(19)
(11)EP 2 499 746 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.05.2018 Bulletin 2018/19

(21)Application number: 10773986.4

(22)Date of filing:  30.09.2010
(51)International Patent Classification (IPC): 
H04B 5/00(2006.01)
G06K 17/00(2006.01)
(86)International application number:
PCT/IB2010/054412
(87)International publication number:
WO 2011/058455 (19.05.2011 Gazette  2011/20)

(54)

THE METHOD AND SOLUTION OF DATA TRANSMISSION FROM THE TRANSPONDER TO THE READER, ESPECIALLY IN PAYMENT SOLUTIONS WITH A MOBILE COMMUNICATION DEVICE

VERFAHREN UND LÖSUNG ZUR DATENÜEBRTRAGUNG VON EINEM TRANSPONDER ZU EINEM LESEGERÄT, IM BESONDEREN BEI ZAHLUNGSLÖSUNGEN MIT EINEM MOBILEN KOMMUNIKATIONSGERÄT

PROCÉDÉ ET SOLUTION DE TRANSMISSION DE DONNÉES ENTRE UN TRANSPONDEUR ET UN LECTEUR, SPÉCIALEMENT DANS DES SOLUTIONS DE PAIEMENT AVEC UN DISPOSITIF DE COMMUNICATION MOBILE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR
Designated Extension States:
BA ME

(30)Priority: 14.11.2009 SK 500512009

(43)Date of publication of application:
19.09.2012 Bulletin 2012/38

(73)Proprietor: SMK Corporation
Tokyo 142-8511 (JP)

(72)Inventor:
  • FLOREK, Miroslav
    821 01 Bratislava (SK)

(74)Representative: Porubcan, Róbert et al
Puskinova 19
900 28 Ivanka pri Dunaji
900 28 Ivanka pri Dunaji (SK)


(56)References cited: : 
GB-A- 2 444 179
  
  • ISO/IEC JTC1/SC17/WG8: "ISO/IEC 14443-2 - Identification cards - Contactless integrated circuit(s) cards - Proximity cards Part 2: Radio frequency power and signal interface"[Online] 26 March 1999 (1999-03-26), pages I-16, XP002623214 ISO/IEC 14443-2 INTERNATIONAL STANDARD Retrieved from the Internet: URL:http://www.waazaa.org/download/fcd-144 43-2.pdf> [retrieved on 2011-02-18] cited in the application
  • ISO/IEC JTC 1/SC 17/WG 8: "Indentification cards - Test methods - Part 6: proximity cards"[Online] 10 March 2000 (2000-03-10), pages I-22, XP002623215 ISO/IEC FCD 10373-6 INTERNATIONAL STANDARD Retrieved from the Internet: URL:http://www.waazaa.org/download/fcd-103 73-6.pdf> [retrieved on 2011-02-18]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Technology



[0001] The invention refers to the contactless radio-frequency data transmission between a transmitter and a receiver when there is a weak transformer connection in operational volume. In cashless payment solutions, the transmitter and the receiver are, above all, in the form of a transponder and reader. The invention also describes the integration for the realization of data transmission with lowered level of noise, which especially concerns the readers with RFID and/or NFC platform.

Present technology



[0002] It is common that during data transmission amplitude or phase modulation of the transmitted information is used by using a carrier and a subcarrier signal. The standard for contactless communication ISO 14443 characterizes the conditions of the A or B modulation with carrier signal having the 13.56 MHz frequency. The data transmitted are modulated into the subcarrier frequency in the transmitter and the subcarrier frequency is combined with the basic, carrier signal. The result will be a frequency superposition with transmitted data, that are detected in the receiver by separation of the carrier signal from the received spectrum. For short-distance data transmission, a transformer connection between the antenna systems of the receiver and the transmitter is used. When using a transformer connection, the frequency signal does not have to be actively transmitted; it is sufficient if the induction circuit of the transponder antenna is short-circuited on a needed frequency. These changes on the transponder's side can be measured on the receiver's antenna output. This configuration is common in contactless communication between cards and the readers of the cards.

[0003] During transmission from the shielded or more remote transponder, the transformer connection is weak, with the coefficient being k=0,2 - 0,001, which considerably deteriorates the transmission characteristics of the communication channel. Nevertheless, the transponder's antenna system must be capable of transmitting the frequency spectrum which includes the carrier and subcarrier frequency. This situation is shown on the figure 1. In specific conditions, e.g. in case the transponder is shielded or interfered with, it is necessary to improve the transmission characteristics of the system, to lower noise and to improve the reception of the signal being received, all without requiring increase in the radiated power.

[0004] The existing technical solution enables a reliable data transmission from the contactless cards, e.g. from the payment cards in case the card is within the operating volume of the reader and in case the card is not shielded or interfered with. Along with the development of new functions of the mobile communication devices, there is a tendency to place the payment card into the mobile communication device, which deteriorates the transmission characteristics of the pair transponder-reader; the deterioration is up to the point when transmission failure takes place in common non-laboratory conditions. Also, in case of other transmission systems, it is required to reduce noise and improve the possibilities of antenna system's tuning.

[0005] The technical solutions as in patent files WO 2004/107595A1, EP 2101278A2, US 5 955 950, WO 2005/104022A1, EP 1403963 B1, CN 201075228 describe connections enabling better detection of a received signal or possibilities of antenna tuning; however these always require changes on the side of the receiver and it is not possible to expect dramatic improvement of the transmission in weak transformer connections. Such a technical solution that will improve transmission characteristics of the system and that would not require any changes in the hardware and software of already used readers is required.

[0006] The technical problem can be in general solved even by a new, purpose-designed dimensation of the transmitter- receiver pair. However, in case when in business practice there are receivers e.g. in the form of the POS terminal readers that are massively used, it is practically impossible to put new readers through widely and quickly. Above all, this problem arises during introduction of new transmission channels based on contactless communication elements located on the removable memory card in the mobile phone according to Logomotion's other solutions. The common solution that is on hand to a average technician is not usable for this reason.

The subject matter of the invention



[0007] The invention is defined by the appended independent claims. Dependent claims constitute embodiments of the invention.

[0008] The deficiencies mentioned are to a large extent eliminated by the method in which the data are transmitted from the transmitter into the receiver while using transformer connection of the transmitter's and receiver's antenna inductions. In this situation the receiver transmits a carrier signal, while the receiver analyzes the signal it received from the output of its antenna as a combination of the carrier frequency and the modulated subcarrier frequency containing data as is described by this invention. The subject matter of this invention is in the fact that the transmitter transmits a signal with a frequency that is different from the carrier frequency that is transmitted by the receiver. This difference in frequency is not caused by an inaccuracy, but is intentional and significant. The difference in frequency is in the extent of the subcarrier frequency, to the usage of which the receiver is preset. The transmittance of the carrier signal from the receiver can also have as its task to supply the receiver with energy. In common solutions, the reception of the carrier signal in the transmitter starts the run of the applications in the transmitter. In this sense it is necessary to understand the way the elements are named - the transmitter is an element from which data are sent in a monitored phase as described by this invention, though from physical point of view the transmitter can also be a receiver of the power supply signal. The subject matter of protection of this invention is generally only one data flow course and for this reason it is possible to name the elements - the transmitter and the receiver - even though these functions can interchange in case of both way transmission.

[0009] The fact that the receiver analyzes the signal received on the output of its antenna as a signal in the form of a connection of a carrier frequency and a modulated subcarrier frequency determines that the method described here concerns situations, in which the receiver processes the modulated signal in the way used until now. However in reality while doing it the transmitter does not transmit the subcarrier frequency.

[0010] The change in the transmitter's transmitting frequency, as opposed to the receiver's carrier frequency, is chosen in such a way, so there would not even be necessary to change the evaluation method of the received signal on the side of the receiver nor it would be necessary to change the connection of the receiver. The change in the transmitting frequency can be preset to both sides of the carrier frequency value, which means that the transmitting frequency can be lower or higher than the value of the receiver's carrier frequency.

[0011] Due to the small mutual distance, a transformer connection is created in the antenna system that is formed by the receiver's antenna and the transmitter's antenna. During data transmission, the receiver sends its carrier frequency to the antenna, the transmitter sends a modulated signal with a different frequency to its antenna and then the signals of different frequencies are combined in the mutual antenna system.

[0012] If the frequency carrier signal frr in frequency domain) has an amplitude R and the second frequency ftt) has the amplitude T and phase ϕ while fr /= ft and ωr = ωt + Δω, than the basic equation v(t)= R.ejωr.t + T.ejωr.t+ϕ can be modified to



[0013] The output from the receiver's antenna is analyzed in the receiver. This output on the receiver's antenna has the same character as if the transponder transmitted on the carrier frequency with a modulation of subcarrier signal while using load modulation. Then, from the result of the frequency combining, the signal carrier is transponded in the receiver and the result obtained corresponds to the modulated subcarrier signal, even though the transmitter does not physically use the subcarrier signal. The data transmitted can be received from this signal through modulation, even when in reality they were modulated directly into the transmission frequency. The data procession method is not changed by this kind of configuration for the receiver, which is an important factor, since it enables using existing receivers with new transmitters. The reverse data flow direction can be the same as it was until now.

[0014] In case the receiver, as described by this invention, transmits its signal outside the mutual induction it has with the receiver's antenna, the transmitted signal will not correspond to the usage of subcarrier frequency, since the transmitter does not transmit it and the receiver that would expect a standard signal structure would not be able to evaluate this kind of signal. Only when mutual induction is created, the physical effect of merging different frequencies occurs. The difference between these frequencies is deliberately set to the extent of expected subcarrier frequency. The signal received in such a way is processed by the receiver in the same way as it is done in up until now existing solutions. The significant contribution of this invention is, that it does not require changes on the side of the existing receiver. The receiver will be located e.g. in the mobile phone, specifically on the card of some of SD card's format. During realization of cashless payment, the mobile phone with the transmitter on the memory card is approached to the receiver, which is within the POS terminal's reader. The signal is generated in the card and is modulated with the frequency that is different from the frequency generated by the receiver as a carrier frequency. The signal from the receiver is combined with the signal from the receiver and forms a signal in the form of combined signal, which appears in the receiver to be a signal that is in accordance with existing structure. The receiver, reader then processes a merged, combined signal as is common in existing processes.

[0015] It is suitable if the transmitted data are modulated directly by a change in phase of the transponder's frequency ϕ=0°, not ϕ=180°. It is sufficient if the phase of the frequency transmitted is changed during modulation once per basic time unit - etu. In this way a smaller number of phase changes is sufficient, a situation which lowers the requirements on the modulation management on the transponder side and which also lowers noise.

[0016] The method described is capable of operation in transformer connection between the transmitter and the receiver, the advantages of this method primarily appear in weak transformer connection with the transformer connection coefficient k = 0,2 - 0,001.

[0017] From the point of view of using existing receivers, it is suitable if the carrier signal fr has the 13,56MHz±7kHz frequency. The difference between the signal carrier frequency and the transmitter's frequency is formed entirely by the carrier frequency, preferably by 1/16 of the carrier frequency, which corresponds to the 847kHz. This relationship between the frequencies is advantageous from the hardware point of view, where it is possible to use existing electronic elements for division of frequencies and is also advantageous from the point of view of conformity with existing standards. The frequency generated by the transmitter ft will be of the 13,56MHz + 847kHz = 14,4075MHz value, with the same tolerance of ±7kHz as well.

[0018] The signal detected on the receiver's side corresponds to the situation during common load modulation of the carrier frequency. However, in present solutions and methods, the antenna's load would have to be changed every half-wave of the subcarrier signal - which in case of carrier frequency being 13,56MHz, would be approximately every 0,6 µs. In the solution and method according to this invention it is sufficient if the change is done only once per 1 etu, so approximately it would be every 9,3 µs. Smaller bandwidth of changes generates less noise with the value NoisePower = 10.log(16)=12dB.

[0019] The data transmission method according to this invention enables to tune the transmitter's antenna to a narrow transmission frequency, whereas it is not necessary to consider the antenna's transmission characteristics for subcarrier frequency. In reality the transmitter does not use subcarrier frequency; the subcarrier frequency is present only during the frequency interference. The receiver expects reception of the subcarrier frequency; in configurations according to ISO 14443, the absence of the subcarrier signal on the receiver's antenna output would prevent any kind of communication from taking place.

[0020] In preferable solution, the transmitter will be a transponder and the receiver will be a reader e.g. on the RFID and/or NFC platform. The method described will find wide application during transmissions in which the transmitter is located on or in the mobile communication device, preferably on the card, which is (in a removable manner) placed into the mobile communication device's slot. In that being the case it is not practically possible to increase the transformer connection coefficient and the improvement of transmission characteristics is the main advantage of the method described in this invention. The transmitter antenna is tuned to a narrow frequency characteristic, which corresponds to the transmitting frequency. In case of reverse data course a different frequency is used, which does not create any transmission difficulties on the transmitter's/transponder's side, since the reader transmit with a considerably higher energy and even with a higher frequency spectrum.

[0021] It is suitable to use the described method of data transmission in cashless payment solutions, especially those over the mobile communication device. The essential advantage is the fact that the method described does not require any changes in the processes or hardware on the receiver's side i.e. the reader side. The reader can be for example a communication element of the POS terminal. During reverse data flow from the receiver to the transmitter, the transmission process is the same as in existing and commonly used methods. However, in case of this kind of data flow, there is no problem with transmission characteristics of the system, since the reader can transmit with a considerably higher energy.

[0022] In order to implement the method according to this invention, the solution in the transponder for data transmission (while using the transformer connection of the receiver's and transmitter's antenna inductions) is also subject to required protection. This solution contains antenna, modulation and demodulation element and its subject matter lays in the fact that it also includes an electromagnetic wave generator with a frequency that is different from the receiver's frequency. The usage of the electromagnetic wave generator in the solution is not common in a transformer connection of the receiver's and transmitter's antenna inductions, since up till now a load modulation on the side of the transmitter was used. In our solution the generator will be the oscillator of electromagnetic waves and the transmission data are connected to the oscillator's input.

[0023] Since the transmitter in the form of a transponder should be able to operate even during the reverse data flow, the transmitter's demodulation element will be connected to the turning of the induction heading towards sensor resistor. To eliminate voltage peaks at the entrance into the demodulation element, the demodulation element will be connected via inductor. The turning from the scanned induction is set to the level of the receiver's frequency signal carrier. The power supply of the transmitter's circuit can be ensured from the received electromagnetic field, in which case the transmitter can be considered to be a passive element; however the power supply can be secured also by its own power source. In case of implementation of the transmitter into the memory card in the mobile phone according to this solution, the transmitter can be supplied with energy over the card's interface.

[0024] The solution and method as described in this invention facilitates the signal modulation on the side of the transponder, lowers the noise and enables to tune the transponder's antenna narrowly and effectively. These effects improve transmission characteristics even when the transformer connection is weak, which creates the prerequisite for quality data transmission from the card that is located in the mobile phone slot. The solution and method described can be used even in other transmission solutions, e.g. in galvanic separated data transmission from the sensors, during data transmission from moving, oscillating elements and similar. The solution and method according to this invention enables to optimize transmission systems in data transmission from the sensors used in medicine, car technique and similar. The frequency values mentioned here are suitable settings and corresponding to existing norms and standards, but it is possible to apply the described way of frequency combination even on completely different frequency values, since the creation of the subcarrier signal in frequency combiner is based on generally valid manifestations of wave.

Figures overview



[0025] The invention is described in more detail in the figures 1 to 6, where in the figure 1, there is the FFT spectrum during transmission of carrier and subcarrier frequency as in today's existing description. The value of carrier frequency is 13.56 MHZ and the subcarrier is + 847 kHz. The frequency spectrum curve that is marked in full line corresponds to the today's existing transmission system that is transmitting subcarrier frequency. The dotted line presents the course in case the antenna is tuned to a narrowed frequency as in current solutions, which tune the antenna to a narrow peak. The level of the carrier frequency signal is increased, but the subcarrier signal in the circle is "cut down".

[0026] On the figure 2. there is a block scheme showing the connection between the reader and the transponder, in which the receiver is the POS terminal reader and the transmitter, in the form of a NFC transponder, is implemented in the mobile phone's memory card. The location of the receiver's scheme on the left side and the transmitter's scheme on the right side in the lower part of the figure corresponds to the left and right location of the POS terminal and the mobile phone. The placement of the receiver's scheme on the left side and the transmitter's scheme on the right side in the lower part of the figure corresponds to the left and right location of the POS terminal and the mobile phone. The intentional difference in frequencies of the transmitter and the receiver is emphasized by a different index next to the oscillator's mark. In the transmitter's connection there is depicted even the preferable usage of the inductor and scanner resistance.

[0027] On the figure 3 there is the system transmission in the data follow direction from the POS terminal's reader towards the transponder. The full line present the level of the signal depending on the frequency. The dotted line is a phase course. On the figure 4 there is the system transmission in the data flow direction from the transponder towards the POS terminal reader, in which we can see that the data transmission is approximately 30 dB weaker in comparison to the reverse flow direction. The interrupted line is the course of the phase.

[0028] On the figure 5 there is analogue signal course on the receiver's antenna, which was created by frequency combination with the modulated signal. On the figure 6 there is the course of the subcarrier signal with the demodulated data.

Realization example



[0029] In this example there is a removable memory card 6 placed in the mobile phone 10; the memory card 6 also contains the payment card function. For the communication between this payment card and a POS terminal 9, a data transmission method (that uses two different frequencies) is used. The POS terminal 9 contains a contactless payment card reader 8. The card has to approach the Operating volume of the reader 8 in order for the communication connection to be established. The placement of the payment card 6 containing a communication element into the mobile phone's 10 slot deteriorates the possibility of full approach of the communication element on the payment card to the center of the reader's 8 operational volume. At the same time, the mobile phone's 10 slot is primarily designed for the insertion of a common memory card 6 and the communication element presents an undesirable shielding, part of the slot's body is made of metallic shapes shell. The communication element contains the transmitter 2 according to this invention and in this example it is placed directly on the micro SD card. The card's 6 format does not limit the extent of this invention, in the future any format whatsoever could be used. The continuing miniaturization of the memory cards 6 and of the corresponding slots deteriorates the possibilities of effective placement of the communication element on the card 6; however the solution described here solves the problem. The communication element uses the NFC platform. In real environment and in case of the mobile phone 10 is handled in a normal way by the user the transformer connection coefficient is k = 0,2 - 0,001.

[0030] The contents and the structure of the transmitted data can be different, in this example the data necessary during communication and authorization of payment processes will be dealt with. The owner of a mobile phone 10 equips his device with a memory card 6 that is equipped with a transmitter 2. By doing this, he extends the functionality of his mobile phone 10. In preferable configuration, there will also be a payment card (corresponding to a different invention of this patent's applicant) on the memory card 6. It is important, that the connection of a mobile phone 10 with a memory card 6 will appear to the POS terminal 9 and its payment card reader 8 as a standard contactless card. So the structure of transmitted data will be in the accordance with the standards in payments. The advantage of the solution mentioned is a comfortable usability of the mobile phone's 10 user's interface.

[0031] The transmitter 2 contains a generator 4 of the electromagnetic waves with the frequency of 14,4075MHz ±7MHz. This frequency is for 847kHz higher than the receiver's 1 frequency. The receiver's frequency 1 is in the standard 13,56MHz ±7MHz. The difference between the frequencies is 1/16 of the carrier frequency of the receiver 1. It is important, if the generator 4 is connected and active to energize the antenna 3 when data are transmitted over transformer connection, which was not used up till now. In case generator 4 existed in the transmitter 2 in already existing solutions, the generator 4 was not designed for active activity in the transformer connection, since it was not necessary due to the same transmitting frequency. The generator 4 is connected to the resonant circuit 13, the output of which is connected to the antenna 3.

[0032] The data from the transmitter 2 on the memory card are transmitted into the receiver 1 in the POS terminal reader 8 through the transformer connection of the transmitter's 2 and receiver's 1 antenna inductions M. The data are modulated into the signal on the transmitter's 2 side and the receiver 1 transmits the carrier signal. The distance of the transmitter 2 from the receiver 1 will be in cm, basically the mobile phone's 10 body will be touching the reader 8, the transmission will be contactless in physical sense. The transmitter 2 can even move in the operational volume, while his speed would be lower than 1 m/s.

[0033] The transmitter 2 sends the signal with the frequency 14,4075MHz ±7MHz, the receiver's 1 carrier frequency is 13,56MHz ±7kHz. The difference between the frequencies has a value that corresponds to the size of the subcarrier frequency, which is derived as a 1/16 of the carrier frequency according to the ISO 14443. The signals of different frequencies are combined in the receiver's 1 and transmitter's 2 antenna system M and in the receiver 1, on the antenna's 7 output, the signal appears in the form of a connection of a carrier frequency and modulated subcarrier frequency with data. The carrier signal is separated from the result of the signal combination in the receiver 1. The result of this separation is a subcarrier signal, even though the transmitter 2 has never transmitted it physically. From the subcarrier signal the transmitted data are demodulated. The demodulation element 11, resonance circuit 13 and receiver's generator 1 have the same configuration and function as in today's existing technical solutions.

[0034] In this example, the basic time unit etu corresponds to the one bit time interval, so to the time necessary to transmit one data unit. In the data flow direction from the transmitter 2 into the receiver 1, the etu is defined as 1etu=8/ft, where one ft is a frequency of the modulated signal that was transmitted by the transmitter 2. The basic transmission velocity is 106 kbits/s. During modulation of the signal from the transmitter 2, it is sufficient, if the phase is changed once per 1 etu (approx. once per 9,3 µs), so 16 times less frequently in comparison to the existing load modulation. Smaller broadband generates 12dB less noise. The data transmitted are modulated directly by a change of the transmitter's 2 frequency signal phase, where ϕ=0° or ϕ=180°. This modulated signal could also be called the receiver's 2 carrier signal, since however the transmitter 2 does not create the subcarrier frequency, then this frequency is only called the transmitter's 2 frequency signal.

[0035] The receiver's 2 antenna 3 is narrowly tuned to the transmitting frequency of 14,4075 MHz. The narrow and high course of the FFT curve as can be seen on the figure 3, shows the fact, that the antenna is tuned (without considering the radiation characteristics of the antenna 3) for the transmission of the subcarrier frequencies 847 kHz. In case this antenna should transmit even the subcarrier frequency, the radiation characteristics would we insufficient for a reliable transmission. In the solution according to this invention it is important that the signal radiation with the transmitted data is realized exactly on the 14,4075 MHz frequency, which is the peak of the FFT curve.

[0036] In our case it is necessary to ensure even reverse data flow direction from the POS terminal's 9 reader 8 into the memory card 6 in the mobile phone 10. The transmitter 2 encompasses the demodulation element 5, which is connected to the antenna's turning 3 toward s the sensor resistor 16 Rt, preferably over inductor 15 Lt3. The usage of the inductor 15 decreases the voltage peaks on the entrance to the demodulation element 5. Thanks to the turning and the inductor 15 Lt, the demodulation element 5 can be dimensioned to a smaller voltage. In this data flow direction, the etu is defined as 1 etu = 128/fr, where fr is the carrier frequency of the receiver 1.

[0037] The mentioned way of transmission with creation of subcarrier part using wave interface only in the interspace between the transmitter 2 and the receiver 1 can be combined even with the usage of frequency convertor, which shifts the standardized frequency on the transmitter's 2 interface to the chosen zone with better transmission characteristics, e.g. in GHz. By this configuration, the transmitter 2 that is located e.g. on the removable memory card of the mobile phone, can be tuned to a different wave band, while the principle of transformer connection with the interference creation of the subcarrier part of the transmission can be used further on to lower the noise. The frequency convertor can be located on the payment cards' NFC reader 8 in the form of a sticker. The frequency convertor can have the antenna that is on the POS terminal's 9 side tuned to the frequency in the range from 13,00 to 14,00 MHz. The frequency convertor can be supplied with energy from the payment card reader's electromagnetic radiance so from the outside it will appear as energetically passive. Since the frequency convertor does not shield the entire range of the payment card reader's radiance, it can continue to be used for standard data transmission on the basic frequency and it is also possible to use data transmission over frequency convertor in one direction and without it in the other direction, e.g. using the way of transmission according to this description. In the direction of data transmission from the receiver 1 to the transmitter 2 (so in the opposite direction to the one described in the subject matter of the invention), the frequency convertor can be used in such a way that it shifts the transmission range to the level of e.g. 2,400 GHz.

The industrial usability



[0038] The industrial usability is obvious. According to this solution it will be possible to transmit data even when the transformer connections between the receiver and the transmitter are weak. The invention decreases the noise of the system, makes the modulation on the transmitter's side while it is possible to use the existing receivers without change. According to the invention it is possible to repeatedly produce transmitters with the modulation of the basic carrier signal.

LIST OF RELATED SYMBOLS:



[0039] 

1- receiver

2-transmitter

3-the transmitter's antenna

4-the generator of the electromagnetic waves

5-demodulation element

6-memory card

7-the receiver's antenna

8-payment card reader

9-POS terminal

10-mobile phone

11-receiver's demodulation element

12-transmitter's resonant circuit

13-receiver's resonant circuit

14-receiver's generator

Rt- sensor resistor on the transponder's side

Lt3 - inductor

M - mutual induction, transformer connection

Lt1 - induction of the part of the transimtter's antenna

Lt2 - induction of the part of the transimtter's antenna

Lr1 - induction of the receiver's antenna

Rr - the receiver's sensor circuit

OSCr - the receiver's oscillator

OSCt - the transmitter's oscillator




Claims

1. A data transmission method from a transmitter (2) to a receiver (1) using transformer connection of the transmitter's and receiver's antenna inductions; the method comprising:

transmitting by the receiver (1) a carrier signal to the transmitter (2) at a first frequency;

modulating data by the transmitter (2) and sending the modulated data to the receiver (1);

receiving by the receiver(1) a signal on the output of its antenna (7), where the signal appears in the form of a carrier frequency at the first frequency and a modulated subcarrier frequency with data at a second frequency with respect to the carrier frequency;

separating by the receiver (1) the carrier signal from the signal on the output of its antenna (7) and demodulating transmitted data,

the method characterized by the fact that:

the frequency of the receiver (1) and the frequency of the transmitter (2) are different and the difference of their frequencies corresponds to the subcarrier frequency; and

the signal that is received and demodulated on the side of the receiver (1) is created by combining the carrier signal transmitted by the receiver (1) with the modulated data transmitted by the transmitter (2) on the receiver's antenna (7) output.


 
2. The data transmission method according to the claim 1 is characterized by the fact that in the transmitter (2) the data transmitted are modulated by a change of their transmitter (2) frequency signal phase, preferably of ϕ=0° or ϕ=180°.
 
3. The data transmission method according to the claim 1 or 2 is characterized by the fact that during modulation in the transmitter (2), the phase of the transmitted frequency is changed once per elementary time unit (etu) wherein the elementary time unit (etu) corresponds to the one bit time interval.
 
4. The data transmission method according to any of the claims 1 to 3 i s characterized by the fact that the transformer connection coefficient has a value of k = 0,2 - 0,001.
 
5. The data transmission method according to any of the claims 1 to 4 i s characterized by the fact that the carrier signal of the receiver (1) has a frequency of 13,56MHz±7kHz.
 
6. The data transmission method according to any of the claims 1 to 5 i s characterized by the fact that the difference between the receiver's (1) signal carrier frequency and the transmitter's (2) frequency has a value of 1/16 of the carrier frequency.
 
7. The data transmission method according to any of the claims 1 to 6 i s characterized by the fact that the transmitter's (2) antenna (3) is tuned to a narrow transmission frequency of the transmitter (2), independently on the antenna's transmission characteristics for subcarrier frequency.
 
8. The data transmission method according to any of the claims 1 to 7 i s characterized by the fact that the transmitter (2) is in the form of a transponder and the receiver (1) is formed by a reader (8), preferably on the RFID and/or NFC platform.
 
9. The data transmission method according to any of the claims 1 to 8 i s characterized by the fact that the transmitter (2) is placed on or in a mobile communication device, preferably on the card (6) placed into the slot of a mobile communication device (10) in a removable way.
 
10. The data transmission method according to any of the claims 1 to 9 i s characterized by the fact that the transmitter (2) is placed on a memory card (6) or on a card that has a format and interface of a memory card (6).
 
11. The data transmission method according to any of the claims 1 to 10 is characterized by the fact that it can be used for data transmission in cashless payment solutions, especially those over a mobile communication device (10).
 
12. A system for data transmission comprising a transmitter (2) and a receiver (1) using a transformer connection of the transmitter's and the receiver's antenna induction; the receiver (1) containing a generator (14), an antenna (7), a receiver's resonant circuit (13) and a demodulation element (11), and the transmitter (2) containing an antenna (3), modulation element and an electromagnetic wave generator (4), the electromagnetic wave generator (4) of the transmitter (2) connected to energize antenna (3) when transmitting data over transformer connection, wherein:

the receiver (1) is adapted to transmit a carrier signal to the transmitter (2) at a first frequency;

the transmitter (2) is adapted to modulate date and send the modulated data to the receiver (1);

the receiver (1) is further adapted to receive a signal on the output of its antenna (7), where the signal appears in the form of a carrier frequency at the first frequency and a modulated subcarrier frequency with data at a second frequency with respect to the carrier frequency, and to separate the carrier signal from the signal on the output of its antenna (7) and demodulate the transmitted data;

characterized by
the electromagnetic wave generator (4) of the transmitter (2) is adapted to generate a frequency different to that of the receiver (1), the difference of their frequencies corresponding to the subcarrier frequency, so that the signal that is received and demodulated on the side of the receiver (1) is created by combining the carrier signal transmitted by the receiver (1) with the modulated data transmitted by the transmitter (2) on the receiver's antenna (7) output.
 
13. The system according to the claim 12 is characterized by the fact that the antenna (3) of the transmitter (2) is tuned to the transmitter's (2) transmission frequency without considering the transmission characteristics of the antenna for the subcarrier frequency expected by the receiver (1).
 
14. The system according to the claims 12 or 13 is characterized by the fact that transmitter (2) encompasses a demodulation element (5) and that the demodulation element (5) is connected to the turning of the antenna's (3) induction towards sensor resistor (16) (Rt), preferably via inductor (15).
 
15. The system according to any of the claims 12 to 14 is characterized by the fact the transmitter (2) is placed on a memory card (6) or on a card with a format and interface of the memory card (6), preferably of the microSD or SD or mini SD format.
 


Ansprüche

1. Datenübertragungsverfahren von einem Sender (2) zu einem Empfänger (1) bei Nutzung der Transformatorkupplung der Antenneninduktivitäten des Senders und Empfängers, wo diese Verfahren

- die Sendung des tragenden Signals durch den Empfänger (1) nach dem Sender (2) auf der ersten Frequenz;

- die Modulierung von Daten im Sender (2) und die Ausstrahlung der modulierten Daten nach dem Empfänger (1);

- der Signalempfang im Empfänger (1) am Ausgang seiner Antenne (7), wo das Signal in Form der tragenden Frequenz auf erster Frequenz und modulierten subtragenden Frequenz mit Daten auf zweiter Frequenz in Bezug auf die tragende Frequenz erscheint;

- die Trennung des tragenden Signals vom Signal am Ausgang der Antenne (7) und die Demodulierung der übertragenen Daten im Empfänger (1) enthält,

das Verfahren gekennzeichnet dadurch,
dass die Frequenz des Empfängers (1) und die des Senders (2) unterschiedlich sind und die Differenz ihrer Frequenzen der Frequenzgröße der subtragenden Frequenz entspricht; und
das empfangene und an der Seite des Empfängers (1) demodulierte Signal durch Kombination des durch den Empfänger (1) ausgestrahlten tragenden Signals mit den durch den Sender (2) am Ausgang der Antenne (7) des Empfängers (1) modulierten Daten gebildet wird.
 
2. Datenübertragungsverfahren nach Anspruch 1 gekennzeichnet dadurch, dass die übertragenen Daten im Sender (2) durch Phasenänderung der Signalfrequenz des Senders (2) moduliert werden, vorteilhaft ϕ=0° oder ϕ=180°.
 
3. Datenübertragungsverfahren nach Anspruch 1 oder 2 gekenntzeichnet dadurch, dass es bei der Modulation im Sender (2) die Phase der gesendeten Frequenz einmal pro eine basale Zeiteinheit Etu geändert wird, wobei die basale Zeiteinheit (Etu) einem Zeitintervall von einem Bit entspricht.
 
4. Datenübertragungsverfahren nach beliebigem Anspruch 1 bis 3 gekennzeichnet dadurch, dass der Koeffizient der Transformatorkupplung den Wert k = 0,2 - 0,001 besitzt.
 
5. Datenübertragungsverfahren nach beliebigem Anspruch 1 bis 4 gekenntzeichnet dadurch, dass das Trägersignal vom Empfänger (1) die Frequenz 13,56 MHz ± 7 kHz besitzt.
 
6. Datenübertragungsverfahren nach beliebigem Anspruch 1 bis 5 gekennzeichnet dadurch, dass die Differenz zwischen der Trägersignal-Frequenz des Empfängers (1) und der Frequenz des Senders (2) den Wert von 1/16 der Trägerfrequenz besitzt.
 
7. Datenübertragungsverfahren nach beliebigem Anspruch 1 bis 6 gekenntzeichnet dadurch, dass die Antenne (3) des Senders (2) präzis auf die Sendefrequenz des Senders (2) ohne Rücksicht auf Strahlungseigenschaften der Antenne (3) für die subtragende Frequenz eingestellt ist.
 
8. Datenübertragungsverfahren nach beliebigem Anspruch 1 bis 7 gekennzeichnet dadurch, dass der Sender (2) in Transponder-Form und der Empfänger (1) durch einen Lesegerät (8), vorteilhaft auf der RFID- und/oder NFC-Plattform gebildet werden.
 
9. Datenübertragungsverfahren nach beliebigem Anspruch 1 bis 8 gekenntzeichnet dadurch, dass der Sender (2) auf oder in einem mobilen Kommunikationsgerät (10), vorteilhaft auf einer entnahmefähigen Karte (6) im Slot des mobilen Kommunikationsgeräts platziert ist.
 
10. Datenübertragungsverfahren nach beliebigem Anspruch 1 bis 9 gekennzeichnet dadurch, dass der Sender (2) auf einer Speicherkarte (6) oder auf einer Karte in Format und Schnittstelle einer Speicherkarte (6) platziert wird.
 
11. Datenübertragungsverfahren nach beliebigem Anspruch 1 bis 10 gekennzeichnet dadurch, dass diese bei der Datenübertragung bei Durchführung von bargeldlosen Zahlungsapplikationen, besonders mit Hilfe des mobilen Kommunikationsgeräts (10) benutzt sein wird.
 
12. System enthaltende einen Sender (2) und einen Empfänger (1) unter Benutzung der Transformatorkupplung der Antenneninduktivitäten des Senders und des Empfängers, der Empfänger (1) enthält einen Generator (14), eine Antenne (7), einen Resonanzschwingungskreis (13) des Empfängers und ein Demodulationselement (11), und der Sender (2) enthält eine Antenne (3), ein Modulationselement und einen Generator (4) der elektromagnetischen Wellen, der Generator (4) der elektromagnetischen Wellen im Sender (2) ist angeschlossen an die Erregung der Antenne (3) bei der Datenübertragung durch die Transformatorkupplung, wo
der Empfänger (1) an die Sendung des tragenden Signals nach dem Sender (2) auf der ersten Frequenz angepasst ist;
der Sender (2) an die Modulierung von Daten und an die Sendung von modulierten Daten nach dem Empfänger (1) angepasst ist;
weiterhin ist der Empfänger (1) an den Signalempfang am Ausgang seiner Antenne (7) angepasst, wo das Signal in Form von tragender Frequenz auf ersten Frequenz und in Form von modulierten subtragenden Frequenz mit Daten auf der zweiten Frequenz in Bezug auf die tragende Frequenz erscheint und der Empfänger (1) ist zur Trennung des tragenden Signals vom Signal am Ausgang seiner Antenne (7) und zur Demodulation der übertragenen Daten angepasst;
gekennzeichnet dadurch, dass
der Generator (4) von elektromagnetischen Wellen im Sender (2) an die Generierung der Frequenz, die sich von der des Empfängers (1) unterscheidet, angepasst ist, die Differenz ihrer Frequenzen entspricht der subtragenden Frequenz so, dass das an der Seite des Empfängers (1) empfangene und demodulierte Signal durch Kombination des vom Empfänger (1) ausgestrahlten tragenden Signals mit den durch den Sender (2) am Ausgang der Antenne (7) des Empfängers (1) ausgestrahlten modulierten Daten gebildet wird.
 
13. System nach Anspruch 12 gekenntzeichnet dadurch, dass die Antenne (3) des Senders (2) auf die Sendefrequenz des Senders (2) ohne Rücksicht auf Strahlungseigenschaften der Antenne (3) für die vom Empfänger (1) erwartete subtragende Frequenz abgestimmt ist.
 
14. System nach Anspruch 12 oder 13 gekenntzeichnet dadurch, dass der Sender (2) ein Demodulationselement (5) umfasst, das an der Induktivitätsableitung der Antenne (3) in Richtung nach dem Abtastwiderstand (16) (Rt) vorteilhaft über eine Drossel (15) geschaltet ist.
 
15. System nach beliebigem Anspruch 12 bis 14 gekennzeichnet dadurch, dass der Sender (2) auf einer Speicherkarte (6) oder auf einer Karte in Format und Schnittstelle der Speicherkarte (6) vorteilhaft im Micro-SD oder SD- oder Mini-SD-Format platziert wird.
 


Revendications

1. Le mode de la transmission de données de l'émetteur (2) au récepteur (1) par l'intermédiaire d'accouplement par transformateur d'inductions d'antenne de l'émetteur et du récepteur, ce mode comprenant:

l'émission du signal porteur par le récepteur (1) à l'émetteur (2) sur la première fréquence;

la modulation des données dans l'émetteur (2) et l'envoi des données modulées dans le récepteur (1);

la réception du signal dans le récepteur (1) à la sortie de son antenne (7) où le signal apparaît sous forme de fréquence porteuse sur la première fréquence et sous forme de fréquence sous-porteuse modulée comprenant des données sur la seconde fréquence compte tenu de la fréquence porteuse;

la séparation du signal porteur dans le récepteur (1) du signal situé à la sortie de son antenne (7) et la démodulation des données transmises,

le mode est caractérisé par le fait que

la fréquence du récepteur (1) est différente de la fréquence de l'émetteur (2) et la différence des fréquences correspond à la fréquence sous-porteuse; et

le signal reçu et démodulé du côté du récepteur (1) est formé par combinaison du signal porteur émis par le récepteur (1) et des données modulées émises par l'émetteur (2) à la sortie de l'antenne (7) du récepteur (1).


 
2. Le mode de la transmission de données selon la revendication 1 est caractérisé par le fait que dans l'émetteur (2), les données transmises sont modulées par changement de phase de fréquence du signal de l'émetteur (2) de préférence ϕ=0° ou ϕ=180°.
 
3. Le mode de la transmission de données selon la revendication 1 ou 2, caractérisé par le fait qu'à la modulation réalisée dans l'émetteur (2), la phase de la fréquence émise change une fois par unité basique de temps (un étha), étant donné que l'unité basique de temps (un étha) correspond à l'intervalle de la durée de temps d'un bit.
 
4. Le mode de la transmission de données selon quelleconque des revendications 1 à 3 caractérisé par le fait que la valeur du coéfficient d'accouplement par transformateur est k= 0,2 - 0,001.
 
5. Le mode de la transmission de données selon quelleconque des revendications 1 à 4 caractérisé par le fait que le signal porteur du récepteur (1) a une fréquence de 13,56MHz±7kHz.
 
6. Le mode de la transmission de données selon quelleconque des revendications 1 à 5 caractérisé par le fait que la différence entre la fréquence du signal porteur du récepteur (1) et la fréquence de l'émetteur (2) est d'un montant de 1/16 de la fréquence porteuse.
 
7. Le mode de la transmission de données selon quelleconque des revendications 1 à 6 caractérisé par le fait que l'antenne (3) de l'émetteur (2) est réglée très étroitement à la fréquence d'émission de l'émetteur (2) indépendamment aux propriétés de rayonnement de l'antenne relatives à la fréquence sous-porteuse.
 
8. Le mode de la transmission de données selon quelleconque des revendications 1 à 7 caractérisé par le fait que l'émetteur (2) est constitué par transpondeur et le récepteur (1) est constitué par lecteur (8), de préférence sur plateforme RFID et/ ou NFC.
 
9. Le mode de la transmission de données selon quelleconque des revendications 1 à 8 caractérisé par le fait que l'émetteur (2) est placé sur ou à l'intérieur de dispositif de communication portable (10), de préférence sur carte (6) amovible placée dans le slot de dispositif de communication portable (10).
 
10. Le mode de la transmission de données selon quelleconque des revendications 1 à 9 caractérisé par le fait que l'émetteur (2) est placé sur carte de mémoire (6) ou autre carte à format et interface de carte de mémoire (6).
 
11. Le mode de la transmission de données selon quelleconque des revendications 1 à 10 caractérisé par le fait qu'il sera utilisé lors de la transmission de données pour des applications de paiement par virement effectué en particulier à partir de dispositif de communication portable (10).
 
12. Le système de transmission de données comprenant l'émetteur(2) et le récepteur (1) utilisant l'accouplement par transformateur des inductions d'antenne de l'émetteur et du récepteur; le récepteur (1) comprenant un générateur (14), une antenne (7), un circuit résonnant (13) du récepteur et un élément de démodulation (11), et l'émetteur (2) comprenant une antenne (3), un élément de modulation et un générateur (4) d'ondes éléctromagnétiques, le générateur (4) d'ondes électromagnétiques de l'émetteur (2) est connecté afin de réveiller l'antenne (3) lors de la transmission de données par accouplement par transformateur, où
Le récepteur (1) est adapté pour émettre le signal porteur dans l'émetteur (2) sur la première fréquence;
L'émetteur (2) est adapté pour moduler les données et pour les envoyer au récepteur (1);
Le récepteur (1) est également adapté pour recevoir le signal à la sortie de son antenne (7) où le signal apparaît sous forme de fréquence porteuse sur le première fréquence et sous forme de fréquence modulée sous-porteuse comprenant des données sur la seconde fréquence compte tenu de la fréquence porteuse et de la séparation du signal porteur du signal situé à la sortie de son antenne (7) et de la démodulation des données transmises;
Caractérisé par le fait que
Le générateur (4) d'ondes électromagnétiques se trouvant dans l'émetteur (2) est adapté pour générer fréquence différente du celle du récepteur (1) étant donné que la différence des fréquences correspond è la fréquence sous-porteuse de la manière que le signal reçu et démodulé sur le côté du récepteur (1) est formé par combinaison du signal porteur émis par le récepteur (1) et les données modulées émises par l'émetteur (2) à la sortie de l'antenne (7) du récepteur (1).
 
13. Le système selon la revendication 12 caractérisé par le fait que l'antenne (3) de l'émetteur (2) est réglée à la fréquence d'émission de l'émetteur (2) indépendamment aux propriétés de rayonnement de l'antenne (3) relatives à la fréquence sous-porteuse attendue par le récepteur (1).
 
14. Le système selon la revendication 12 ou 13 caractérisé par le fait que l'émetteur (2) comprend un élément de démodulation (5) connecté au branchement de l'inductance de l'antenne (3) vers la résistance de lecture (16) (Rt) de préférence par bobine d'arrêt (15).
 
15. Le système selon quelleconque des revendications 12 à 14 caractérisé par le fait que l'émetteur est placé sur carte de mémoire (6) ou autre carte avec format et interface de carte de mémoire (6) de préférence sous format SD micro ou SD ou SD mini.
 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description