travel time, Td represents travel time from the detector location to the point ri, and Ts represents travel time from the source location to the point ri. The stationary condition is

Note that for the case of Gaussian beams the travel times are complex numbers.

[0025] In one embodiment, for an individual midpoint dip at a given midpoint-offset beaming location, offset dip module 24 determines offset dips for beam pairs having the individual midpoint dip that make total travel time stationary for the beam pairs through a plurality of points in the geologic volume of interest touched by the beam pairs. For example, by implementing the relationship set forth above in equation (4), offset dip module 24 may determine at individual points r within the geologic volume of interest one or more stationary total travel times Ttotal and offset dips Ph at which this stationary value occurs. This results in the determination of a plurality of data tuples Ttotal(ri), Ph(ri) for the individual midpoint dip at the given midpoint-offset beaming location.

[0026] In one embodiment, offset dip module 24 converts the data tuples Ttotal(ri), Ph(ri) into a determination of offset dip Ph as a function of the real part of the stationary total travel time (Tr=Re{Ttotal}), which may be expressed as Ph(Tr). For example, the data tuples Tr(ri), Ph(ri) may be plotted and/or otherwise correlated, and a function defining the offset dip Ph as a function of travel time Tr can be derived based on the trends between this relationship apparent form the data tuples Tr(rj), Ph(ri) as a whole. Since the determination of offset dip Ph as a function of travel time Tr by offset dip module 24 is for the individual midpoint dip, the determined function can be expressed with the individual midpoint dip as the data tuple Pm, Ph(Tr), where Pm is the individual midpoint dip. The principal contributions to the image occur at these stationary points because the beams in a nearby neighborhood sum constructively. These stationary values are therefore used to shift misaligned traces to nearby regularly spaced stations, as is illustrated in FIG. 4.

[0027] Returning to FIG. 1, the source/detector dip module 26 is configured to determine, for an individual midpoint dip at a given midpoint-offset beaming location, beam dip at the source location corresponding to the given midpoint-offset beaming location and beam dip at the detector location corresponding to the given midpoint-offset beaming location as functions of time. For example, from the data tuple Pm, Ph(Tr) determined for the individual midpoint dip at the given midpoint-offset beaming location by offset dip module 24, source/detector dip module 26 may determine the beam dip at the source location Ps and the beam dip at the detector location Pd as functions of time from the relationships set forth above in equations (1) and (3).

[0028] The displacement module 28 is configured to determine positional displacements of source and/or detector locations during data acquisition from regularly spaced recording stations that form a recording mesh (see FIG. 5). To determine positional displacement for a given source location (e.g., corresponding to a given midpoint-offset beaming location) during data acquisition, displacement module 28 compares the actual source location during the data acquisition with a source location on a nearby recording station of the regularly spaced recording mesh and determines a displacement distance therebetween. To determine positional displacement for a given detector location, displacement module 28 compares the actual detector location during data acquisition with a nearby recording station of the regularly spaced recording mesh and determines a displacement there between.

[0029] The shift module 30 is configured to apply time shifts to traces of seismic data that effectively shift that actual source and/or detector location(s) corresponding to the traces to source and/or detector location(s) on stations of the regularly spaced recording mesh. The time shifts applied by shift module 30 are time varying. For a given trace of seismic data from a source location to a detector location that correspond to a given midpoint-offset beaming location, the time shift applied to the given trace is determined by shift module 30 based on (i) beam dip at the source location as a function of time (e.g., as determined by source/detector dip module 26), (ii) beam dip at the detector location as a function of time (e.g., as determined by source/detector dip module 26), (iii) displacement between the actual source location and a source location on a station of the regularly spaced recording mesh (e.g., as determined by displacement module 28), and (iv) displacement between the actual detector location and a detector location on a station of the regularly spaced recording mesh (e.g., as determined by displacement module 28).

[0030] In one embodiment, shift module 30 determines the shift applied to the given trace according to the following relationship:

where dT(T) represents the time shift as a function of time, dxs represents the displacement between the actual source location and the source location on a station of the regularly spaced recording mesh, and dxd represents the displacement between the actual source location and the source location on a station of the regularly spaced recording mesh (see FIG. 5). According to the invention, the regularized traces are transformed to beams by a localized slant stacking operation such as described by Hill (2001) (see, e.g., equation (11) of Hill (2001)). This transformation may include a filter that localizes the traces in space about the beaming midpoint Xm.

where Xm represents the midpoint of the trace being filtered after the time shift is applied by shift module 30, ω represents frequency, ω0 represents a filtering frequency, and rm represents a point in the geologic volume of interest touched by the trace being filtered. This filter may be applied, for example by a filter module 32.

[0031] The stack module 34 is configured to stack traces. The traces near beaming midpoint location Xm and offset h are stacked after being shifted and/or filtered as described above. In one embodiment, stack module 34 slant stacks traces by applying a time delay to the traces before summing them. The time delay may be determined, for example, as:

where ΔT represents the time delay (see, e.g., Hill (2001), equation (11)). This time delay and local stacking operation separates the recorded data into beam components.

[0032] After having been stacked at stack module 34, the resulting beam components of the seismic data may then be implemented to image the geologic volume of interest. The imaging may be performed by processor 18, and/or the stacked traces may be stored (e.g., to electronic storage 12) for processing at another time and/or on another system.

[0033] FIG. 2 illustrates a method 36 of processing seismic data representing the propagation of seismic energy through a geologic volume of interest. The operations of method 36 presented below are intended to be illustrative. In some embodiments, method 36 may be accomplished with one or more additional operations not described, and/or without one or more of the operations discussed. Additionally, the order in which the operations of method 36 are illustrated in FIG. 2 and described below is not intended to be limiting.

[0034] In some embodiments, method 36 may be implemented in one or more processing devices (e.g., a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information). The one or more processing devices may include one or more devices executing some or all of the operations of method 36 in response to instructions stored electronically on an electronic storage medium. The one or more processing devices may include one or more devices configured through hardware, firmware, and/or software to be specifically designed for execution of one or more of the operations of method 36.

[0035] At an operation 38, the spatial and angular sampling for beams of seismic energy through the geologic volume of interest is determined. The spatial and angular sampling for the beams of seismic energy may be determined from the frequency bandwidth seismic data acquired at or near the geologic volume of interest and/or the beam sampling relations such as the ones that appear at equations (26) and (27) of Hill (2001).

[0036] More particularly, equation (26) of Hill (2001) specifies that a constant a that governs spatial sampling (e.g., to create a lattice of Dirac delta functions spaced at 2π/a) should be determined according to the following relationship:

where wl represents the initial width of a beam, ωl represents a reference frequency at the lower end of the seismic data bandwidth, and ωh represents a reference frequency at the higher end of the seismic data bandwidth.

[0037] Equation (27) of Hill (2001) specifies an angular sampling according to the following relationship:

where ΔPx and ΔPy represent the angular spacing of sampling in the x and y directions, respectively.

[0038] At an operation 40 a midpoint-offset beaming location at or near the geologic volume of interest is identified. The midpoint-offset beaming location corresponds to a specific midpoint and offset. A source location corresponding to the midpoint-offset beaming location is expressed as:

where Xs represents the source location, Xm represents the midpoint location of the midpoint-offset beaming location, and h represents the offset. Similarly, a detector location Xd corresponding to the midpoint-offset beaming location is expressed as:

Fig. 4 illustrates these relations along a single coordinate axis x; the quantities Xd, Xs, Xm and h are in general two-dimensional vectors in a horizontal coordinate plane.

[0039] At an operation 42, a ray-tracing is performed for the identified midpoint-offset beaming location. In the ray-tracing, ray paths of rays traveling from the source location through the geologic volume of interest are determined, and ray paths of rays traveling from the detector location through the geologic volume of interest are determined. In one embodiment, operation 42 is performed by a beam module 20 that is the same as or similar to beam module 20 (shown in FIG. 1 and described above).

[0040] At an operation 44, beam properties for beams of seismic energy propagating along the ray paths traced at operation 42 are determined. The beam properties determined at operation 44 may include one or more of travel time, beam width, amplitude, velocity, phase, raypath direction, and/or other properties at all points touched by the beam. In one embodiment, operation 44 is performed by a beam module 20 that is the same as or similar to beam module 20 (shown in FIG. 1 and described above).

[0041] At an operation 46, a midpoint dip is identified. At an operation 48, beam pairs at the midpoint-offset beaming location having the midpoint dip from operation 46 are identified. Each beam pair may include a beam traveling from the source location and a beam traveling from the detector location such that beam dip at the source location and beam dip at the detector location satisfy the midpoint dip from operation 46 (e.g., Pm=Ps+Pd). In one embodiment, operation 48 is performed by a beam pairing module that is the same as or similar to beam pairing module 22 (shown in FIG. 1 and described above).

[0042] At an operation 50, offset dips that make total travel times of the beam pairs identified at operation 48 stationary at points within the geologic volume of interest are determined. In one embodiment, operation 50 is performed by an offset dip module that is the same as or similar to offset dip module 24 (shown in FIG. 1 and described above).

[0043] At an operation 52, for the beam pairs identified at operation 48, beam dip at the source location and beam dip at the detector location are determined as a function of time. The determination of beam dip at the source location and beam dip at the detector location is based on the midpoint dips and the offset dips determined for the beam pairs at operation 50. In one embodiment, operation 52 is performed by a source/detector dip module that is the same as or similar to source/detector dip module 26 (shown in FIG. 1 and described above).

[0044] At an operation 54, a trace of seismic data at or near midpoint-offset beaming location is obtained. At an operation 56, a time shift is applied to the trace of seismic data that effectively shifts the actual source location and the actual detector location of the trace of seismic data to the source location and the detector location at stations of a regularly spaced recording mesh. The time shift is time varying. The time shift is based on beam dip at a source location corresponding to the given midpoint-offset beaming location and beam dip at a detector location corresponding to the given midpoint-offset beaming location as a function of time (e.g., as determined at operation 52 and as illustrated in FIG. 4), and is also based on a positional displacements between the actual source and detector locations of the seismic data trace and the source and detector locations at stations on the regularly spaced recording mesh, and/or based on other parameters. In one embodiment, operation 56 is performed by a shift module that is the same as or similar to shift module 30 (shown in FIG. 1 and described above).

[0045] At an operation 58, the shifted trace is filtered. In one embodiment, operation 58 is performed by a filter module that is the same as or similar to filter module 32 (shown in FIG. 1 and described above).

[0046] At an operation 60, the shifted trace may be stacked. The stacking may include applying a time delay to the shifted trace, and summing the shifted trace with other previously processed traces. In one embodiment, operation 60 is performed by a stack module that is the same as or similar to stack module 34.

[0047] Method 36 includes a loop 62 that loops back over operations 54, 56, 58, and/or 60 for all of the available traces of seismic data that are at or near the midpoint-offset beaming location. Upon completing loop 60, method 36 includes a loop 64 that loops back over operations 46, 48, 50, 52, and loop 60 for a plurality of midpoint dips at the midpoint-offset beaming location identified at operation 40. Upon completing loop 64, method 36 includes a loop 66 that loops back over operations 40, 42, 44, and loop 62 for a plurality of midpoint-offset beaming locations. In one embodiment, loop 66 actually includes two separate loops. For example one of the loops may loop over a plurality of midpoint locations at a given offset, while the other loop loops over a plurality offsets.

[0048] FIG. 3 illustrates a method 68 of processing seismic data obtained at or near a geologic volume of interest. In particular, method 68 involves determining, for a given midpoint-offset beaming location and a given midpoint dip, beam dip at a source location corresponding to the given midpoint-offset beaming location and beam dip at a detector location corresponding to the given midpoint-offset beaming location as a function of time. In one embodiment, method 68 may be implemented as a component of an over-arching method. For example, method 68 may be implemented as operations 50 and/or 52 within method 36 shown in FIG. 2 and described above. This is not intended to be limiting, and method 68 may be implemented within a variety of other contexts.

[0049] The operations of method 68 presented below are intended to be illustrative. In some embodiments, method 68 may be accomplished with one or more additional operations not described, and/or without one or more of the operations discussed. Additionally, the order in which the operations of method 68 are illustrated in FIG. 3 and described below is not intended to be limiting.

[0050] In some embodiments, method 68 may be implemented in one or more processing devices (e.g., a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information). The one or more processing devices may include one or more devices executing some or all of the operations of method 68 in response to instructions stored electronically on an electronic storage medium. The one or more processing devices may include one or more devices configured through hardware, firmware, and/or software to be specifically designed for execution of one or more of the operations of method 68.

[0051] At an operation 70, beam pairs at the midpoint-offset beaming location having the given midpoint dip are obtained. In one embodiment, operation 70 involves obtaining the output of an operation that is the same as or similar to operation 48 (shown in FIG. 2 and described above).

[0052] At an operation 72, a point within the geologic volume of interest is identified as being touched by both beams included in one of the beam pairs obtained at operation 70. In one embodiment, operation 72 is performed by an offset dip module that is the same as or similar to offset dip module 24 (shown in FIG. 1 and described above).

[0053] At an operation 74, an offset dip for the beam pair that touches the point within geologic volume of interest identified at operation 72 is determined. Specifically, the offset determined at operation 74 makes total travel time for the beam pair at the point within the geologic volume of interest stationary. In one embodiment, operation 74 is performed by an offset dip module that is the same as or similar to offset dip module 24 (shown in FIG. 1 and described above).

[0054] At an operation 76, the offset dip determined at operation 74 is stored as a data tuple, or set, with the travel time for the beam pair through the point in the geologic volume of interest at the determined offset dip. In one embodiment, operation 76 is performed by an offset dip module that is the same as or similar to offset dip module 24 (shown in FIG. 1 and described above).

[0055] Method 68 includes a loop 78 that loops back over operations 72, 74, and 76 for a plurality of points that are touched by one or more of the beam pairs obtained at operation 70. Upon completing loop 78, method 68 proceeds to an operation 80.

[0056] At the operation 80, offset dip for the beam pairs obtained at operation 70 is determined as a function of time. This determination is based on the data tuples stored at operation 76. In one embodiment, operation 80 is performed by an offset dip module that is the same as or similar to offset dip module 24 (shown in FIG. 1 and described above).

[0057] At an operation 82, for the given midpoint-offset beaming location and the given midpoint dip, beam dip at the source location and beam dip at the detector location are determined as a function of time. Specifically, from the relationship describing offset dip as a function of time that is determined at operation 80, and from the given midpoint dip, beam dip at the source location and beam dip at the detector location are determined. In one embodiment, operation 82 is performed by a source/detector dip module that is the same as or similar to source/detector dip module 26 (shown in FIG. 1 and described above).

[0058] Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments. The present invention is defined by the scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible within the scope of the claims, one or more features of any embodiment can be combined with one or more features of any other embodiment.


Claims

1. A computer-implemented method (36) of processing seismic data representing the propagation of seismic energy through a geologic volume from one or more source locations, at which one or more sources of seismic energy are located, to a plurality of detector locations, at which detectors of seismic energy are located, the method comprising:

(a) identifying (40) a midpoint-offset beaming location at or near a geologic volume of interest;

(b) performing (42) a ray-tracing such that rays traveling from a source location corresponding to the identified midpoint-offset beaming location and rays traveling from a detector location corresponding to the identified midpoint-offset beaming location are determined, wherein the source location corresponding to the identified midpoint-offset beaming location and the detector location corresponding to the identified midpoint-offset beaming location are arranged on meshpoints of a regularly spaced recording mesh;

(c) determining (44) beam properties for beams of seismic energy propagating along each of the rays traced at operation (b);

(d) identifying (46) a midpoint dip;

(e) identifying (48) pairs of the beams of seismic energy, for which beam properties were determined at operation (b), that form paths from the source location and from the detector location such that the sum of the beam dip at the source location and the beam dip at the detector location equal the midpoint dip identified at operation (d);

(f) determining (50) offset dips for the beam pairs identified at operation (e) that make total travel times of the beam pairs identified at operation (e) stationary at points within the geologic volume of interest;

(g) determining (52), as a function of time, beam dip at the source location and beam dip at the detector location for the pairs of the beams of seismic energy identified at operation (e), wherein the determination of source beam dip and detector beam dip as a function of time is based on the midpoint dip identified at operation (d) and the offset dips determined at operation (f);

(h) obtaining (54) a trace of seismic data at or near the midpoint-offset beaming location, wherein the trace of seismic data is derived from a recording of the seismic energy propagating through the geologic volume of interest from an actual source location to an actual detector location, wherein at least one of the actual source location and the actual detector location is not on the regularly spaced recording mesh;

(i) applying (56) a time shift to the trace of seismic data obtained at operation (h), wherein the application of the time shift to the trace of seismic data shifts the trace of seismic data as if the at least one of the actual source location and the actual detector location of the trace of seismic data had been shifted to the corresponding one of a source location and a detector location arranged on stations of the regularly spaced recording mesh, thereby correcting for misalignment of the at least one of the actual source location and the actual detector location of the trace of seismic data with the regularly spaced recording mesh, and wherein the time shift is time varying, and is determined based on the beam dip at the source location as a function of time and the beam dip at the detector location as a function of time determined at operation (f); and

(j) transforming (58) the shifted trace of seismic data into a beam by a localized slant stacking operation using the midpoint dip identified at operation (d) for the midpoint-offset beaming location.


 
2. The method of claim 1, further comprising (k) repeating operations (h)-(j) for a plurality of traces of seismic data at or near the midpoint-offset beaming location.
 
3. The method of claim 2, further comprising (1) repeating operations (d)-(k) for a plurality of midpoint dips.
 
4. The method of claim 3, further comprising (m) repeating operation (a)-(1) for a plurality of midpoint-offset beaming locations.
 
5. The method of claim 1, further comprising:

subsequent to operation (h), determining positional displacements of the at least one of the actual source location and the actual detector location of the obtained trace of seismic energy,

wherein the positional displacement for the actual source location is the positional misalignment between the actual source location and the source location on a station of the regularly spaced recording mesh, and/or the positional displacement for the actual detector location is the positional misalignment between the actual detector location and the detector location on a station of the regularly spaced recording mesh, and

wherein the time shift applied to the trace of seismic data at operation (i) is determined based further on the positional displacement for the at least one of the actual source location and the actual detector location.


 
6. The method of claim 1, wherein (g) determining, as a function of time, beam dip at the source location and beam dip at the detector location for the pairs of the beams of seismic energy identified at operation (f) comprises:

(i) identifying a point within the geologic volume of interest touched by both beams from a pair of beams of seismic energy identified at operation (e);

(ii) determining an offset dip of the pair of beams of seismic energy that touch the point identified at (i) that makes the total travel time stationary for the pair of beams of seismic energy through the point within the geologic volume of interest;

(iii) storing as a set, the offset dip determined at operation (ii) and the stationary travel time of the pair of beams of seismic energy that touch the point identified at (i) for the determined offset dip; and

(iv) repeating operations (i)-(iii) for a plurality of points within the geologic volume of interest touched by both beams from a pair of beams of seismic energy identified at operation (e).


 
7. The method of claim 6, wherein (g) determining, as a function of time, beam dip at the source location and beam dip at the detector location for the pairs of the beams of seismic energy identified at operation (f) further comprises determining offset dip as a function of time from the sets of offset dip and travel time stored at operation (iv).
 
8. The method of claim 1, wherein the ray-tracing performed at operation (b) is based on a velocity model of the geologic volume of interest.
 
9. The method of claim 2, 3 or 4, wherein the transforming performed at operation (j) comprises filtering traces to which time shifts have been applied.
 
10. A computer system (10) configured to stack a plurality of traces of seismic energy through a geologic volume, the system comprising one or more processors (18) configured to carry out the method of any of the preceding claims.
 
11. A computer program which, when executed on one or more processors (18), causes the one or more processors (18) to carry out the method of any of claims 1 to 9.
 
12. A storage medium having the computer program of claim 11 stored thereon.
 


Ansprüche

1. Rechnerimplementiertes Verfahren (36) für Verarbeitung seismischer Daten, welche die Ausbreitung darstellen von seismischer Energie durch ein geologisches Volumen von einer oder mehreren Quellenpositionen, an denen sich eine oder mehrere Quellen seismischer Energien befinden, zu einer Mehrzahl Detektorpositionen, an denen sich Detektoren für seismische Energie befinden, das Verfahren umfassend:

(a) Identifizieren (40) einer Strahlposition mit Mittelpunktversatz an einem oder in der Nähe eines geologischen Volumens;

(b) Durchführen (42) einer Strahlenverfolgung, so dass Strahlen, die sich von einer Quellenposition ausbreiten, welche der Strahlposition mit Mittelpunktversatz entspricht, und Strahlen, die sich von einer Detektorposition ausbreiten, welche der identifizierten Strahlposition mit Mittelpunktversatz entspricht, bestimmt werden, worin die der identifizierten Strahlposition mit Mittelpunktversatz entsprechende Quellenposition und die der identifizierten Strahlposition mit Mittelpunktversatz entsprechende Detektorposition auf Netzpunkten eines regelmäßig beabstandeten Aufzeichnungsnetzes angeordnet sind;

(c) Bestimmen (44) von Strahleigenschaften für Strahlen seismischer Energie, die sich entlang jedem der bei Operation (b) verfolgten Strahlen ausbreiten;

(d) Identifizieren (46) einer Mittelpunktsneigung;

(e) Identifizieren (48) von Strahlenpaare seismischer Energie, für welche Strahleigenschaften in Operation (b) bestimmt wurden, die Pfade von der Quellenposition und von der Detektorposition bilden, so dass die Summe der Strahlneigung an der Quellenposition und der Strahlneigung an der Detektorposition der in Operation (b) identifizierten Mittelpunktsneigung entspricht;

(f) Bestimmen (50) von Versatzneigungen für die in Operation (e) identifizierten Strahlenpaare, welche die Gesamtlaufzeiten der in Operation (e) identifizierten Strahlenpaare an Punkten innerhalb des geologischen Volumens von Interesse stationär machen;

(g) Bestimmen (52), als eine Funktion der Zeit, der Strahlneigung an der Quellenposition und der Strahlneigung an der Detektorposition für die in Operation (e) identifizierten Strahlenpaare seismischer Energie, worin die Bestimmung der Quellenstrahlneigung und Detektorstrahlneigung als eine Funktion der Zeit auf der in Operation (d) identifizierten Mittelpunktsneigung und auf den in Operation (f) bestimmten Versatzneigungen basiert;

(h) Erhalten (54) einer seismischen Datenspur an der oder in der Nähe der Strahlposition mit Mittelpunktversatz, worin die seismische Datenspur abgeleitet ist von einer Aufzeichnung der seismischen Energie, die sich durch das geologische Volumen von Interesse von einer tatsächlichen Quellenposition zu einer tatsächlichen Detektorposition ausbreitet, worin mindestens eine der tatsächlichen Quellenposition und der tatsächlichen Detektorposition nicht auf dem regelmäßig beabstandeten Aufzeichnungsnetz ist;

(i) Anwenden (56) einer Zeitverschiebung auf die in Operation (h) erhaltene seismische Datenspur, worin die Anwendung der Zeitverschiebung auf die seismische Datenspur die seismische Datenspur so verschiebt, als ob die mindestens eine der tatsächlichen Quellenposition und der tatsächlichen Detektorposition der seismischen Datenspur zur entsprechenden einen aus einer Quellenposition und einer Detektorposition verschoben worden wäre, welche auf Stationen des regelmäßig beabstandeten Aufzeichnungsnetzes angeordnet sind, wodurch eine Fehlausrichtung der mindestens einen aus der tatsächlichen Quellenposition und der tatsächlichen Detektorposition der seismischen Datenspur mit dem regelmäßig beabstandeten Aufzeichnungsnetz korrigiert wird, und worin die Zeitverschiebung zeitvariabel ist, und bestimmt wird auf Grundlage der Strahlneigung an der Quellenposition als Funktion der Zeit und der in Operation (f) bestimmten Strahlneigung an der Detektorposition als Funktion der Zeit; und

(j) Umwandeln (58) der verschobenen seimischen Datenspur in einen Strahl durch eine lokalisierte Schrägstapelungsoperation, unter Verwendung der in Operation (d) identifizierten Mittelpunktsneigung für die Strahlposition mit Mittelpunktversatz.


 
2. Verfahren gemäß Anspruch 1, ferner umfassend (k) Wiederholen der Operationen (h) bis (j) für eine Mehrzahl seismischer Datenspuren an der oder in der Nähe der Strahlposition mit Mittelpunktversatz.
 
3. Verfahren gemäß Anspruch 2, ferner umfassend (I) Wiederholen der Operationen (d) bis (k) für eine Mehrzahl Mittelpunktsneigungen.
 
4. Verfahren gemäß Anspruch 3, ferner umfassend (m) Wiederholen der Operationen (a) bis (I) für eine Mehrzahl Strahlpositionen mit Mittelpunktversatz.
 
5. Verfahren gemäß Anspruch 1, ferner umfassend:

anschließend an Operation (h), Bestimmen von Positionsverschiebungen der mindestens einen der tatsächlichen Quellenpositionen und der tatsächlichen Detektorposition der erhaltenen seismischen Energiespur,

worin die Positionsverschiebung für die tatsächliche Quellenposition die Positionsfehlausrichtung zwischen der tatsächlichen Quellenposition und der Quellenposition auf einer Station des regelmäßig beabstandeten Aufzeichnungsnetzes ist, und/oder die Positionsverschiebung für die tatsächliche Detektorposition die Positionsfehlsausrichtung zwischen der tatsächlichen Detektorposition und der Detektorposition auf einer Station des regelmäßig beabstandeten Aufzeichnungsnetz ist, und

worin die Zeitverschiebung, die auf die seismische Datenspur in Operation (i) angewendet wird, auf Grundlage ferner der Positionsverschiebung für die mindestens eine der tatsächlichen Quellenposition und der tatsächlichen Detektoposition bestimmt wird.


 
6. Verfahren gemäß Anspruch 1, worin (g) Bestimmen, als Funktion der Zeit, der Strahlneigung an der Quellenposition und Strahlneigung an der Detektorposition für die in Operation (f) identifizierten Paare seismischer Energiestrahlen umfasst:

(i) Identifizieren eines Punkts innerhalb des geologischen Volumens von Interesse, der von beiden Strahlen eines in Operation (e) identifizierten Paars seismischer Energiestrahlen berührt wird;

(ii) Bestimmen einer Versatzneigung des Paars seismischer Energiestrahlen, welches den in (i) identifizierten Punkt berührt, wodurch die Gesamtlaufzeit für das Paar seismischer Energiestrahlen durch den Punkt innerhalb des geologischen Volumens von Interesse stationär wird;

(iii) Speichern als einen Satz, der in Operation (ii) ermittelten Versatzneigung und der stationären Laufzeit des Paars seismischer Energiestrahlen, welches den in (i) identifizierten Punkt für die bestimmte Versatzneigung berühren; und

(iv) Wiederholen der Operationen (i) bis (iii) für eine Mehrzahl Punkte innerhalb des geologischen Volumens von Interesse, die von beiden Strahlen eines in Operation (e) identifizierten Paars seismischer Energiestrahlen berührt werden.


 
7. Verfahren gemäß Anspruch 6, worin (g) Bestimmen, als Funktion der Zeit, von Strahlneigung an der Quellenposition und von Strahlneigung an der Detektorposition für die in Operation (f) identifizierten seismischen Energiestrahlenpaare ferner umfasst Bestimmen von Versatzneigung als eine Funktion der Zeit aus den Sätzen der Versatzneigung und der in Operation (iv) gespeicherten Laufzeit.
 
8. Verfahren gemäß Anspruch 1, worin die in Operation (b) durchgeführte Strahlenverfolgung auf einem Geschwindigkeitsmodell des geologischen Volumens von Interesse basiert.
 
9. Verfahren gemäß Anspruch 2, 3 oder 4, worin das in Operation (j) durchgeführte Umwandeln Filtern von Spuren umfasst, auf die Zeitverschiebungen angewendet worden sind.
 
10. Rechnersystem (10), das konfiguriert ist eine Mehrzahl seismische Energiespuren durch ein geologisches Volumen von Interesse zu stapeln, wobei das System einen oder mehrere Prozessoren (18) umfasst, die konfiguriert sind, das Verfahren aus irgendeinem der vorhergehenden Ansprüche auszuführen.
 
11. Rechnerprogramm, das, wenn es auf einem oder mehreren Prozessoren (18) ausgeführt wird, den einen oder die mehreren Prozessoren (18) dazu veranlasst, das Verfahren aus irgendeinem der Ansprüche 1 bis 9 auszuführen.
 
12. Speichermedium, auf dem das Rechnerprogramm aus Anspruch 11 gespeichert ist.
 


Revendications

1. Un procédé mis en œuvre par ordinateur (36) pour traiter des données sismiques représentant la propagation d'énergie sismique à travers un volume géologique à partir d'un ou de plusieurs endroits de source, auxquels une ou plusieurs sources d'énergie sismique sont situées, vers une pluralité d'endroits de détecteur, auxquels les détecteurs d'énergie sismique sont situés, le procédé comprenant:

(a) identifier (40) un endroit de faisceau à décalage de point médian près de ou à proximité d'un volume géologique d'intérêt;

(b) effectuer (42) un traçage de rayons de telle sorte que les rayons se déplaçant à partir d'un endroit de source correspondant vers l'endroit de faisceau à décalage de point médian identifié et les rayons se déplaçant à partir d'un endroit de détecteur correspondant vers l'endroit de faisceau à décalage de point médian identifié sont déterminés, dans lequel l'endroit de source correspondant à l'endroit de faisceau à décalage de point médian identifié et l'endroit de détecteur correspondant à l'endroit de faisceau à décalage de point médian identifié sont disposés sur des points de maillage d'un maillage d'enregistrement régulièrement espacé;

(c) déterminer (44) les propriétés de faisceau pour les faisceaux d'énergie sismique se propageant le long de chacun des rayons tracés à l'opération (b);

(d) identifier (46) une inclinaison de point médian;

(e) identifier (48) des paires de faisceaux d'énergie sismique, dont les propriétés de faisceau ont été déterminées à l'opération (b), qui forment des trajectoires à partir de l'endroit de source et de l'endroit de détecteur, de sorte que la somme de l'inclinaison de faisceau à l'endroit de source et de l'inclinaison de faisceau à l'endroit de détecteur est égale à l'inclinaison de point médian identifiée à l'opération (d);

(f) déterminer (50) les inclinaisons de décalage pour les paires de faisceaux identifiées à l'opération (e) qui rendent les temps de parcours totales des paires de faisceaux identifiées à l'opération (e) stationnaires aux points situés dans le volume géologique d'intérêt;

(g) déterminer (52), en fonction du temps, l'inclinaison de faisceau à l'endroit de source et l'inclinaison de faisceau à l'endroit de détecteur pour les paires de faisceaux d'énergie sismique identifiées à l'opération (e), dans lequel la détermination d'inclinaison de faisceau de source et l'inclinaison de faisceau de détecteur en fonction du temps est basée sur l'inclinaison de point médian identifiée à l'opération (d) et les inclinaisons de décalage déterminées à l'opération (f);

(h) obtenir (54) une trace de données sismiques près de ou à proximité de l'endroit de faisceau à décalage de point médian, dans lequel la trace de données sismiques est dérivée d'un enregistrement de l'énergie sismique se propageant à travers le volume géologique d'intérêt d'un endroit de source réel à un endroit de détecteur réel, dans lequel au moins un parmi l'endroit de source réel et l'endroit de détecteur réel n'est pas sur le maillage d'enregistrement régulièrement espacé;

(i) appliquer (56) un décalage temporel à la trace de données sismiques obtenue à l'opération (h), dans lequel l'application du décalage temporel à la trace de données sismiques décale la trace de données sismiques comme si l'au moins un parmi l'endroit de source réel et l'endroit de détecteur réel de la trace de données sismiques avait été décalé vers le correspondant d'un endroit de source et d'un endroit de détecteur disposés sur des stations du maillage d'enregistrement régulièrement espacé, corrigeant ainsi le désalignement de l'au moins un parmi l'endroit de source réel et l'endroit de détecteur réel de la trace de données sismiques avec le maillage d'enregistrement régulièrement espacé, et dans lequel le décalage temporel est variable en temps, et est déterminé basé sur l'inclinaison de faisceau à l'endroit de source en fonction du temps et d'inclinaison de faisceau à l'endroit de détecteur en fonction du temps déterminés à l'opération (f); et

(j) transformer (58) la trace de données sismiques décalée en un faisceau par une opération d'empilage inclinée localisée en utilisant l'inclinaison de point médian identifiée à l'opération (d) pour l'endroit de faisceau à décalage de point médian.


 
2. Le procédé selon la revendication 1, comprenant en outre (k) la répétition des opérations (h) à (j) pour une pluralité de traces de données sismiques près de ou à proximité de l'endroit de faisceau à décalage de point médian.
 
3. Le procédé selon la revendication 2, comprenant en outre (I) la répétition des opérations (d) à (k) pour une pluralité d'inclinaisons de point médian.
 
4. Le procédé selon la revendication 3, comprenant en outre (m) la répétition des opérations (a) à (I) pour une pluralité d'endroits de faisceau à décalage de point médian.
 
5. Le procédé selon la revendication 1, comprenant en outre:

après l'opération (h), déterminer des déplacements de position de l'au moins un parmi l'endroit de source réels et l'endroit de détecteur réel de la trace d'énergie sismique obtenue,

dans lequel le déplacement de position pour l'endroit de source réel est le désalignement de position entre l'endroit de source réel et l'endroit de source sur une station du maillage d'enregistrement régulièrement espacé, et/ou le déplacement de position pour l'endroit de détecteur réel est le désalignement de position entre l'endroit de détecteur réel et l'endroit de détecteur sur une station du maillage d'enregistrement régulièrement espacé, et

dans lequel le décalage temporel appliqué à la trace de données sismiques à l'opération (i) est déterminé en outre à la base de déplacement de position pour l'au moins un de l'endroit de source réel et de l'endroit de détecteur réel.


 
6. Le procédé selon la revendication 1, dans lequel (g) la détermination, en fonction du temps, d'inclinaison de faisceau à l'endroit de source et d'inclinaison de faisceau à l'endroit de détecteur pour les paires de faisceaux d'énergie sismique identifiées à l'opération (f) comprend:

(i) identifier un point dans le volume géologique d'intérêt touché par les deux faisceaux d'une paire de faisceaux d'énergie sismique identifiée à l'opération (e);

(ii) déterminer une inclinaison de décalage de la paire de faisceaux d'énergie sismique qui touche le point identifié en (i) qui rend le temps de parcours total stationnaire pour la paire de faisceaux d'énergie sismique à travers le point dans le volume géologique d'intérêt;

(iii) stocker en tant que jeu, l'inclinaison de décalage déterminée à l'opération (ii) et le temps de parcours stationnaire de la paire de faisceaux d'énergie sismique qui touche le point identifié en (i) pour l'inclinaison de décalage déterminée; et

(iv) répéter les opérations (i) à (iii) pour une pluralité de points dans le volume géologique d'intérêt touchés par les deux faisceaux d'une paire de faisceaux d'énergie sismique identifiée à l'opération (e).


 
7. Le procédé selon la revendication 6, dans lequel (g) la détermination, en fonction du temps, de l'inclinaison de faisceau à l'endroit de source et de l'inclinaison de faisceau à l'endroit de détecteur pour les paires de faisceaux d'énergie sismique identifiées à l'opération (f) comprend en outre la détermination d'inclinaison de décalage en fonction du temps à partir des ensembles d'inclinaison de décalage et de temps de parcours stockés à l'opération (iv).
 
8. Le procédé selon la revendication 1, dans lequel le traçage des rayons effectué à l'opération (b) est basé sur un modèle de vélocité du volume géologique d'intérêt.
 
9. Le procédé selon la revendication 2, 3 ou 4, dans lequel la transformation effectuée à l'opération (j) comprend le filtrage des traces auxquelles des décalages temporels ont été appliqués.
 
10. Un système informatique (10) configuré pour empiler une pluralité de traces d'énergie sismique à travers un volume géologique, le système comprenant un ou plusieurs processeurs (18) configurés pour exécuter le procédé selon l'une des revendications précédentes.
 
11. Un logiciel qui, lorsqu'il est exécuté sur un ou plusieurs processeurs (18), amène l'un ou les plusieurs processeurs (18) à effectuer le procédé selon l'une des revendications 1 à 9.
 
12. Un support de stockage sur lequel est stocké le logiciel selon la revendication 11.
 




Drawing




















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description