(19)
(11)EP 2 501 238 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.01.2017 Bulletin 2017/01

(21)Application number: 10831685.2

(22)Date of filing:  19.11.2010
(51)International Patent Classification (IPC): 
A01N 53/00(2006.01)
A01N 43/10(2006.01)
A01N 43/36(2006.01)
A01N 25/00(2006.01)
A01N 25/34(2006.01)
A01N 43/08(2006.01)
A01N 43/28(2006.01)
A01N 43/50(2006.01)
A01N 25/06(2006.01)
A01P 7/04(2006.01)
(86)International application number:
PCT/JP2010/071197
(87)International publication number:
WO 2011/062299 (26.05.2011 Gazette  2011/21)

(54)

PEST CONTROL COMPOSITION

SCHÄDLINGSBEKÄMPFUNGSZUSAMMENSETZUNG

COMPOSITION DE LUTTE CONTRE LES NUISIBLES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 20.11.2009 JP 2009264781

(43)Date of publication of application:
26.09.2012 Bulletin 2012/39

(73)Proprietor: Sumitomo Chemical Company, Limited
Tokyo 104-8260 (JP)

(72)Inventors:
  • YAMADA, Masahiro
    Toyonaka-shi Osaka 561-0802 (JP)
  • TANAKA, Yoshito
    Toyonaka-shi Osaka 561-0802 (JP)

(74)Representative: Vossius & Partner Patentanwälte Rechtsanwälte mbB 
Siebertstrasse 3
81675 München
81675 München (DE)


(56)References cited: : 
WO-A1-2005/096815
WO-A2-2009/031692
WO-A2-2009/126577
JP-A- 2003 327 502
JP-A- 2008 201 731
US-A1- 2002 147 179
US-A1- 2004 106 523
US-A1- 2009 105 073
WO-A1-2008/006464
WO-A2-2009/031697
JP-A- H11 322 516
JP-A- 2004 002 363
US-A- 4 595 679
US-A1- 2003 195 119
US-A1- 2008 255 204
  
     
    Remarks:
    The file contains technical information submitted after the application was filed and not included in this specification
     
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical field



    [0001] The present invention relates to a pest control composition and a control method of pests,
    wherein a method for treatment oft he human or animal body by therapy is excluded. Background art

    [0002] An ester compound represented by the formula (1) :

    is known to have an pest controlling effect, and it is also known that the ester compound can be used in combination or admixture with a synergist such as piperonyl butoxide (see e.g., Patent Literature 1).

    [0003] Patent Literature 2 discloses pesticidal compositions and a method for controlling pests.

    [0004] Patent Literature 3 relates to a pesticidal composition comprising [2,5-dioxo-3-(2-propynyl)-1-imidazolidinyl]methyl 3-(2-methyl-1-propenyl)-2,2-dimethylcyclopropanecarboxylate and 4-methoxymethyl-2,3,5,6-tetrafluorobenzyl 3-(2-cyano-1-propenyl)-2,2-dimethylcyclopropanecarboxylate as active ingredients.

    [0005] Patent Literature 4 describes compositions of matter which contain an agriculturally-active material in combination with an agricultural adjuvant and at least one alkylene carbonate. Patent Literature 5 discloses a liquid insecticidal composition comprising an active insecticide, a liquid medium and at least one of N-vinyl 2-pyrrolidone, N-methyl 2-pyrrolidone, and 2-pyrrolidone.

    [0006] Patent Literature 6 relates to a flushing out-enhancing agent comprising a heteromonocyclic compound such as an N-alkylpyrrolidone as an active ingredient.

    [0007] Patent Literature 7 describes an insect repellant formulation deliverable by a piezoelectric device.

    [0008] Patent Literature 8 discloses liquid formulations of pyrethroids.

    [0009] Patent Literature 9 relates to a non-aqueous agrochemical formulation comprising, amongst others, a non-ionic distyrylphenol alkoxylate and a ionic distryolphenol alkoxylate.

    [0010] Patent Literature 10 describes a cyclopropanecarboxylic acid ester compound having a pesticidal efficacy.

    [0011] Patent Literature 11 discloses agrochemical formulations for improving the action and plant compatibility of crop protection agents.

    [0012] Patent Literature 12 relates to an insecticidal solution containing an insecticidal active ingredient and propylene carbonate.

    Citation List


    Patent Literature



    [0013] 
    Patent Literature 1:
    JP-A 2004-2363
    Patent Literature 2:
    WO 2009/031629 A2
    Patent Literature 3:
    WO 2009/031697 A2
    Patent Literature 4:
    US 2004/106523 A1
    Patent Literature 5:
    US 4 595 679 A
    Patent Literature 6:
    JP 2003 327502 A
    Patent Literature 7:
    US 2002/147179 A1
    Patent Literature 8:
    WO 2008/006464
    Patent Literature 9:
    US 2009/105073 A1
    Patent Literature 10:
    US 2003/195119 A1
    Patent Literature 11:
    US 2008/255204 A1
    Patent Literature 12:
    JPH 11322516 A

    Summary of Invention


    Technical Problem



    [0014]  An object of the present invention is to provide a pest control composition and a control method of pests having an excellent control effect on pests.

    Solution to Problem



    [0015] The present inventors studied intensively to find a pest control composition having an excellent control effect on pests. As a result, the present invention was completed.

    [0016] The present invention includes:
    1. (1) A pest control composition containing a combination of an ester compound represented by the formula (1):

      and one or more cyclic compound(s) selected from the group consisting of γ-butyrolactone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-octyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, propylene carbonate and sulfolane, and
      wherein the weight ratio of the ester compound to the cyclic compound(s) is within the range of from 1 : 1 to 1 : 100.
    2. (2) A method for controlling pests which comprises applying the pest control composition according to (1) to the pests or areas where the pests live, wherein a method for treatment of the human or animal body by therapy is excluded.
    3. (3) The pest control composition according to (1) for use in the treatment of animals having pests.
    4. (4) Use of a pest control composition according to (1) in the manufacture of a medicament for controlling pests.


    [0017] Herein disclosed is further:
    1. (1) A pest control composition containing a combination of an ester compound represented by the formula (1):

      and a cyclic compound represented by the formula (2a):

      [wherein X1 represents an oxygen atom or a C1-C8 alkylimino group, X2 represents a methylene group, an oxygen atom or a C1-C8 alkylimino group, and R1 represents a hydrogen atom or a methyl group],
      and/or a cyclic compound represented by the formula (2b):

      [wherein R2 represents a hydrogen atom or a methyl group];
    2. (2) A pest control composition containing a combination of an ester compound represented by the formula (1):

      and a cyclic compound represented by the formula (2a):

      [wherein X1 represents an oxygen atom or a C1-C8 alkylimino group, X2 represents a methylene group, an oxygen atom or a C1-C8 alkylimino group, and R1 represents a hydrogen atom or a methyl group];
    3. (3) The pest control composition according to the above (1) or (2), wherein the weight ratio of the ester compound to the cyclic compound(s) is within the range of from 4 : 1 to 1 : 300; and
    4. (4) The pest control composition according to the above (1) or (2), wherein the weight ratio of the ester compound to the cyclic compound(s) is within the range of from 1 : 1 to 1 : 100.

    Effects of Invention



    [0018] Pests can be controlled by using the pest control composition of the present invention.

    Description of Embodiments



    [0019] The ester compound represented by the formula (1) (hereinafter, referred to as a present ester compound) can be produced, for example, by a process described in JP-A 2004-2363.

    [0020] The present ester compound has isomers based on two asymmetric carbon atoms on the cyclopropane ring and based on a double bond of a substituent on the cyclopropane ring. In the present invention, the ester compound containing the active isomers in any ratios can be used.

    [0021] Examples of the present ester compound include:

    [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl (1R)-3-(2-cyano-1-propenyl)-2,2-dimethylcyclopropanecarboxylate, [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl (1R)-trans-3-(2-cyano-1-propenyl)-2,2-dimethylcyclopropanecarboxylate,

    [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl (1R)-cis-3-(2-cyano-1-propenyl)-2,2-dimethylcyclopropanecarboxylate,

    [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl (1R)-trans-3-((E)-2-cyano-1-propenyl)-2,2-dimethylcyclopropanecarboxylate, and

    [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl (1R)-trans-3-((Z)-2-cyano-1-propenyl)-2,2-dimethylcyclopropanecarboxylate.



    [0022] In the formula (2a), X1 represents an oxygen atom or a C1-C8 alkylimino group, X2 represents a methylene group, an oxygen atom or a C1-C8 alkylimino group, and R1 represents a hydrogen atom or a methyl group

    [0023] When X1 is an oxygen atom, X2 is preferably a methylene group or a C1-C8 alkylimino group.

    [0024] When X1 is a C1-C8 alkylimino group, X2 is preferably an oxygen atom or a C1-C8 alkylimino group.

    [0025] When X2 is a methylene group, X1 is preferably an oxygen atom or a C2-C8 alkylimino group.

    [0026] In the formula (2a), examples of the "C1-C8 alkylimino group" represented by X1 or X2 include a methylimino group, an ethylimino group, a propylimino group, a butylimino group, a pentylimino group, a hexylimino group, a heptylimino group and an octylimino group.

    [0027] The cyclic compounds represented by the formula (2a) and (2b) (hereinafter, referred to as a present cyclic compound), for example, are commercially available.

    [0028] Examples of the present cyclic compound represented by the formula (2a) include the following compounds:

    A compound of the formula (2a) wherein X1 is an oxygen atom and X2 is a methylene group;

    A compound of the formula (2a) wherein X1 is an oxygen atom and X2 is an oxygen atom;

    A compound of the formula (2a) wherein X1 is an oxygen atom and X2 is a C1-C8 alkylimino group;

    A compound of the formula (2a) wherein X1 is a C1-C8 alkylimino group and X2 is a methylene group;

    A compound of the formula (2a) wherein X1 is a C1-C8 alkylimino group and X2 is an oxygen atom;

    A compound of the formula (2a) wherein X1 is a C1-C8 alkylimino group and X2 is a C1-C8 alkylimino group;

    A compound of the formula (2a) wherein X1 is an oxygen atom and X2 is a methylene group or a C1-C8 alkylimino group;

    A compound of the formula (2a) wherein X1 is a C1-C8 alkylimino group and X2 is an oxygen atom or a C1-C8 alkylimino group;



    [0029] 
    1. (i) γ-butyrolactone (i.e., a compound of the formula (2a)-wherein X1 is an oxygen atom, X2 is a methylene group, and R1 is a hydrogen atom; included in the present invention);
    2. (ii) N-methyl-2-pyrrolidone (i.e., a compound of the formula (2a) wherein X1 is a methylimino group, X2 is a methylene group, and R1 is a hydrogen atom; included in the present invention);
    3. (iii) N-ethyl-2-pyrrolidone (i.e., a compound of the formula (2a) wherein X1 is an ethylimino group, X2 is a methylene group, and R1 is a hydrogen atom; included in the present invention);
    4. (iv) N-octyl-2-pyrrolidone (i.e., a compound of the formula (2a) wherein X1 is an octylimino group, X2 is a methylene group, and R1 is a hydrogen atom; included in the present invention);
    5. (v) 1,3-Dimethyl-2-imidazolidinone (i.e., a compound of the formula (2a) wherein X1 is a methylimino group, X2 is a methylimino group, and R1 is a hydrogen atom; included in the present invention);
    6. (vi) Propylene carbonate (i.e., a compound of the formula (2a) wherein X1 is an oxygen atom, X2 is an oxygen atom, and R1 is a methyl group; included in the present invention); and
    7. (vii) Ethylene carbonate (i.e., a compound of the formula (2a) wherein X1 is an oxygen atom, X2 is an oxygen atom, and R1 is a hydrogen atom).


    [0030]  Examples of the present cyclic compound represented by the formula (2b) include the following compound: (viii) Sulfolane (i.e., a compound of the formula (2b) wherein R2 is a hydrogen atom; included in the present invention).

    [0031] The pest control composition of the present invention may contain one or more of the cyclic compounds as defined in claim 1.

    [0032] Examples of pests against which the pest control composition of the present invention exhibits a controlling effect (insecticidal effect, knock down effect, repellent effect, etc.) include.harmful arthropods such as insect pests and acarine pests. Specific examples thereof are as follows.

    Lepidoptera insect pests:



    [0033] Pyralid moths (Pyralidae) such as rice stem borer (Chilo suppressalis), rice leafroller (Cnaphalocrocis medinalis), and Indian meal moth (Plodia interpunctella) ; owlet moths (Noctuidae) such as common cutworm (Spodoptera litura), beet armyworm (Spodoptera exigus), rice armyworm (Pseudaletia separata), and cabbage armyworm (Mamestra brassicae); white butterflies (Pieridae) such as common white (Pieris rapae); tortricid moths (Tortricidae) such as Adoxophyes spp.; fruitworm moths (Carposinidae); lyonetiid moths (Lyonetiidae) ; tussock moths (Lymantriidae); Plusiae; Agrotis spp. such as cutworm (Agrotis segetum) and bluck cutworm (Agrotis ipsilon); Helicoverpa spp.; Heliothis spp.; diamondback (Plutella xylostella); common straight swift (Pamara guttata) ; casemaking clothes moth (Tinea translucens) ; and webbing clothes moth (Tineola bisselliella).

    Diptera insect pests:



    [0034] Mosquitos (Calicidae) such as common house mosquito (Culex pipiens pallens), Culex tritaeniorhynchus, and Southern house mosquito (Culex quinquefasciatus) ; Aedes spp. such as yellow fever mosquito (Aedes aegypti), and Asian tiger mosquito (Aedes albopictus); Anopheles spp. such as Anopheles sinensis; midges (Chironomidae); houseflies (Muscidae) such as housefly (Musca domestica), false stable fly (Muscina stabulans), and lesser housefly (Fannia canicularis); blow flies (Calliphoridae); flesh flies (Sarcophagidae); anthomyiid flies (Anthomyiidae) such as seedcorn maggot (Delia platura), and onion maggot (Delia antiqua); fruit flies (Tephritidae); leaf-miner flies (Agromyzidae); small fruit flies (Drosophilidae); moth flies (Psychodidae); Phorid flies (Phoridae); black flies (Simuliidae); horse flies (Tabanidae); stable flies (Stomoxyidae); and biting midges (Ceratopogonidae).

    Dictyoptera insect pests:



    [0035] Cockroaches (Blattariae) such as German cockroach (Blattella germanica), smokybrown cockroach (Periplaneta fuliginosa), American cockroach (Periplaneta americana), blown cockroach (Periplaneta brunnea), and oriental cockroach (Blatta orientalis).

    Hymenoptera insect pests:



    [0036] Ants (Formicidae); hornets (Vespidae); Bethylid wasps (Betylidae); and sawflies (Tenthredinidae) such as cabbage sawfly (Athalia rosae).

    Aphaniptera insect pests:



    [0037] Dog flea (Ctenocephalides canis), cat flea (Ctenocephalides feils), and human flea (Purex irritans).

    Anoplura insect pests:



    [0038] Human louse (Pediculus humans), crab louse (Phthirus pubis), head louse (Pediculus humans capitis), and human body louse (Pediculus humanus corporis).

    Isoptera insect pests:



    [0039] Japanese subterranean termite (Reticulitermes speratus), and Formosan subterranean termite (Coptotermes formosanus).

    Hemiptera insect pests:



    [0040] Planthoppers (Delphacidae) such as small brown planthopper (Laodelphax striatellus), brown rice planthopper (Nilaparvata lugens), and white-backed rice planthopper (Sogatella furcifera); leafhoppers (Deltocephalidae) such as green rice leafhopper (Nephotettix cincticeps), and Taiwan green rice leafhopper (Nephotettix virescens); aphids (Aphididae); stink bugs (Pentatomidae); whiteflies (Aleyrodidae); scales (Coccidae); cimices such as Cimex lectularius; lace bugs (Tingidae); and psyllids (Psyllidae).

    Coleoptera insect pests:



    [0041] Corn root worms (Diabrotica spp.) such as black carpet beetle (Attagenus japonicus), varied carpet beetle (Anthreus verbasci), Western corn root worm (Diabrotica virgifera virgifera), and Southern corn root worm (Diabrotica undecimpunctata howardi); scarabs (Scarabaeidae) such as cupreous chafer (Anomala cuprea), and soybean beetle (Anomala rufocuprea); weevils (Curculionidae) such as maize weevil (Sitophilus zeamais), rice water weevil (Lissorhoptrus oryzophilus), boll weevil (Anthonomus grandis), and azuki bean weevil (Callosobruchus chinensis); darkling beetles (Tenebrionidae) such as yellow mealworm (Tenebrio molitor), and red flour beetle (Tribolium castaneum); leaf beetles (Chrysomelidae) such as rice leaf beetle (Oulema oryzae), striped flea beetle (Phyllotreta striolata), and cucurbit leaf beetle (Aulacophora femoralis); drugstore beetles (Anobiidae); Epilachna spp. such as twenty-eight-spotted ladybird (Epilachna vigintioctopunctata); powder post beetles (Lyctinae); false powder post beetles (Bostrichidae); longhorn beetles (Cerambycidae); and rove beetle (Paederus fuscipes).

    Thysanoptera insect pests:



    [0042] Melon thrips (Thrips palmi), yellow citrus thrips (Frankliniella occidentalis), and flower thrips (Frankliniella intonsa).

    Orthoptera insect pests:



    [0043] Mole crickets (Gryllotalpidae), and grasshoppers (Acrididae).

    Acarina:



    [0044] House dust mites (Pyroglyphidae) such as Dermatophagoides farinae, and Dermatophagoides ptrenyssnus; Acarid mites (Acaridae) such as mold mite (Tyrophagus putrescentiae), and Aleuroglyphus ovatus; Glycyphagid mites such as Glycyphagus privatus, Glycyphagus domesticus, and Glycyphagus destructgor; Cheyletide mites (Cheyletidae) such as Cheyletus malaccensis, and Cheyletus fortis; Tarsonemid mites (Tarsonemidae); Chortoglyphid mites (Chortoglyphidae); Haplochthoniid mites (Haplochthoniidae); spider mites (Tetranychidae) such as two-spotted spider mite (Tetranychus urticae), Kanzawa spider mite (Tetranychus kanzawai), citrus red mite (Panonychus citri), and European red mite (Panonychus ulmi); ticks (Ixodidae) such as Haemaphysalis longicornis; and parasitoid mites (Dermanyssidae) such as northern fowl mite (Ornithonyssus sylviarum), and poultry red mite (Dermanyssus.gallinae).

    [0045] In particular, the pest control composition of the present invention exhibits excellent controlling effect on Diptera insect pests, Dictyoptera pests, and Hymenoptera pests.

    [0046] In the pest control composition of the present invention, the weight ratio of the present ester compound to the present cyclic compound is with in the range of
    from 1 : 1 to 1 : 100, preferably from 1 : 2 to 1 : 100, and more preferably from 1 :3 to 1 : 100. When two or more kinds of the present cyclic compounds are contained in the pest control composition of the present invention, the ratio of the weight of the present ester compound to the total weight of the present cyclic compounds is within the above-mentioned range.

    [0047] The pest control composition of the present invention can be a simple mixture of the present ester compound and the present cyclic compound(s). However, it is usually used in the form of various formulations. Examples of the formulations include soluble concentrate, oil solution, emulsifiable concentrate, wettable powder, suspension concentrate (e.g. suspension in water, and emulsion in water), microcapsule formulation, dust, granule, tablet, aerosol, carbon dioxide formulation, heating vaporization formulation (e.g. mosquito coil, electric mosquito mat, and fluid absorption wicking-type pesticide), piezo-type spray insecticide, heating fumigant (e.g. self-burning fumigant, chemical reaction type fumigant, and porous ceramic plate fumigant), non-heating fumigant (e.g. resin fumigant, paper fumigant, unwoven fabric fumigant, woven fabric fumigant, and sublimation tablet), smoking formulation (e.g. fogging), direct contact formulation (e.g. sheet type contact formulation, tape type contact formulation, and net type contact formulation), ULV formulation, and poison bait.

    [0048] The formulation can be prepared, for example, by the following methods (1) to (3).
    1. (1) The present ester compound and the present cyclic compound(s) are mixed with a solid carrier, a liquid carrier, a gaseous carrier or feed and, if necessary, other auxiliary agents for formulations such as a surfactant.
    2. (2) A base material containing no active ingredient is impregnated with a mixture of the present ester compound and the present cyclic compound(s).
    3. (3) The present ester compound , the present cyclic compound(s) and a base material are mixed, followed by molding.


    [0049] These formulations usually contain as a total amount 0.001 to 98% by weight of the present ester compound and the present cyclic compound(s).

    [0050] Examples of the solid carrier used for the formulation include fine powders and granules such as clays (e.g. kaolin clay, diatomaceous earth, bentonite, Fubasami clay, and acidic white clay), synthetic hydrated silicon oxide, talc, ceramics, other inorganic minerals (e.g. sericite, quarts, sulfur, active carbon, calcium carbonate, and hydrated silica), and chemical fertilizers (e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ammonium chloride, and urea); and solid materials at ordinary temperature (e.g. 2,4,6-triisopropyl-1,3,5-trioxane, naphthalene, p-dichlorobenzene, camphor, and adamantane) as well as felt, fibers, cloth, woven fabrics, sheets, paper, threads, foam, porous materials and multifilaments composed of one or more of wool, silk, cotton, hemp, pulp, synthetic resins (e.g. polyethylene resins such as low-density polyethylene, linear low-density polyethylene, and high-density polyethylene; ethylene-vinyl ester copolymers such as ethylene-vinyl acetate copolymer; ethylene-methacrylate copolymers such as ethylene-methyl methacrylate copolymer, and ethylene-ethyl methacrylate copolymer; ethylene-acrylate copolymers such as ethylene-methyl acrylate copolymer, and ethylene-ethyl acrylate copolymer; ethylene-vinyl carboxylate copolymers such as ethylene-acrylic acid copolymer; ethylene-tetracyclododecene copolymer; polypropylene resins such as propylene homopolymer, and propylene-ethylene copolymer; poly-4-methylpentene-1; polybutene-1; polybutadiene; polystyrene; acrylonitrile-styrene resin; styrene elastomers such as acrylonitrile-butadiene-styrene resin, styrene-conjugated diene block copolymer, and hydrogenated styrene-conjugated diene block copolymer; fluorine plastics; acrylic resins such as polymethyl methacrylate; polyamide resins such as nylon 6, and nylon 66; polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polycyclohexylene dimethyleneterephthalate; polycarbonate; polyacetal; polyacrylsulfone; polyarylate; polyhydroxybenzoate; polyetherimide; polyestercarbonate; polyphenylene ether resin; polyvinyl chloride; polyvinylidene chloride; polyurethane; and porous resins such as foamed polyurethane, foamed polypropylene, and foamed polyethylene), glass, metals, and ceramics.

    [0051]  Examples of the liquid carrier include aromatic or aliphatic hydrocarbons (e.g. xylene, toluene, alkyl naphthalene, phenylxylylethane, kerosene, light oil, hexane, and cyclohexane), halogenated hydrocarbons (e.g. chlorobenzene, dichloromethane, dichloroethane, and trichloroethane), alcohols (e.g. methanol, ethanol, isopropyl alcohol, butanol, hexanol, benzyl alcohol, and ethylene glycol), ethers (e.g. diethylether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, tetrahydrofuran, and dioxane), esters (e.g. ethyl acetate, and butyl acetate), ketones (e.g. acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone), vegetable oils (e.g. soybean oil, and cotton oil), vegetable essential oil (e.g. orange oil, hyssop oil, and lemon oil) and water.

    [0052] Examples of the gaseous carrier include butane gas, chlorofluorocarbon gas, liquefied petroleum gas (LPG), dimethyl ether, and carbon dioxide.

    [0053] Examples of the surfactant include alkyl sulfate ester salts, alkyl sulfonates, alkylaryl sulfonates, alkylaryl ethers, polyoxyethylenated alkylaryl ethers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, olyethylene glycol ethers, polyhydric alcohol esters, and sugar alcohol derivatives.

    [0054] Examples of other auxiliary agents for formulations include binders, dispersants, and stabilizers. Specific examples thereof include casein, gelatin, polysaccharides (e.g. starch, gum arabic, cellulose derivatives, and arginic acid), lignin derivatives, bentonite, saccharides, synthetic water-soluble polymers (e.g. polyvinyl alcohol, polyvinyl pyrrolidone, and polyacrylic acid), BHT (2,6-dit-butyl-4-methylphenol), and BHA (mixture of 2-t-butyl-4-methoxyphenol and 3-t-butyl-4-methoxyphenol).

    [0055] Examples of the base material of a mosquito coil include a mixture of plant powder (e.g. wood powder, and pyrethrum) and a binder (e.g. powder of Machilus thunbergii, starch, and gluten).

    [0056] Examples of the base material of an electric mosquito mat include cotton linter matted, condensed and pressed in a plate shape, and mixed fibrils of cotton linter and pulp matted, condensed and pressed in a plate shape.

    [0057] Examples of the base material of a self-burning fumigant include combustion heat-developing agents such as nitrates, nitrites, guanidine salts, potassium chlorate, nitrocellulose, ethyl cellulose, and wood powder; heat decomposition stimulating agents such as alkali metal salts, alkaline earth metal salts, bichromates, and chromates; oxygen suppliers such as potassium nitrate; combustion supporting agents such as melamine, and wheat starch; fillers such as diatomaceous earth; and binders such as synthetic adhesives.

    [0058] Examples of the base material of a chemical reaction type fumigant include heat-developing agents such as sulfide, polysulfide, and hydrosulfide of alkali metals, and calcium oxide; catalysts such as carbonaceous materials, iron carbide, and activated clay; organic foaming agents such as azodicarbonamide, benzenesulfonyl hydrazide, dinitro pentamethylene tetramine, polystyrene and polyurethane; and fillers such as natural fibers and synthetic fibers.

    [0059] Examples of the resin used for, for example, a resin fumigant include polyethylene resins such as low-density polyethylene, linear low-density polyethylene, and high-density polyethylene; ethylene-vinyl ester copolymers such as ethylene-vinyl acetate copolymer; ethylene-methacrylate copolymers such as ethylene-methyl methacrylate copolymer, and ethylene-ethyl methacrylate copolymer; ethylene-acrylate copolymers such as ethylene-methyl acrylate copolymer, and ethylene-ethyl acrylate copolymer; ethylene-vinyl carboxylate copolymers such as ethylene-acrylic acid copolymer; ethylene-tetracyclododecene copolymer; polypropylene resins such as propylene homopolymer, and propylene-ethylene copolymer; poly-4-methylpentene-1; polybutene-1; polybutadiene; polystyrene; acrylonitrile-styrene resin; styrene elastomers such as acrylonitrile-butadiene-styrene resin, styrene-conjugated diene block copolymer, and hydrogenated styrene-conjugated diene block copolymer; fluorine plastics; acrylic resins such as polymethyl methacrylate; polyamide resins such as nylon 6, and nylon 66; polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polycyclohexylene dimethyleneterephthalate; polycarbonate; polyacetal; polyacrylsulfone; polyarylate; polyhydroxybenzoate; polyetherimide; polyestercarbonate; polyphenylene ether resin; polyvinyl chloride; polyvinylidene chloride; and polyurethane. They can be used alone or in a combination thereof. Further, if necessary, plasticizer such as phthalates (e.g. dimethyl phthalate, and dioctyl phthalate), adipates, and stearic acid can be added to these base materials. The resin fumigant is prepared by kneading the present ester compound and the present cyclic compound(s) into the base material, followed by molding it by injection molding, extrusion molding or press molding. The resultant resin formulation can undergo further processes such as molding and cutting, if necessary, processing into a form of plate, film, tape, net or string. These resin formulations can be processed into, for example, collars for animals, ear tags for animals, sheet formulations, guide strings and horticultural supports.

    [0060] Examples of the base material for poison bait include feed ingredients such as grain powder, vegetable oil, sugars, and crystalline cellulose; antioxidants such as dibutylhydroxy toluene, and nordihydroguaiaretic acid; preservatives such as dehydroacetic acid; accidental ingestion prevention agents by children and pets such as chili pepper; and pest attractive flavors such as cheese flavor, onion flavor, and peanut oil.

    [0061] The pest control composition of the present invention may be used in combination with or as a mixture with other pest control agents, repellents, or synergists.

    [0062] Examples of an active ingredient of the pest control agent include the following ingredients.
    1. (1) Synthetic pyrethroid compounds:

      Acrinathrin, allethrin, beta-cyfluthrin, bifenthrin, cycloprothrin, cyfulthrin, cyhalothrin, cypermethrin, empenthrin, deltamethrin, esfenvalerate, ethofenprox, fenpropathrin, fenvalerate, flucythrinate, flufenoprox, flumethrin, fluvalinate, halfenprox, imiprothrin, permethrin, prallethrin, pyrethrins, resmethrin, sigma-cypermethrin, silafluofen, tefluthrin, tralomethrin, transfluthrin, tetramethrin, phenothrin, cyphenothrin, alpha-cypermethrin, zeta-cypermethrin, lambda-cyhalothrin, gamma-cyhalothrin, furamethrin, tau-fluvalinate, [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate, [2,3,5,6-tetrafluoro-4-methylphenyl]methyl 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate, [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate, [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 2,2,3,3-tetramethylcyclopropanecarboxylate, etc.

    2. (2) Organic phosphorus compounds:

      Acephate, aluminium phosphide, butathiofos, cadusafos, chlorethoxyfos, chlorfenvinphos, chlorpyrifos, chlorpyrifos-methyl, cyanophos (CYAP), diazinon, DCIP (dichlorodiisopropyl ether), dichlofenthion (ECP), dichlorvos (DDVP), dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethoprophos, etrimfos, fenthion (MPP), fenitrothion (MEP), fosthiazate, formothion, hydrogen phosphide, isofenphos, isoxathion, malathion, mesulfenfos, methidathion (DMTP), monocrotophos, naled (BRP), oxydeprofos (ESP), parathion, phosalone, phosmet (PMP), pirimiphos-methyl, pyridafenthion, quinalphos, phenthoate (PAP), profenofos, propaphos, prothiofos, pyraclorfos, salithion, sulprofos, tebupirimfos, temephos, tetrachlorvinphos, terbufos, thiometon, trichlorphon (DEP), vamidothion, phorate, etc.

    3. (3) Carbamate compounds:

      Alanycarb, bendiocarb, benfuracarb, BPMC, carbaryl, carbofuran, carbosulfan ,cloethocarb, ethiofencarb, fenobucarb, fenothiocarb, fenoxycarb, furathiocarb, isoprocarb (MIPC), metolcarb, methomyl, methiocarb, NAC, oxamyl, pirimicarb, propoxur (PHC), XMC, thiodicarb, xylylcarb, aldicarb, etc.

    4. (4) Nereistoxin compounds:

      Cartap, bensultap, thiocyclam, monosultap, bisultap, etc.

    5. (5) Neonicotinoid compounds:

      Imidacloprid, nitenpyram, acetamiprid, thiamethoxam, thiacloprid, dinotefuran, clothianidin, etc.

    6. (6) Benzoylurea compounds:

      Chlorfluazuron, bistrifluron, diafenthiuron, diflubenzuron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron, triflumuron, triazuron, etc.

    7. (7) Phenylpyrazole compounds:

      Acetoprole, ethiprole, fipronil, vaniliprole, pyriprole, pyrafluprole, etc.

    8. (8) Bt toxin insecticides:

      Live spores or crystal toxins originated from Bacillus thuringiesis and a mixture thereof.

    9. (9) Hydrazine compounds:

      Chromafenozide, halofenozide, methoxyfenozide, tebufenozide, etc.

    10. (10) Organic chlorine compounds:

      Aldrin, dieldrin, dienochlor, endosulfan, methoxychlor, etc.

    11. (11) Natural insecticides:

      Machine oil, nicotine-sulfate.

    12. (12) Other insecticides:

      Avermectin-B, bromopropylate, buprofezin, chlorphenapyr, cyromazine, D-D (1,3-dichloropropene), emamectin-benzoate, fenazaquin, flupyrazofos, hydroprene, methoprene, indoxacarb, metoxadiazone, milbemycin-A, pymetrozine, pyridalyl, pyriproxyfen, spinosad, sulfluramid, tolfenpyrad, triazamate, flubendiamide, lepimectin, arsenic acid, benclothiaz, calcium cyanamide, calcium polysulfide, chlordane, DDT, DSP, flufenerim, flonicamid, flurimfen, formetanate, metam-ammonium, metam-sodium, methyl bromide, potassium oleate, protrifenbute, spiromesifen, sulfur, metaflumizone, spirotetramat, pyrifluquinazone, spinetoram, chlorantraniliprole, tralopyril, etc.



    [0063] Examples of an active ingredient of the repellent include N,N-diethyl-m-toluamide, limonene, linalool, citronellal, menthol, menthone, hinokitiol, geraniol, eucalyptol, indoxacarb, carane-3,4-diol, MGK-R-326, MGK-R-874 and BAY-KBR-3023.

    [0064] Examples of the synergist include 5-[2-(2-butoxyethoxy)ethoxymethyl]-6-propyl-1,3-benzodioxole, N-(2-ethylhexyl)bicyclo[2.2.1]hept-5-ene-2,3-dicarboxyimide, octachlorodipropyl ether, isobornyl thiocyanoacetate, and N-(2-ethylhexyl)-1-isopropyl-4-methylbicyclo[2.2.2]oct-5-ene-2,3-dicarboxyimide.

    [0065] The control method of pests of the present invention is carried out by applying the pest control composition of the present invention to pests and/or to areas where pests live (e.g., plant body, soil, indoor, and animal body). Specifically, as an application method of the pest control composition of the present invention, the following methods can be exemplified, and these methods can be appropriately selected according to, for example, the form of the pest control composition, and the application place.
    1. (1) The pest control composition of the present invention is applied as it is to pests and/or areas where pests live.
    2. (2) The pest control composition of the present invention is diluted with a solvent such as water, followed by applying to pests and/or areas where pests live.
      In this case, usually, the pest control composition of the present invention in the form of, for example, an emulsifiable concentrate, a wettable powder, a suspension concentrate or a microcapsule preparation is diluted so that the total concentration of the present ester compound and the present cyclic compound(s) becomes 0.01 to 1000 ppm.
    3. (3) The pest control composition of the present invention is heated at areas where pests live to vaporize the effective ingredients.
      In this case, the applied rate and concentration of the present ester compound and the present cyclic compound(s) can be appropriately determined according to, for example, the form of the pest control composition of the present invention, the application period, the application place, the application method, the kinds of pests, and the conditions of damage.


    [0066] In utilizing the pest control composition of the present invention for preventative purpose, the application rate is usually from 0.0001 to 1000 mg/m3 in terms of the total amount of the present ester compound and the present cyclic compound(s) when applied to space, while it is from 0.0001 to 1000 mg/m2 when applied to plane. The heating vaporization formulation such as mosquito coil and electric mosquito mat is applied by appropriately heating according to the form of the formulation to vaporize the effective ingredients. The non-heating fumigant such as resin fumigant, paper fumigant, unwoven fabric fumigant, woven fabric fumigant, and sublimation tablet can be used, for example, by leaving the formulation as it is at the place to be applied, or by making a wind toward the formulation.

    [0067] Examples of the place wherein the pest control composition of the present invention is applied for preventative purpose include closet, dresser, chest, wardrobe, cupboard, toilet, bathroom, storeroom, living room, dining room, warehouse, and inside a car. Further, the composition can also be applied to outside open space.

    [0068] When the pest control composition of the present invention is used for the treatment of livestock such as cows, horses, pigs, sheep, goats and chickens, and small animals such as dogs, cats, rats and mice, for the purpose of controlling external parasites, the use comprises veterinary known methods.

    [0069] Specifically, the formulation is administered by.way of a tablet, mixing in feed, a suppository and injection (including intramuscular, subcutaneous, intravenous and intraperitoneal injections), when systemic control is intended. On the other hand, the formulation is used by way of spraying an oil solution or aqueous solution, pour-on or spot-on treatment, washing an animal with a shampoo formulation, or putting a collar or ear tag made of a resin formulation to an animal, when non-systemic control is intended. The total dosage of the present ester compound and the present cyclic compound(s) is usually in the range from 0.01 to 1000 mg per 1 kg of an animal body. Examples

    [0070] Hereinafter, the present invention will be described in more detail by way of Production Examples, Formulation Examples and Test Examples, but the present invention is not limited to only these Examples. In Examples, the term "part(s)" means part(s) by weight unless otherwise stated.

    [0071] First, Production Examples of the pest control composition of the present invention will be described.

    Production Examples 1 to 10



    [0072] The present ester compound and any one or more of the above mentioned (i), (ii), (iii), (iv), (v), (vi) and (viii) as the present cyclic compound were mixed at a weight ratio shown in the following Table 1 to prepare a mixed composition (hereinafter, referred to as a present composition (1), (2), (3), (4), (5), (6), (7), (8), (9) or (10)).

    [0073] As the present ester compound, [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl (1R)-trans-3-(2-cyano-1-propenyl[E/Z=1/9])-2,2-dimethylcyclopropanecarboxylate (hereinafter, referred to as a present ester compound A) was used.

    [0074] 



    [0075] Then, production examples of comparative compositions to be used in Test Examples described later will be shown as Comparative Production Examples.

    Comparative Production Examples 1 to 4



    [0076] Comparative compositions containing the present ester compound A at a weight ratio shown in the following Table 2 (hereinafter, referred to as comparative compositions (1), (2), (3) and (4)) were prepared.



    [0077] Formulation Examples will be shown below.

    Formulation Example 1



    [0078] Into an aerosol container, 0.02 parts of the present ester compound A, 0.02 parts of any one of the present cyclic compounds (i) to (viii), and 59.96 parts of Isopar™ M (an isoparaffin solvent, manufactured by Exxon Mobil Corporation) are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is attached to the aerosol container, and 40 parts of a propellant (liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    Formulation Example 2



    [0079] Into an aerosol container, 0.01 parts of the present ester compound A, 0.01 parts of any one of the present cyclic compounds (i) to (viii), and 39.89 parts of Isopar™ M (an isoparaffin solvent, manufactured by Exxon Mobil Corporation) are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is attached to the aerosol container, and 60 parts of a propellant (liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    Formulation Example 3



    [0080] Intro an aerosol, container, 0.02 parts of the present ester compound A, 0.08 parts of any one of the present cyclic compounds (i) to (viii), and 59.90 parts of Isopar™ M (an isoparaffin solvent, manufactured by Exxon Mobil Corporation) are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is attached to the aerosol container, and 40 parts of a propellant (liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    Formulation Example 4



    [0081] Into an aerosol container, 0.1 parts of the present ester compound A, 0.4 parts of any one of the present cyclic compounds (i) to (viii), 3 parts of isopropyl myristate, and 56.50 parts of Isopar™ M (an isoparaffin solvent, manufactured by Exxon Mobil Corporation) are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is attached to the aerosol container,
    and 40 parts of a propellant (liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    Formulation Example 5



    [0082] Into an aerosol container, 50 parts of water, and a solution prepared by mixing 0.02 parts of the present ester compound A, 0.02 parts of any one of the present cyclic compounds (i) to (viii), 8.96 parts of Isopar™ M (an isoparaffin solvent, manufactured by Exxon Mobil Corporation), 0.8 parts of RHEODOL™ MO-60 (glyceryl oleate/propylene glycol, manufactured by Kao Corporation) and 0.2 parts of RHEODOL™ TW-0120 ((polysorbate 80, manufactured by Kao Corporation) are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is attached to the aerosol container, and 40 parts of a propellant (liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    Formulation Example 6



    [0083] Into an aerosol container, 50 parts of water, and a solution prepared by mixing 0.02 parts of the present ester compound A, 0.08 parts of any one of the present cyclic compounds (i) to (viii), 8.90 parts of Isopar™ M (an isoparaffin solvent, manufactured by Exxon Mobil Corporation), 0.8 parts of RHEODOL™ MO-60 (glyceryl oleate/propylene glycol, manufactured by Kao Corporation) and 0.2 parts of RHEODOL™ TW-0120 (polysorbate 80, manufactured by Kao Corporation are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is attached to the aerosol container, and 40 parts of a propellant (liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    Formulation Example 7



    [0084] Into an aerosol container, 0.02 parts of the present ester compound A, 0.02 parts of any one of the present cyclic compounds (i) to (viii), and 49.96 parts of NEO CHIOZOL (product name; a paraffinic solvent manufactured by Chuo Kasei Co., Ltd.) are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is attached to the aerosol container, and 50 parts of a propellant (1/1 mixture of dimethyl ether/liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    [0085] Formulation Example 8

    [0086] Into an aerosol container, 0.02 parts of the present ester compound A, 0.08 parts of any one of the present cyclic compounds (i) to (viii), and 49.90 parts of NEO CHIOZOL (product name; a paraffinic solvent manufactured by Chuo Kasei Co., Ltd.) are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is attached
    to the aerosol container, and 50 parts of a propellant (1/1 mixture of dimethyl ether/liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    Formulation Example 9



    [0087] Into an aerosol container, 0.1 parts of the present ester compound A, 0.4 parts of any one of the present cyclic compounds (i) to (viii), 6 parts of isopropyl myristate, and 23.50 parts of NEO CHIOZOL (product name; a paraffinic solvent manufacture by Chuo Kasei Co., Ltd.) are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is attached to the aerosol
    container, and 70 parts of a propellant (1/1 mixture of dimethyl ether/liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    Formulation Example 10



    [0088] Into an aerosol container, 40 parts of water, and a solution prepared by mixing 0.02 parts of the present ester compound A, 0.02 parts of any one of the present cyclic compounds (i) to (viii), 5.96 parts of NEO CHIOZOL (product name; a paraffinic solvent manufactured by Chuo Kasei Co., Ltd.), 3 parts of isopropyl myristate, 0.8 parts of RHEODOL™ MO-60 (glyceryl oleate/propylene glycol, manufactured by Kao Corporation) and 0.2 parts of RHEODOL™ TW-O120 (polysorbate 80, manufactured by Kao Corporation) are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is attached to the aerosol
    container, and 50 parts of a propellant (1/1 mixture of dimethyl ether/liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    Formulation Example 11



    [0089] Into an aerosol container, 40 parts of water, and a solution prepared by mixing 0.02 parts of the present ester compound A, 0.08 parts of any one of the present cyclic compounds (i) to (viii), 5.90 parts of NEO CHIOZOL (product name; a paraffinic solvent manufactured by Chuo Kasei Co., Ltd.), 3 parts of isopropyl myristate, 0.8 parts of RHEODOL™ MO-60 (glyceryl oleate/propylene glycol, manufactured by Kao Corporation) and 0.2 parts of RHEODOL™ TW-O120 (polysorbate 80, manufactured by Kao Corporation) are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is attached to the aerosol
    container, and 50 parts of a propellant (1/1 mixture of dimethyl ether/liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    Formulation Example 12



    [0090] Into an aerosol container, a solution prepared by mixing 0.1 parts of the present ester compound A, 0.4 parts of any one of the present cyclic compounds (i) to (viii), 8.5 parts of Isopar™ M (an isoparaffin solvent, manufactured by Exxon Mobil Corporation), 0.9 parts of RHEODOL™ SP-O10 (sorbitan oleate, manufactured by Kao Corporation) and 0.1 parts of RHEODOL™ TW-O120 (polysorbate 80, manufactured by Kao Corporation), and a solution prepared by mixing 69.86 parts of water and 0.14 parts of sodium benzoate are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is
    attached to the aerosol container, and 20 parts of a propellant (liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    Formulation Example 13



    [0091] Twenty eight parts of an ethylene-methyl methacrylate copolymer (methyl methacrylate content: 25% by weight, product name: Acryft WK 307, manufactured by Sumitomo Chemical Co., Ltd.), 2.5 parts of the present ester compound A, and 2.5 parts of any one of the present cyclic compounds (i) to (viii) (the combination of ester compound A and the cyclic compound (vii) is a Reference Example) are melted and kneaded using a
    closed-type pressure kneader (manufactured by Moriyama Company, Ltd.). The resulting kneaded product is hot-cut while being extruded from an extruder, to obtain a pellet. Thirty three parts of the pellet and 67 parts of linear low density polyethylene (a homopolymer of ethylene) are mixed and kneaded to obtain a resin kneaded product. Then, the resin kneaded product is extruded and stretched via a profile die for net molding from an extruder to obtain a cylindrical molded product having a diameter of about 7 cm, made of a net wherein rhombuses of about 5 mm on a side are formed (wherein the diameter of a filament forming the net is about 0.83 mm, and an opening rate of the net is 82%). The molded product is cut into a length of 20 cm to obtain a pest control composition.

    Formulation Example 14 (Reference Example)



    [0092] Twenty parts of the present ester compound A, 5 parts of any one of the present cyclic compounds (i) to (viii), 3 parts of NEWKALGEN PS-P (product name; naphthalenesulfonic acid, polymer with formaldehyde, sodium salt), 1 part of NEWKALGEN EX-70 (product name; sodium
    dioctylsulfosuccinate/sodium benzoate), 3 parts of NEWKALGEN SX-C (product name; sodium
    dodecylbenzenesulfonate/sodium sulfate decahydrate) (New Kalgen Series: manufactured by TAKEMOTO OIL & FAT Co., Ltd.), and 68 parts of white superior soft sugar (manufactured by Mitsui Sugar Co., Ltd.) are ground and mixed to obtain a powdery composition for an aqueous poison bait.

    Formulation Example 15



    [0093] To 24.96 parts of isopropyl alcohol were added 0.02 parts of the present ester compound A and 0.02 parts of any one of the present cyclic compounds (i) to (viii) and then mixed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). The mixture was injected into an aerosol container.

    [0094] Into the aerosol container, 30.0 parts of an ammonium benzoate-ammonium buffer (prepared by adding 29% aqueous ammonia to a 1.0% w/w solution of ammonium benzoate and then adjusting the mixture to pH 8.5) was further injected to prepare an aerosol stock solution. Then, a valve was attached to the aerosol container and 45.0 parts of dimethyl ether was filled therein under pressure via the valve to obtain an aerosol.

    Formulation Example 16



    [0095] To 24.90 parts of isopropyl alcohol were added 0.02 parts of the present ester compound A and 0.08 parts of any one of the present cyclic compounds (i) to (viii) and then mixed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). The mixture was injected into an aerosol container.

    [0096] Into the aerosol container, 30.0 parts of an ammonium benzoate-ammonium buffer (prepared by adding 29% aqueous ammonia to a 1.0% w/w solution of ammonium benzoate and then adjusting the mixture to pH 8.5) was further injected to prepare an aerosol stock solution. Then, a valve was attached to the aerosol container and 45.0 parts of dimethyl ether was filled therein under pressure via the valve to obtain a one-component aerosol.

    Formulation Example 17



    [0097] Twenty parts of the present ester compound A, 70 parts of any one of the present cyclic compounds (i) to (viii), 10 parts of [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate are mixed to obtain a soluble concentrate (the combination of ester compound A and the cyclic compound (vii) is a Reference Example).

    Formulation Example 18



    [0098] Into an aerosol container, 0.02 parts of the present ester compound A, 0.08 parts of any one of the present cyclic compounds (i) to (viii), 0.02 parts of [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate, 3 parts of isopropyl myristate, and 56.88 parts of Isopar™ M (an isoparaffin solvent, manufactured by Exxon Mobil Corporation) are placed (the combination of ester compound A and the cyclic compound
    (vii) is a Reference Example). A valve part is attached to the aerosol container and 40 parts of a propellant (liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    Formulation Example 19



    [0099] Into an aerosol container, 0.02 parts of the present ester compound A, 0.08 parts of any one of the present cyclic compounds (i) to (viii), 0.02 parts of [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 2,2-dimethyl-3-(1-propenyl) cyclopropanecarboxylate, 6 parts of isopropyl myristate, and 23.88 parts of NEO CHIOZOL (product name; a paraffinic solvent manufactured by Chuo Kasei Co., Ltd.) are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is attached to the aerosol container, and 70 parts of a propellant (1/1 mixture of dimethyl ether/liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    Formulation Example 20



    [0100] Into an aerosol container, 40 parts of water, and a solution prepared by mixing 0.02 parts of the present ester compound A, 0.08 parts of any one of the present cyclic compounds (i) to (viii), 0.02 parts of [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate, 8.88 parts of Isopar™ M (an isoparaffin solvent, manufactured by Exxon Mobil Corporation), 0.8 parts of RHEODOL™ MO-60 (glyceryl oleate/propylene glycol, manufactured by Kao Corporation) and 0.2 parts of RHEODOL™ TW-0120 (polysorbate 80, manufactured by Kao Corporation) are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is attached to the aerosol container, and 50 parts of a propellant (liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    Formulation Example 21



    [0101] Into an aerosol container, a solution prepared by mixing 0.02 parts of the present ester compound A, 0.08 parts of any one of the present cyclic compounds (i) to (viii), 0.02 parts of [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate, 8.88 parts of Isopar™ M (an isoparaffin solvent, manufactured by Exxon Mobil Corporation), 0.9 parts of RHEODOL™ SP-O10 (sorbitan oleate, manufactured by Kao Corporation) and 0.1 parts of RHEODOL™ TW-O120 (polysorbate 80, manufactured by Kao Corporation), and a solution prepared by mixing 69.86 parts of water and 0.14 parts of sodium benzoate are placed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). A valve part is attached to the aerosol container, and 20 parts of a propellant (liquefied petroleum gas) is filled therein via the valve part to obtain an aerosol.

    [0102] Formulation Example 22

    [0103] To 24.88 parts of isopropyl alcohol are added 0.02 parts of the present ester compound A, 0.08 parts of any one of the present cyclic compounds (i) to (viii), and 0.02 parts of [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate, and then mixed (the combination of ester compound A and the cyclic compound (vii) is a Reference Example). The mixture is injected into an aerosol container. Into the aerosol container, 30.0 parts of an ammonium benzoate-ammonium buffer (prepared by adding 29% aqueous ammonia to a 1.0% w/w solution of ammonium benzoate and then adjusting the mixture to pH 8.5) is further injected to prepare an aerosol stock solution. Then, a valve was attached to the aerosol container and 45.0 parts of dimethyl ether is filled therein under pressure via the valve to obtain an aerosol.

    [0104] The following Test Examples show that the pest control composition of the present invention has excellent controlling effect on pests.

    Test Example 1



    [0105] Each of the present compositions (1) to (6) and (8) and the comparative compositions (2) and (3) was diluted and dissolved with acetone to prepare an acetone solution containing 0.00625% by weight of the present ester compound A.

    [0106] Ten imagoes of housefly (Musca domestica) (5 male and 5 female imagoes) were released in a polyethylene cup (lower part diameter: 10.6 cm, upper part diameter: 12 cm, height: 7 cm), and the cup was closed with a 16 mesh nylon gauze. The cup was placed on the bottom of a test chamber (bottom: 46 cm x 46 cm, height: 70 cm). The acetone solution (0.5 g) was sprayed from a height of 30 cm above the upper side of the cup using a spray gun (spraying pressure: 0.9 kg/cm2). Immediately after spraying, the cup was taken out from the test chamber. At a given period of time after spraying, the number of knocked down insects was counted and a knock down rate was calculated (average of two runs).

    [0107] The results are shown in Table 3.
    Table 3
     Knock down rate (%) after 30 seconds
    Present composition (1) 60
    Present composition (2) 50
    Present composition (3) 40
    Present composition (4) 40
    Present composition (5) 40
    Present composition (6) 50
    Present composition (8) 40
    Comparative composition (2) 20
    Comparative composition (3) 30

    Test Example 2



    [0108] A given amount of each of the present compositions (2) to (6) and (8) to (10) and the comparative composition (4) was diluted and dissolved with 10 parts of dichloromethane, and deodorized kerosene (Isopar™ M) was further added to prepare 100 parts of a liquid composition containing 0.00625% (wt/v) of the present ester compound A.

    [0109] Ten imagoes of housefly (Musca domestica) (5 male and 5 female imagoes) were released in a polyethylene cup (lower part diameter: 10.6 cm, upper part diameter: 12 cm, height: 7 cm), and the cup was closed with a 16 mesh nylon gauze. The cup was placed on the bottom of a test chamber (bottom: 46 cm x 46 cm, height: 70 cm). The liquid composition (0.5 ml) was sprayed from a height of 30 cm above the upper side of the cup using a spray gun (spraying pressure: 0.9 kg/cm2). Immediately after spraying, the cup was taken out from the test chamber. At a given period of time after spraying, the number of knocked down insects was counted and a knock down rate was calculated (average of two runs).

    [0110] The results are shown in Table 4.
    Table 4
     Knock down rate (%) after 45 seconds
    Present composition (2) 75
    Present composition (3) 65
    Present composition (4) 65
    Present composition (5) 60
    Present composition (6) 60
    Present composition (8) 60
    Present composition (9) 75
    Present composition (10) 60
    Comparative composition (4) 20

    Test Example 3



    [0111] A given amount of each of the present compositions (1), (3), (6) and (9) and the comparative compositions (3) and (4) was diluted and dissolved with 10 parts of dichloromethane, and deodorized kerosene (Isopar™ M) was further added to prepare 100 parts of a liquid composition containing 0.00625% (wt/v) of the present ester compound A.

    [0112] Ten imagoes of German cockroach (Blattella germanica) (5 male and 5 female imagoes) were released in a test container (diameter: 8.75 cm, height: 7.5 cm, bottom: 16 mesh wire netted) of which inner wall was smeared with butter. The container was placed on the bottom of a test chamber (bottom: 46 cm x 46 cm, height: 70 cm). The liquid composition,(1.5 ml) was sprayed from a height of 60 cm above the upper side of the container using a spray gun (spraying pressure: 0.9 kg/cm2). Thirty seconds after spraying, the container was taken out from the test chamber. At a given period of time after spraying, the number of knocked down insects was counted and a knock down rate was calculated (average of two runs).

    [0113] The results are shown in Table 5.
    Table 5
     Knock down rate (%) after 0.7 minutes
    Present composition (1) 75
    Present composition (3) 55
    Present composition (6) 55
    Present composition (9) 55
    Comparative composition (3) 35
    Comparative composition (4) 10

    Test Example 4



    [0114] Each of the present compositions (2) to (8) and the comparative compositions (1) and (3) was diluted and dissolved with acetone to prepare an acetone solution containing 0.0135% (wt/v) of the present ester compound A.

    [0115] The acetone solution was added dropwise to a 6 cm x 9 cm paper filter (manufactured by Advantec Toyo Kaisha, Ltd.) so that the present ester compound A became 100 mg/cm2. Then, the paper filter was air-dried. The air-dried paper filter was folded to form a triangular cylinder having a bottom plane of a triangle of 3 cm on a side. The triangular cylinder was placed in a polyethylene cup having about 650 ml capacity. Ten imagoes of German cockroach (Blattella germanica) (5 male and 5 female imagoes) were placed in the cup together with absorbent cotton saturated with water. The polyethylene cup was kept for 2 hours at a temperature of 25°C and a humidity of 60% under light condition. Then, the number of insects which were outside the triangular cylinder was counted (treated-section).

    [0116] Using a triangular cylinder made of a paper filter treated with only acetone, a test was performed according to the same manner as above, and the number of insects which were outside the triangular cylinder was counted (non-treated section).

    [0117] A repellent rate was calculated according to the following equation (average of two runs). The results are shown in Table 6.

    Table 6
     Repellent rate (%)
    Present composition (2) 100
    Present composition (3) 79
    Present composition (4) 100
    Present composition (5) 95
    Present composition (6) 84
    Present composition (7) 79
    Present composition (8) 79
    Comparative composition (1) 53
    Comparative composition (3) 42

    Test Example 5



    [0118] Each of the present compositions (1) to (10) and the comparative compositions (1) and (4) was diluted and dissolved with acetone to prepare an acetone solution containing 0.2% by weight of the present ester compound A. The acetone solution was added dropwise to 0.5 g of a piece of an insecticidal coil (manufactured by UI Katori K.K.) so that the present ester compound A became 0.5 mg/piece. Then, the insecticidal coil was air-dried.

    [0119] Ten female imagoes of common house mosquito (Culex pipiens pallens) were released in a cubic chamber having 70 cm sides. The insecticidal coil was ignited, placed at the center on the bottom of the chamber, and was allowed to completely burn. At a given period of time after ignition of the insecticidal coil, the number of knocked down insects was counted.

    [0120] On the other hand, an acetone solution containing 20% by weight of γ-butyrolactone (hereinafter, referred to as a comparative composition (5)) was prepared. The comparative composition (5) (0.25 g) was added dropwise to 0.5 g of a piece of an insecticidal coil [manufactured by Union insecticide co., inc. (UI Katori K.K.)]. Then, the insecticidal coil was air-dried. Using the insecticidal coil, a test was performed according to the same manner as above, and the number of knocked down insects after a given period of time was counted.

    [0121] The results are shown in Table 7.
    Table 7
     Number of knocked down insects after 10 minutes
    Present composition (1) 6
    Present composition (2) 4
    Present composition (3) 4
    Present composition (4) 5
    Present composition (5) 4
    Present composition (6) 6
    Present composition (7) 5
    Present composition (8) 4
    Present composition (9) 4
    Present composition (10) 6
    Comparative composition (1) 1
    Comparative composition (4) 2
    Comparative composition (5) 0

    Industrial applicability



    [0122] Pests can be controlled by using the pest control composition of the present invention.


    Claims

    1. A pest control composition containing a combination of an ester compound represented by the formula (1):

    and one or more cyclic compound(s) selected from the group consisting of γ-butyrolactone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-octyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, propylene carbonate and sulfolane, and
    wherein the weight ratio of the ester compound to the cyclic compound(s) is within the range of from 1 : 1 to 1 : 100.
     
    2. A method for controlling pests which comprises applying the pest control composition according to claim 1 to the pests or areas where the pests live, wherein a method for treatment of the human or animal body by therapy is excluded.
     
    3. The pest control composition according to claim 1 for use in the treatment of animals having pests.
     
    4. Use of a pest control composition according to claim 1 in the manufacture of a medicament for controlling pests.
     


    Ansprüche

    1. Eine Schädlingsbekämpfungszusammensetzung, die eine Kombination einer Esterverbindung, dargestellt durch die Formel (1):

    und eine oder mehrere cyclische Verbindung(en), ausgewählt aus der Gruppe bestehend aus γ-Butyrolacton, N-Methyl-2-pyrrolidon, N-Ethyl-2-pyrrolidon, N-Octyl-2-pyrrolidon, 1,3-Dimethyl-2-imidazolidinon, Propylencarbonat und Sulfolan, enthält, und
    wobei das Gewichtsverhältnis der Esterverbindung zu der/den cyclischen Verbindung(en) innerhalb des Bereichs von 1:1 bis 1:100 liegt.
     
    2. Ein Verfahren zur Bekämpfung von Schädlingen, umfassend Aufbringen der Schädlingsbekämpfungszusammensetzung gemäß Anspruch 1 auf die Schädlinge oder auf einen Ort, den die Schädlinge befallen haben, wobei ein Verfahren zur therapeutischen Behandlung des menschlichen oder tierischen Körpers ausgeschlossen ist.
     
    3. Die Schädlingsbekämpfungszusammensetzung gemäß Anspruch 1 zur Verwendung bei der Behandlung von Tieren, die von Schädlingen befallen sind.
     
    4. Verwendung einer Schädlingsbekämpfungszusammensetzung gemäß Anspruch 1 bei der Herstellung eines Medikaments zur Bekämpfung von Schädlingen.
     


    Revendications

    1. Composition antiparasitaire contenant une combinaison d'un composé ester représenté par la formule (1) :

    et d'un ou de plusieurs composés cycliques choisis dans le groupe constitué par la γ-butyrolactone, la N-méthyl-2-pyrrolidone, la N-éthyl-2-pyrrolidone, la N-octyl-2-pyrrolidone, la 1,3-diméthyl-2-imidazolidinone, le carbonate de propylène et le sulfolane, et
    dans laquelle le rapport en poids du composé ester au(x) composé(s) cyclique(s) est dans la plage de 1:1 à 1:100.
     
    2. Procédé antiparasitaire qui comprend l'application de la composition antiparasitaire selon la revendication 1 aux parasites ou dans les zones d'habitats des parasites, dans lesquelles une méthode de traitement thérapeutique du corps humain ou animal est exclue.
     
    3. Composition antiparasitaire selon la revendication 1 destinée à être utilisée dans le traitement des animaux infestés de parasites.
     
    4. Utilisation d'une composition antiparasitaire selon la revendication 1 dans la fabrication d'un médicament antiparasitaire.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description