(19)
(11)EP 2 500 696 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 10828222.9

(22)Date of filing:  27.10.2010
(51)International Patent Classification (IPC): 
G01D 5/244(2006.01)
(86)International application number:
PCT/JP2010/069023
(87)International publication number:
WO 2011/055662 (12.05.2011 Gazette  2011/19)

(54)

AXIS RUN-OUT MEASURING METHOD AND ANGLE DETECTING DEVICE WITH SELF-CALIBRATION FUNCTION HAVING AXIS RUN-OOUT MEASURING FUNCTION

AXIALUNRUNDLAUFMESSVERFAHREN SOWIE WINKELMESSVORRICHTUNG MIT AUTOKORREKTURFUNKTION MIT AXIALUNRUNDLAUFMESSFUNKTION

PROCÉDÉ DE MESURE DU FAUX-ROND AXIAL ET DISPOSITIF DE DÉTECTION D'ANGLE COMPORTANT UNE FONCTION D'AUTOCORRECTION COMPRENANT UNE FONCTION DE MESURE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.11.2009 JP 2009255712

(43)Date of publication of application:
19.09.2012 Bulletin 2012/38

(73)Proprietor: National Institute of Advanced Industrial Science and Technology
Tokyo 100-8921 (JP)

(72)Inventor:
  • WATANABE Tsukasa
    Tsukuba-shi Ibaraki 305-8563 (JP)

(74)Representative: Forstmeyer, Dietmar 
BOETERS & LIECK Oberanger 32
80331 München
80331 München (DE)


(56)References cited: : 
WO-A1-2007/086160
US-A1- 2006 043 964
JP-A- 2006 098 392
  
  • TSUKASA WATANABE ET AL: "Self-calibratable rotary encoder", JOURNAL OF PHYSICS: CONFERENCE SERIES, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, GB, vol. 13, no. 1, 1 January 2005 (2005-01-01), pages 240-245, XP020093717, ISSN: 1742-6596, DOI: 10.1088/1742-6596/13/1/056
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates to an angle detecting device, such as a rotary encoder, for detecting a rotation angle, and specifically, the present invention relates to an axis run-out measuring method and an angle detecting device with a self-calibration function having an axis run-out measuring function, capable of detecting, for example, an axis run-out of a spindle of a processing machine, a rotating shaft run-out of an engine of an automobile and an aircraft, and an axis run-out of an axle of au automobile, by using said angle detecting device with a self-calibration function which is capable of determining a calibration value of a scale including an angular error generated by the influence of change of the angle detecting device with the aging variation or the like, an eccentricity of an attached shaft under the environment to be used included in angle information that is output from the angle detecting device, by having the self-calibration function.

BACKGROUND ART



[0002] In general, methods for measuring an axis run-out of a rotation axis are mainly methods using a contact method with an electric micrometer and a non-contact method with a capacitance sensor and a laser as shown in Patent Literature 1 below.

[0003] The contact method cannot be utilized with a high-speed rotation axis, and when the capacitance sensor in the non-contact method is used, it takes a lot of time to set up the measurement because the gap between a rotation axis to be measured and the sensor is narrow.

[0004] Further, since the laser-type is expensive, there is a problem in that the cost is high when two axes, i.e., X and Y, are provided.

[0005] Meanwhile, the general principle of an angle detecting device, such as a rotary encoder, is as follows. The angle detecting device is a device having scale marks written at a circumference of a circular scale disc, and a sensor head for counting a scale, to count the number of scale marks, thereby outputting angle information. Various kinds of devices are used as the angle detecting device. Since the angle detecting device has scale marks written artificially, the scale lines are not written equiangularly, thus the angle information obtained from the positions of the scale lines involves an error. In Fig. 1, a radial line L1 is an ideal scale line position (equiangular interval line), and a short radial broken line L2 is an actual scale line position. A graph in the right of Fig. 1 is obtained by plotting a difference from the ideal position.

[0006] The points in the drawing in the right in Fig. 1 are calibration values of scale lines of the angle detecting device. Fig. 1 shows 36 scale lines as depicted, but actually, the angle detecting device has several thousand to several hundred thousand scale lines. A method for calibrating these lines includes several methods for self-calibrating the lines, by comparing the scales of two angle detecting devices with each other. In this method, even if the two angle detecting devices are not calibrated, they can be calibrated at a time, and thus it is not necessary to prepare a more accurate angle detecting device at a higher level. It should be noted that the meaning of the self-calibration is that, even when two angle detecting devices of which angular errors are unknown are compared, the calibration values which are angular errors of both of the devices can be found at the same time.

[0007] In the national standard device of angle (angle measuring device), an angle detecting device residing inside of the angle measuring device and an angle detecting device to be calibrated that is provided thereabove, are calibrated using self-calibration method according to the equal-division-averaging method.

[0008] The equal-division-averaging method will be simplified and briefly explained with reference to Fig. 2. A difference (SA1) of a scale signal is measured between one of first sensor heads 12, 12 ... arranged on a scale disc of a first angle detecting device 11 at a lower side and a second sensor head 14 arranged on a scale disc of a second angle detecting device 13 at an upper side. Then, a difference (SA2) is measured in the same manner between another adjacent sensor head 12 at the lower side and the second sensor head 14 at the upper side. Likewise, differences (SA1, SA2, SA3, SA4, SA5) are measured between other first sensor heads 12 and the second sensor head 14, and an average value SAV of those differences is determined, so that a calibration curve of the second angle detecting device 13 at the upper side can be obtained.

[0009] When an angular error that is output from the first angle detecting device 11 at the lower side is denoted as ai, and an angular error that is output from the second angle detecting device 13 at the upper side is denoted as bi, the difference is SAj=bi-ai+(j-1)N/M and, and the average value SAV is as follows.

Herein, i=1, 2, 3..., N is the number of the scale line, N denotes the total number of scale marks provided on the scale disc. M denotes the number of first sensor heads.

[0010] When five first sensor heads 12 are provided, the first sensor heads 12 are arranged with an angular interval of one-fifth of 360 degrees around a circle. When M angle detecting devices are provided, the first sensor heads 12 are arranged with an equal angular interval of one M-th in the same manner. This is called the equal-division-averaging method.

[0011] The angular error includes not only the angular error between the ideal position and the actual position of the scale line as shown in Fig. 1 but also, e.g., the angular error caused by the influence of axis eccentricity of the angle detecting device itself and the influence of change of the angle detecting device with the aging variation.

[0012] In particular, the angular error includes: synchronous angular errors that are synchronized with the rotation angle, such as an angular error caused by the scale and the axis eccentricity; and asynchronous angular errors that are not synchronized with the rotation angle, such as an angular error due to a bearing of a rotating shaft, and an angular error caused by axis run-out or the like dependent on measurement environments, e.g. the temperature and change with the aging variation.

[0013] The applicant (assignee) proposed an angle detecting device with a self-calibration function, in which, as shown in Patent Literature 2 below, when a self-calibration method by the equal-division-averaging method is utilized to make calibration, the angle detecting device can constantly make accurate calibration, by making it possible to obtain calibration values of a scale including, e.g. the influence of axis eccentricity of the angle detecting device itself and change of the angle detecting device with the aging variation, using an arithmetic device built-in the main body of the angle detecting device or an arithmetic device electrically connected thereto, in order to solve the error caused by the axis eccentricity occurred in the time period of connection of a rotating shaft with the angle detecting device in the calibration device, and in which the size of the angle detecting device can be reduced.

CITATION LIST


PATENT LITERATURES



[0014] 

Patent Literature 1: Japanese Patent No. 2972652

Patent Literature 2: Japanese Patent No. 3826207


SUMMARY OF INVENTION


TECHNICAL PROBLEM



[0015] According to an angle detecting device with a self-calibration function according to Patent Literature 2 above, it is possible to structure the angle detecting device with the self-calibration function that detects an angular error of a scale and can cope with a high-speed rotating shaft with a high degree of accuracy at a low cost, and moreover, its object is to provide an axis run-out measuring method for measuring an asynchronous angular error by giving attention to the fact that a synchronous angular error in synchronized with a rotation angle of the angular error and an asynchronous angular error not synchronized therewith can be separated by arithmetic processing, and furthermore, its another object is to provide an angle detecting device with a self-calibration function having an axis run-out measuring function, in which the asynchronous angular error can be detected and an axis run-out measuring function is also provided, so that various kinds of setups to a spindle of a processing machine, an engine, a drive shaft of an automobile, and the like, can be made readily.

SOLUTION TO PROBLEM



[0016] In order to solve the above problems, an axis run-out measuring method of the present invention is an axis run-out measuring method using an angle detecting device with a self-calibration function, in which a plurality of sensor heads is provided with an equiangular interval at a circumference of a scale disc fixed to a rotating shaft, and when one of the sensor heads is selected as a reference sensor head, a sum of measurement differences between the reference sensor head and the respective other sensor heads is obtained, and this sum is
divided by the number of sensor heads, to determine an average value, whereby a self-calibration value is obtained, and the axis run-out measuring method comprises the steps of: changing a sensor head selected as the reference sensor head to another sensor head in order one by one, and obtaining each of the self-calibration values for all the sensor heads where each of all the sensor heads is adopted as the reference head; deviating each of the self-calibration values by an angular phase of the scale, and aligning said angular phase to a self-calibration value where the particular sensor head is adopted as the reference head; determining an average value for the self-calibration values having been subjected to the phase aligning; and subtracting the average value of the self-calibration values having been subjected to the phase aligning from each of the self-calibration values having been subjected to the phase aligning, thereby obtaining only asynchronous angular errors.

[0017] An angle detecting device with a self-calibration function having an axis run-out measuring function of the present invention has a structure, in which a plurality of sensor heads is provided with an equiangular interval at a circumference of a scale disc fixed to a rotating shaft, and when one of the sensor heads is selected as a reference sensor head, a sum of measurement differences between the reference sensor head and the other respective sensor heads is obtained,
and this sum is divided by the number of sensor heads, to determine an average value, whereby a self-calibration value is obtained, and the angle detecting device with the self-calibration function having an axis run-out measuring function has: self-calibration value calculation means for changing a sensor head selected as the reference sensor head to another sensor head in order one by one, and obtaining each of the self-calibration values for all the sensor heads where each of all the sensor heads is adopted as the reference head; phase converting means for deviating each of the self-calibration values by an angular phase of the scale, and aligning said angular phase to a self-calibration value where the particular sensor head is adopted as the reference head; average value calculation means for determining an average value for all the calculation results of the phase converting means; and dynamic error extracting means for subtracting the calculation result of the average value calculation means from each of the calculation results of the phase converting means, thereby obtaining only asynchronous angular errors.

ADVANTAGEOUS EFFECTS OF INVENTION



[0018]  According to the present invention, since, with a calculation device (arithmetic device) built-in an angle detecting device with a self-calibration function or a calculation device connected via a wire with the angle detecting device, an angle detecting device itself is provided with a function for extracting an asynchronous angular error, for example, the angle detecting device provided in a crank shaft of an engine and a drive shaft of an automobile can be provided with a function for detecting run-out of a rotating shaft, and the functionality of the angle detecting device can be enhanced with a small size, light weight, and at a low cost.

BRIEF DESCRIPTION OF DRAWINGS



[0019] 

ⓙ shown in graphs in Figs. 4 to 9 denotes a position where a j-th sensor head detects a scale number 1 (i=1) of a scale disc.

denotes a position of a scale number of the scale disc that is detected when the j-th sensor head starts measurement.

Δ of Fig. 10 denotes a measurement start position, and an arrow denotes a direction of change of asynchronous angular error with respect to the rotation.

{Fig. 1} Fig. 1 is a figure illustrating a principle of a rotary encoder.

{Fig. 2} Fig. 2 is a figure illustrating an angle detecting device using the equal-division-averaging method.

{Fig. 3} Fig. 3 is a figure illustrating an example in which five sensor heads are arranged on a scale disc with an identical interval.

{Fig. 4} Fig. 4 is a graph showing a result obtained by calculating a calibration value of each sensor head in an angle detecting device with a self-calibration function serving as a basis.

{Fig. 5} Fig. 5 is a graph illustrating data obtained by aligning the phases of the calculation result of Fig. 4.

{Fig. 6} Fig. 6 is a graph illustrating average values of the data of Fig. 5.

{Fig. 7} Fig. 7 is a graph illustrating calculated asynchronous angular errors.

{Fig. 8} Fig. 8 is a graph illustrating a result obtained by integrating time periods of the asynchronous angular errors.

{Fig. 9} Fig. 9 is a graph illustrating a state when the asynchronous angular errors are projected onto an XY coordinate defined on a rotation plane.

{Fig. 10} Fig. 10 is a graph illustrating the asynchronous angular errors on the XY coordinate defined on the rotation plane.


MODE FOR CARRYING OUT THE INVENTION


EXAMPLES



[0020] First, an angle detecting device with a self-calibration function serving as a basis of the present invention will be explained.

[0021] In this example, as shown in Fig. 3, five sensor heads are arranged with an equiangular interval at a circumference of a scale disc connected to a rotating shaft, and based on a detected value obtained with this device, a calculation device built-in a main body of the detecting device or a calculation device electrically connected to the main body, conducts the following calculation processing, to detect an angle.

[0022] Herein, i denotes a scale number, N denotes the total number of scale marks on the scale disc, j denotes a sensor head number, and M denotes the total number of sensor heads. The measurement starts when the first sensor head (j=1) detects an origin point signal of a scale line, and a scale number i detected thereafter is set at 1 (i=1). An angular error a1i,j detected by the j-th sensor head after the start of the measurement, is constituted by a synchronous angular error Si in synchronized with the rotation angle and an asynchronous angular error D1i not in synchronization therewith.

[0023] This is expressed as follows.



[0024] Herein, a suffix 1i of a1i,j and D1i denotes the scale number of the scale disc detected by the first sensor head, and ej denotes a unit vector in a tangential direction with respect to the scale disc of each sensor head position.

[0025] In general, a difference δ of angular signals which are output from two of M sensor heads is represented as a difference of angular errors thereof. Specifically, when a sensor head compared with the j-th sensor head is the k-th sensor head, this is expressed by the following expression.



[0026] When there are five sensor heads (M=5), the expression (3) is expanded into the following expression, in which the j-th sensor head is adopted as a reference sensor head.



[0027] In the expression (3), the j-th sensor head is adopted as the reference sensor head, and the differences δ of the angular signal from the respective sensor heads are obtained. Then, a value µ is obtained by calculating an average of the differences δ, as follows.



[0028] It should be noted that ej is a unit vector in a tangential direction with respect to the scale disc of each sensor head position.

[0029] As described above, the self-calibration value of a1i,j as shown in the expression (1) can be obtained, by obtaining measurement differences between the first reference sensor head and the first to the fifth respective sensor heads and determining an average value µ. However, the second term at the right hand side,

is a value that has only a frequency component of a1i,j of a power of a multiple of M, when performing frequency component analysis of a1i,j. Fig. 4 shows a calculation result of a self-calibration value obtained when the number j of the reference sensor head is changed from 1 to 5 in the case where there are five sensor heads (M=5).

[0030] As described above, a plurality of sensor heads are arranged with an equiangular interval at the circumference of the scale disc fixed to the rotating shaft, and one of the plurality of sensor heads is selected as a reference sensor head. A sum of measurement differences between the reference sensor head and the other respective sensor head is obtained. Then, this sum is divided by 5, i.e. the number of sensor heads, to determine the average value, whereby the self-calibration value can be obtained.

[0031] Now, in the expression (5), when the number j of the reference sensor head is changed from 1 to M, the self-calibration value indicated by the respective µ1i,j has simultaneousness with the same i, but is deviated, as the calibration value of the scale, by the deviation of the arrangement position of the respective sensor head, i.e. deviated by the angular phase

of the scale.

[0032] Accordingly, conversion is made so that the angular phase of the scale becomes identical, although this simultaneousness is lost.

[0033] This converted value µ1i,j(ϕt) is expressed by the expression (6).



[0034] The average value after the angular phase has been thus converted, is shown in Fig. 5.

[0035] Herein,

and

represent equivalent results, because they have averages of M pieces of data obtained by deviating the phase of Si by



[0036] Thus, this average µi(ϕt) is expressed as follows.



[0037] The value of this average µi(ϕt) is shown in Fig. 6.

[0038] The synchronous angular error Si is deleted, by subtracting this average value µi, (ϕ < t) from µ1i,j (ϕ < t), to represent as an expression including only the asynchronous angular error D1i, as follows.



[0039] In the expression, di is expressed as



[0040] This calculation result is shown in Fig. 7.

[0041] In the expression (8), the phase of the angular scale is matching, but the time period is not matching. Accordingly, the asynchronous angular error at the same time point can be extracted, by changing the angular phase backward by the angular phase



[0042] The expression (9) shows a value Di,j(ϕt), in which the simultaneousness of the time is recovered, by shifting the phase of the angle in the same manner as the measurement.



[0043] The value

at the second term at the right hand side of the expression (9) denotes an average value of (D1iej) detected at different sensor head positions at different time points, and is close to a value having a frequency component of a component of a power of a multiple of M obtained when the frequency component analysis of (D1i • ej) is performed. Thus, the value

at the second term at the right hand side of the expression (9) is sufficiently smaller than (D1,iej) in general. Under this situation, the expression (9) may be deemed as (D1iej) as shown in the expression (10), as follows.



[0044] Fig. 8 shows an example of a result Di,j(ϕt) obtained by making the time periods of the asynchronous angular error D1i the same.

[0045] Di,j(ϕt) as shown in Fig. 8 is an intensity when the asynchronous angular error D1i as shown in Fig. 3 is projected in a tangential direction of a circle at the respective sensor head position. Thus, when an XY coordinate is defined in a manner of rotation plane, calculation is made of the intensities of this value in the X, Y directions when the asynchronous angular error D1i is projected, to give the values as shown in Fig. 9.

[0046] When the intensities in the X axis and the Y axis as shown in Fig. 9 are represented as the asynchronous angular error D1i in the XY coordinate, the intensities are represented as shown in Fig. 10.

[0047] When this value is projected onto the XY coordinate if necessary, the asynchronous angular error factor of the rotation can be evaluated in a quantitative manner.

[0048] That is, in this example, a scale disc with a total number of scale marks N=16,384 with interval 20 µm is used for the rotary encoder. The interval 20 µm corresponds to 360 degrees/16,384 scale marks = about 79 seconds (angle).

[0049] Thus, the asynchronous angular error of Fig. 9, which is about 4 seconds (angle), corresponds to about 1 µm by the following conversion formula.



[0050] A factor that caused deviation of about 1 µm obtained from this asynchronous angular error, is expected to be axis run-out caused by deviation due to a gap between an inner ring and an outer ring of a bearing and/or unevenness of a ball shape of the ball bearing.

[0051] When the calculation processing explained above is processed by the calculation device built-in the main body of the detecting device or the calculation device electrically connected thereto, the angle detecting device with the self-calibration function having the axis run-out measuring function capable of accurately measuring the axis run-out can be achieved, by only adding a program without modifying the main body of the detecting device in terms of its structure.

INDUSTRIAL APPLICABILITY



[0052] As described above, according to the present invention, the angle detecting device as described above can achieve the function of extracting the asynchronous angular error, by simply adding program software to the calculation device built-in the angle detecting device with the self-calibration function or the calculation device connected via a wire with the angle detecting device. Thus, run-out of the rotating shaft, such as a spindle of a processing machine, a crank shaft of an engine, and a drive shaft of an automobile, can be detected, at a low cost with a small size. Therefore, the present invention can be widely applied as a safety device, an abnormality detection device, or the like.

REFERENCE SIGNS LIST



[0053] 
11
First angle detecting device
12
First sensor head provided in the first angle detecting device
13
Second angle detecting device
14
Second sensor head provided in the second angle detecting device



Claims

1. An axis run-out measuring method using an angle detecting device (11, 13) with a self-calibration function, in which a plurality of sensor heads (12, 14) is provided with an equiangular interval at a circumference of a scale disc fixed to a rotating shaft, and when one of the sensor heads (12, 14) is selected as a reference sensor head, a sum of measurement differences between the reference sensor head and the other respective sensor heads is obtained,
and this sum is divided by the number of sensor heads (12, 14), to determine an average value, whereby a self-calibration value is obtained, with the axis run-out measuring method comprising the steps of:

changing a sensor head selected as the reference sensor head to another sensor head in order one by one, and obtaining each of the self-calibration values for all the sensor heads (12, 14) where each of all the sensor heads is adopted as the reference head;

deviating each of the self-calibration values by an angular phase of the scale, and aligning said angular phase to a self-calibration value where the particular sensor head is adopted as the reference head;

determining an average value for the self-calibration values having been subjected to the phase aligning; and

subtracting the average value of the self-calibration values having been subjected to the phase aligning from each of the self-calibration values having been subjected to the phase aligning, thereby obtaining only asynchronous angular errors.


 
2. An angle detecting device (11,13) with a self-calibration function having an axis run-out measuring function, in which a plurality of sensor heads (12, 14) is provided with an equiangular interval at a circumference of a scale disc fixed to a rotating shaft, and when one of the sensor heads (12, 14) is selected as a reference sensor head, a sum of measurement differences between the reference sensor head and the other respective sensor heads is obtained,
and this sum is divided by the number of sensor heads (12, 14), to determine an average value, whereby a self-calibration value is obtained, with the angle detecting device (11, 13) with the self-calibration function having an axis run-out measuring function comprising:

self-calibration value calculation means for changing a sensor head selected as the reference sensor head to another sensor head in order one by one, and obtaining each of the self-calibration values for all the sensor heads (12, 14) where each of all the sensor heads (12, 14) is adopted as the reference head;

phase converting means for deviating each of the self-calibration values by an angular phase of the scale, and aligning said angular phase to a self-calibration value where the particular sensor head is adopted as the reference head;

average value calculation means for determining an average value for all the calculation results of the phase converting means; and

dynamic error extracting means for subtracting the calculation result of the average value calculation means from each of the calculation results of the phase converting means, thereby obtaining only asynchronous angular errors.


 


Ansprüche

1. Verfahren zur Messung der Planlaufabweichung einer Achse unter Verwendung einer Winkelerfassungsvorrichtung (11, 13) mit einer Selbstkalibrierungsfunktion, bei der mehrere Sensorköpfe (12, 14) mit einem gleichwinkligen Intervall an einem Umfang einer an einer rotierenden Welle befestigten Skalenscheibe angebracht sind, und wenn einer der Sensorköpfe (12, 14) als Referenzsensorkopf ausgewählt wird, wird eine Summe von Messdifferenzen zwischen dem Referenzsensorkopf und den anderen jeweiligen Sensorköpfen erhalten, und diese Summe wird durch die Zahl von Sensorköpfen (12, 14) geteilt, um einen Mittelwert zu bestimmen, wobei ein Selbstkalibrierungswert erhalten wird, wobei das Verfahren zur Messung der Planlaufabweichung einer Achse die folgenden Schritte umfasst:

Ändern eines als Referenzsensorkopf ausgewählten Sensorkopfs nacheinander in einen anderen Sensorkopf und erhalten jedes der Selbstkalibrierungswerte für alle Sensorköpfe (12, 14), wobei jeder der Sensorköpfe als der Referenzkopf verwendet wird;

Ändern jedes der Selbstkalibrierungswerte um eine Winkelphase der Skala und Ausrichten der Winkelphase auf einen Selbstkalibrierungswert, bei dem der bestimmte Sensorkopf als Referenzkopf verwendet wird;

Bestimmen eines Mittelwerts für die Selbstkalibrierungswerte, die der Phasenausrichtung unterzogen wurden; und

Subtrahieren des Mittelwerts der Selbstkalibrierungswerte, die der Phasenausrichtung unterzogen wurden, von jedem der Selbstkalibrierungswerte, die der Phasenausrichtung unterzogen wurden, wodurch nur asynchrone Winkelfehler erhalten werden.


 
2. Winkelerfassungsvorrichtung (11, 13) mit einer Selbstkalibrierungsfunktion mit einer Funktion zur Messung der Planlaufabweichung, bei der mehrere Sensorköpfe (12, 14) mit einem gleichwinkligen Intervall an einem Umfang einer an einer rotierenden Welle befestigten Skalenscheibe angebracht sind, und wenn einer der Sensorköpfe (12, 14) als Referenzsensorkopf ausgewählt wird, wird eine Summe von Messdifferenzen zwischen dem Referenzsensorkopf und den anderen jeweiligen Sensorköpfen erhalten, und diese Summe wird durch die Zahl von Sensorköpfen (12, 14) geteilt, um einen Mittelwert zu bestimmen, wobei ein Selbstkalibrierungswert erhalten wird, wobei die Winkelerfassungsvorrichtung (11, 13) mit der Selbstkalibrierungsfunktion eine Funktion zur Messung der Planabweichung aufweist, umfassend:

Mittel zur Berechnung der Selbstkalibrierungswerte zum Ändern eines als Referenzsensorkopf ausgewählten Sensorkopfs nacheinander in einen anderen Sensorkopf und Erhalten jedes der Selbstkalibrierungswerte für alle Sensorköpfe (12, 14), wobei jeder der Sensorköpfe (12, 14) als Referenzkopf verwendet wird;

Phasenumwandlungsmittel zum Ändern jedes der Selbstkalibrierungswerte um eine Winkelphase der Skala und Ausrichten der Winkelphase auf einen Selbstkalibrierungswert, bei dem der bestimmte Sensorkopf als Referenzkopf verwendet wird;

Mittelwertberechnungsmittel zur Bestimmung eines Mittelwerts für alle Berechnungsergebnisse der Phasenumwandlungsmittel; und

dynamische Fehlerextraktionsmittel zum Subtrahieren des Berechnungsergebnisses des Mittelwertberechnungsmittels von jedem der Berechnungsergebnisse der Phasenumwandlungsmittel, wodurch nur asynchrone Winkelfehler erhalten werden.


 


Revendications

1. Procédé de mesure de déviation d'axe utilisant un dispositif de détection d'angle (11, 13) avec une fonction d'auto-étalonnage, dans lequel une pluralité de têtes de capteur (12, 14) est pourvue d'un intervalle équiangulaire à la circonférence d'un disque d'échelle fixé à un arbre rotatif, et lorsque l'une des têtes de capteur (12, 14) est sélectionnée comme tête de capteur de référence, une somme des différences de mesure entre la tête de capteur de référence et les autres têtes de capteur respectives est obtenue, et cette somme est divisée par le nombre de têtes de capteur (12, 14), pour déterminer une valeur moyenne, à cause duquel une valeur d'auto-étalonnage est obtenue, le procédé de mesure de déviation d'axe comprenant les étapes de:

changer une tête de capteur sélectionnée comme tête de capteur de référence en une autre tête de capteur dans l'ordre un par un, et obtenir chacune des valeurs d'auto-étalonnage pour toutes les têtes de capteur (12, 14) où chacune de toutes les têtes de capteur est adoptée comme tête de référence;

dévier chacune des valeurs d'auto-étalonnage d'une phase angulaire de l'échelle, et aligner ladite phase angulaire sur une valeur d'auto-étalonnage où la tête de capteur particulière est adoptée comme tête de référence;

déterminer une valeur moyenne pour les valeurs d'auto-étalonnage ayant été soumises à l'alignement de phase; et

soustraire la valeur moyenne des valeurs d'auto-étalonnage ayant été soumises à l'alignement de phase de chacune des valeurs d'auto-étalonnage ayant été soumises à l'alignement de phase, obtenant ainsi uniquement des erreurs angulaires asynchrones.


 
2. Dispositif de détection d'angle (11, 13) avec une fonction d'auto-étalonnage ayant une fonction de mesure de déviation d'axe, dans lequel une pluralité de têtes de capteur (12, 14) est pourvue d'un intervalle équiangulaire à la circonférence d'un disque d'échelle fixé à un arbre rotatif, et lorsque l'une des têtes de capteur (12, 14) est sélectionnée comme tête de capteur de référence, une somme des différences de mesure entre la tête de capteur de référence et les autres têtes de capteur respectives est obtenue, et cette somme est divisée par le nombre de têtes de capteur (12, 14), pour déterminer une valeur moyenne, à cause duquel une valeur d'auto-étalonnage est obtenue, le dispositif de détection d'angle (11, 13) avec la fonction d'auto-étalonnage ayant une fonction de mesure de déviation d'axe comprenant:

des moyens de calcul de valeur d'auto-étalonnage pour changer une tête de capteur sélectionnée comme tête de capteur de référence en une autre tête de capteur dans l'ordre un par un, et obtenir chacune des valeurs d'auto-étalonnage pour toutes les têtes de capteur (12, 14) où chacune de toutes les têtes de capteur (12, 14) est adoptée comme tête de référence;

des moyens de conversion de phase pour dévier chacune des valeurs d'auto-étalonnage d'une phase angulaire de l'échelle et aligner ladite phase angulaire à une valeur d'auto-étalonnage où la tête de capteur particulière est adoptée comme tête de référence;

un moyen de calcul de valeur moyenne pour déterminer une valeur moyenne pour tous les résultats de calcul du moyen de conversion de phase; et

un moyen d'extraction d'erreur dynamique pour soustraire le résultat du calcul du moyen de calcul de valeur moyenne de chacun des résultats de calcul du moyen de conversion de phase, obtenant ainsi uniquement des erreurs angulaires asynchrones.


 




Drawing























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description