(19)
(11)EP 2 502 050 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 10801478.8

(22)Date of filing:  19.11.2010
(51)International Patent Classification (IPC): 
G01N 21/31(2006.01)
(86)International application number:
PCT/US2010/003006
(87)International publication number:
WO 2011/062630 (26.05.2011 Gazette  2011/21)

(54)

PHOTONIC MEASUREMENT INSTRUMENT USING NON-SOLARIZING UV GRADE FIBER OPTICS

FOTONENMESSINSTRUMENT MIT NICHT-SOLARISIERENDER UV-FASEROPTIK

INSTRUMENT DE MESURE PHOTONIQUE UTILISANT DES FIBRES OPTIQUES DE QUALITÉ UV NON SOLARISANTES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME

(30)Priority: 20.11.2009 US 263142 P

(43)Date of publication of application:
26.09.2012 Bulletin 2012/39

(73)Proprietor: PerkinElmer Health Sciences, Inc.
Waltham, MA 02451 (US)

(72)Inventors:
  • IVALDI, Juan, C.
    Redding, CT 06896 (US)
  • ST. CYR, Paul, L.
    Shelton, CT 06484 (US)
  • CHOW, Eugene
    Singapore 270015 (SG)
  • WERNER, Mark, C.
    Waltham, MA 02451 (US)

(74)Representative: Rupprecht, Kay et al
Meissner Bolte Patentanwälte Rechtsanwälte Partnerschaft mbB Widenmayerstraße 47
80538 München
80538 München (DE)


(56)References cited: : 
EP-A2- 0 177 387
JP-A- S60 207 019
US-A- 5 936 716
JP-A- 62 103 539
US-A- 5 880 823
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS REFERENCE



    [0001] The present application claims the benefit of U.S. Provisional Patent Application Serial No. 61/263,142, which was filed on November 20, 2009, by Juan C. Ivaldi et al. for an ATOMIC ABSORPTION INSTRUMENT USING NON-SOLARIZING UV GRADE FIBER OPTICS

    BACKGROUND OF THE INVENTION


    Field of the Invention



    [0002] The invention relates generally to photonic measurement instruments and, more particularly, to high-precision atomic absorption instruments.

    Background Information



    [0003] Atomic absorption instruments, such as spectrometers, are well known and are used in a variety of settings. The atomic absorption instruments of interest are high-precision systems that include precisely aligned optics that tightly couple measurement light, that is, light of an appropriate wavelength for absorption analysis, to samples. The high-precision systems also utilize additional light sources and associated optics to provide reference paths to determine and compensate for light intensities as well as correct for background absorption. The systems of interest utilize simultaneously operating measurement and reference light paths, as described in United States Patent 6,222,626.

    [0004] As described in the patent, a precisely aligned configuration of mirrors and beam splitters is used to direct the light from the measurement and background correction light sources, for example, a hollow cathode lamp "HCL" and a Deuterium (D2) lamp, simultaneously to the start of each of the measurement path and the reference path. The measurement path then uses a further plurality of precisely aligned mirrors to couple the light to a sample within an atomizer and also direct light from the atomizer to a detector, while the reference path uses optical fibers to guide the light to the detector.

    [0005] The atomizer operating in the atomic absorption spectrometer is commonly either a flame (nebulizer) or a furnace, such as a graphite tube. Certain atomic absorption spectrometers can operate with more than one type of atomizer, and include manually or automatically operated mechanical mechanisms that move one atomizer, for example, a flame chamber, out of the optical measurement path and move another atomizer, for example, a furnace, into the optical measurement path. The movement of the atomizers often necessitates a re-alignment of the precisely aligned configuration of mirrors and beam splitters that direct light to the measurement path and/or the further plurality of mirrors that tightly couple the light to the sample. The re-alignment of the optics is both time consuming and complex, and results in system downtime.

    [0006] Other known systems operate the atomizers in tandem, which works well if collimated light sources, such as lasers, are used. With light sources such as the HCLs and D2 lamps, however, the light beams diverge over the extended measurement path, and the optics of the tandem system are therefore quite complex and costly.

    [0007] The document JP 62 103 539 A discloses an atomic absorption spectrophotometer that allows two kinds of specimen atomizing methods by changing over either one of the beams to a reference beam by separately arranging two specimen atomizing on two beams.

    [0008] The document US 5 880 823 A utilizes a dual source, dual beam optical configuration that eliminates the baseline instability of Atomic Absorption Spectroscopy.

    [0009] The document EP 0 177 387 A2 discloses equipment for the emission and distribution of light by optical fibers, particularly for in-line spectrophotometric control with the aid of a double beam spectrophotometer.

    SUMMARY OF THE INVENTION



    [0010] A photonic measurement instrument is described by the independent claim 1. Prefered Embodiements of the photonic measurement instrument are described by the dependen claims 2 to 11. A method of operating an atomic absorption spectrometer is described by the independent claim 12. The atomic spectrometer comprises a photonic measurement system according to any of claims 1 to 11.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0011] The invention description below refers to the accompanying drawings, of which:

    Fig. 1 is a functional block diagram of an atomic absorption spectrometer constructed in accordance with the invention;

    Figs. 2A-2C are functional block diagrams of couplers depicted in Fig. 1;

    Fig. 3 depicts an alternative arrangement of an atomizer that is depicted in the system of Fig. 1;

    Fig. 4 is a flowchart of the operations of the system of Fig. 1;

    Fig. 5 is an alternative arrangement of a source module that is depicted in Fig. 1;

    Fig. 6 is an alternate arrangement of a sample module that is depicted in Fig. 1; and

    Fig. 7 is an alternative configuration of the system depicted in Fig. 1.


    DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT



    [0012] The drawings are not to scale and certain components may be enlarged relative to other components for ease of explanation. The same reference numerals in different drawings refer to the same components. A photonic measurement instrument is described by example as an atomic absorption spectrometer. Other photonic measurement systems may be similarly configured, for example, systems employing inductively coupled plasma optical emission spectroscopy, optical detection in liquid chromatography, UV/visible spectroscopy and UV/visible near infrared spectroscopy. In such systems appropriate analysis chambers are utilized in the same manner as the atomizers discussed below.

    [0013] Referring to Fig. 1, an atomic absorption spectrometer includes a source module 102, a sample module 104 and a detection module 106 that are interconnected by fiber optic cables 108-111 that are segments of paths 1000 and 2000 through the system. The source module includes two types of light sources 120 and 122, for example, a hollow cathode lamp (HCL) that operates at a desired wavelength for absorption analysis and a Deuterium (D2) lamp that provides light for background correction. The light produced by the light sources is guided directly from the light sources by fiber optic cables 128 and 129, which are also segments of the paths 1000 and 2000, respectively. The respective fiber optic cables 128 and 129 consist of multiple optical fibers.

    [0014] A selector/mapper 130 included in the source module 102 bundles the optical fibers of the cables 128 and 129 and maps the fibers to fiber optic cables 108 and 109, which are branches that guide light from both sources simultaneously to each of two atomizers 140 and 150 in the sample module 104. The cables 128, 129, 108 and 109 form a first set of fiber optic cables. Fiber optic cables 110 and 111 guide light from the atomizers 140 and 150 in the sample module 104 to a detector 160 in the detection module 106. The cables 110 and 111, which form a second set of fiber optic cables, are also segments of the respective paths 1000 and 2000. In the example, the fiber optic cables in the first and second sets consist of non-solarizing UV grade optical fibers, which are appropriate for instruments that may operate with light wavelength ranges that are referred as "deep UV," such as, for example, down to 193nm. For instruments operating in other wavelength ranges, the same or other optical fibers may be used.

    [0015] The detector 160, which receives the light guided to it by the fiber optic cables 110 and 111, may be a monochromator that, as needed, utilizes slits or other mechanisms (not shown) to direct the light provided by the fiber optic cables to different regions of a single sensor. Alternatively, the detector may include two sensors (not shown) that are positioned appropriately to receive light directly from corresponding cables. The detector 160 operates in a known manner to produce signals that correspond to the intensities of the impinging light of selected wavelengths, and provides the signals to a processing sub-system 194.

    [0016] A system controller 180 controls the operations of the components of the respective modules 102, 104 and 106 and the processing sub-system 194 based on a selection of an atomizer, as discussed in more detail below. The system controller is configured to receive signals from an input device 190, such as a computer keyboard or touch screen, through which a user provides atomizer selection instructions and, as appropriate, other instructions for the analysis. A display device 192 provides information to the user relating to system operation, as well as the results of the processing performed by the processing sub-system 194.

    [0017] The atomizers 140 and 150 may be, for example, a flame chamber, or nebulizer, and a furnace, such as, for example, a graphite tube. A user enters instructions through the input device 190, to select which of the atomizers to use for sample measurement at a given time. In response to the instructions, the system controller 180 controls operation of the light sources 120 and 122 and the atomizers 140 and 150, to provide optical measurement, background correction and reference information to the detector 160.

    [0018] More specifically, the system controller 180 operates the selected atomizer 140, 150 in a known manner to provide the light from which sample measurements and background correction information is obtained and operates the non-selected atomizer in a mode that allows light to simply pass through, to provide reference information. The system controller further controls the operation of the processing sub-system 194, such that the sub-system processes the signals associated with the selected atomizer as measurement path signals and the signals associated with the non-selected atomizer as reference path signals. The system controller thus instructs the processor sub-system to process signals provided from, as appropriate, a particular region of the sensor or a particular sensor as the measurement signals, and the signals from the other region or sensor as the reference signals.

    [0019] The system thus allows a user to select either of the atomizers for sample measurement at any given time, without having to reconfigure the system. Notably, the selection of an atomizer does not require a mechanical movement of one or more atomizers into or out of the optical measurement path. Accordingly, in the system 100 the optics in the measurement path do not have to be re-aligned to change the atomizer included in the measurement path.

    [0020] To optimize the system, fiber optic coupling units 124, 125 may be used within the source module 102 to couple the light produced by the light sources 120, 122 to the respective fiber optic cables 128 and 129. Within the sample module 104, fiber optic coupling units 132, 133 may be used to couple light from the cables 108 and 109 to designated areas, for example, the centers, of the respective atomizers 140, 150. Further, fiber optic coupling units 134, 136 may be used to couple light from the atomizers to the fiber optic cables 110 and 111, which then guide the light to the detection module 106. The coupling units are described in more detail with reference to Figs. 2A-C.

    [0021] Referring now to Fig. 2A, a representative coupling unit 3000 consists of a coupler 304, in the example, an off-axis elliptical mirror that couples light provided by a source 300 that is located at a first of two focal points of the mirror to a destination 302 that is located at the second focal point of the mirror. In the example, the mirror reflects the light with a 90° bend, though other degree bends, for example 30° or 60°, may be utilized by design.

    [0022] The coupler 304 is essentially characterized by a ratio of the first and second focal lengths. For example, a 0.5x coupler has a destination that is twice as far from the mirror as the source. The coupler is further characterized by a clear aperture, which is a designated area of the mirror from which impinging beams are focused to the destination. The clear aperture, which is denoted by dotted lines 306 in the drawing, essentially determines the size of the mirror. The couplers may be utilized to change the numerical aperture of the beams, i.e., for reduction or magnification of the beams, all in a known manner.

    [0023] The coupler 304 is preferably coated with a UV-enhanced coating. In the example, the coupler is coated with UV enhanced aluminum with greater than 85% reflectivity for the wavelengths of interest. In the system 100, the wavelengths of interest are 190 nm to 900 nm. As appropriate, a rectangular mirror may be used instead of an elliptical mirror.

    [0024] In the example depicted in Fig. 2A, the destination 302 is a core 354 of a fiber optic cable 350. The cable 350 is aligned with the coupler, or mirror, 304 such that the second focal point of the mirror is within the entrance 352 of the core, which may consist of a single or multiple optical fibers.

    [0025] In the system, each of the couplers couples light either to or from a fiber optic cable. The respective fiber optic cables are characterized by numerical apertures, as are the light sources 120, 122 and the entrances and exits 141, 151 and 143, 153 (Fig. 2C) of the atomizers 140, 150. The couplers preserve or change the numerical apertures of the beams and/or the magnification of the beams from one component to the next along the paths 1000 and 2000 as desired. In the example, the coupling units 124 and 125 are 0.5x couplers that reduce the numerical aperture of the beams, the coupling units 132 and 135 are 2x couplers that inflate the numerical apertures of the beams, and the coupling units 134 and 136 are Ix couplers that relay, or preserve the numerical apertures of, the beams.

    [0026] Referring now also to Fig. 2B, to configure the system, coupling units 124, 125 on the source module 102 are aligned with the light sources 120, 122 and the fiber optic cables 128, 129. The coupling units are thus positioned such that the light sources are at the first focal points of the corresponding couplers, or mirrors, and entrances 126 and 127 of fiber optic cables 128, 129 are at the second focal points of the mirrors. The fibers 129, 128 extend through the selector/mapper 130, which bundles and maps respective optical fibers to guide the light from each of the individual sources to both of the atomizers 140, 150 over cable sections 108, 109.

    [0027] Referring now also to Fig. 2C, on the sample module 104, the ends 105, 107 of the cable sections 108, 109 are aligned with the coupling units, or couplers, 132 and 135 as sources and the couplers couple light from the fibers through respective entrances 141, 151 of the atomizers 140, 150 to the second focal points of the couplers which are, in the example, at the centers of the atomizers. Similarly, the coupling units 134 and 136 are aligned with exits 143, 153 of the atomizers, to couple light from the atomizer centers, as sources, to the entrances 113, 115 of fiber optic cables 110 and 111. Once the couplers and fibers are properly aligned on the source and sample modules 102, 104, the modules 102, 104, 106 may be moved relative to one another by the bending of any or all of the cables 108, 109, 110, 111. The relative movement of the modules does not adversely affect the alignment of the system optics, however, because the coupling units are located within the respective modules. For efficient system operation, the movement of the modules should not introduce a bend radius of less than 300 times the diameter of the smallest optical fiber of the bending fiber optic cable. The optical fibers may but need not be the same diameter over the entire system. Alternatively, the first and second sets of fiber cables may utilize optical fibers of different respective diameters. For ease of explanation, we have not shown in the drawings protective walls with quartz covered openings to allow light through, and so forth that are situated between the atomizers and the optics and serve to isolate the optics from corrosive vapors that may be present during analysis. The use of such walls is well known in atomic absorption instruments that utilize traditional optics and is employed in the current system for the same reasons.

    [0028] The user-selectable and interchangeable paths for both measurement and reference signals provides a great deal of flexibility to not only the use of the system but also the configuration of the system. Specifically, the source, sample and detection modules 102, 104 and 106 can be arranged such that the heat sources for the respective atomizers 140, 150 are situated away from temperature sensitive system components. Further, in a system that is used to analyze volatile or radioactive materials, a given atomizer or both atomizers may be segregated from other system components.

    [0029] For example, as shown in Fig. 3, an atomizer, which in the example is a flame chamber 150, is operated in a glove box 240, with optical feedthroughs 242 and 243 mounted to the walls of the glove box. The coupling unit 132, which is located inside the glove box, couples the light received through the optical feedthrough 242 through the chamber entrance 151 to the center of the flame chamber. The coupling unit 134, which receives light sourced the center of the flame chamber through the atomizer exit 153, couples the light through the optical feedthrough 243 into the core of the cable 110. A user has access to the atomizer through the gloved holes 250, in order to position the samples within the atomizer. The system controller operates the system as described above to perform the analysis, with the segregated atomizer 150 selected or not, as appropriate.

    [0030] The respective modules 102, 104, 106 of the atomic absorption spectrometer 100 may be separately manufactured. Further, the respective modules may be optimized for particular uses, and thus, different system configurations may be assembled. For example, the modules manufactured for a given system may be optimized for use with light of particular wavelengths, and so forth. Also, as discussed, the sample module, for example, may be optimized for use with radioactive or other materials that require segregation of one or both of the atomizers.

    [0031] Referring now also to Fig. 4, the operations of the atomic absorption spectrometer 100 are described. A user in step 480 enters into the system, through the input device 190, his or her selection of which of the atomizers 140, 150 to use for sample analysis. The user also, as appropriate, provides information and/or instructions relating to the analysis to be performed, such as, duration, temperature and so forth. Alternatively, the user may select a pre-programmed analysis routine.

    [0032] In the example, the user selects the flame compartment 140. In response to the selection information, the system controller 180, in step 482, instructs the processing sub-system 194 to process signals associated with the selected atomizer as measurement signals and signals associated with the non-selected atomizer as reference signals. The system controller thus specifies that signals provided by a given sensor or given region of a sensor in the detector 160 are to be processed as measurement signals and signals from another sensor or region are to be processed as reference signals. In step 484, the user arranges the sample within the selected atomizer.

    [0033] Once the sample is in place, the system controller, in step 486, operates the selected atomizer in a known manner to perform the requested analysis. In addition, the system controller operates the non-selected atomizer in a "stand-by" mode, in which the light provided by fiber optic cable to the atomizer is passed to the fiber optic cable leading from the atomizer to the detector. Further, the system controller operates the HCL and D2 lamp and the detector 160 in a known manner for the analysis.

    [0034] The system controller 180 thus operates the light sources 120, 122 and the detector 160 in synchronism. In the example, the system controller operates the lamps and the detector in synchronous on and off cycles of, for example, 50 Hz. As is discussed in United States Patent 6,222,626, the HCL and D2 lamp are operated separately for at least part of a detection cycle.

    [0035] In step 488, the processor sub-system 194 processes the signals provided by the detector 160 in a known manner, in accordance with the instructions from the system controller as to which signals are measurement signals and which signals are reference signals.

    [0036] The user may, in step 490, select the same or other atomizer for the analysis of a next sample, and the system controller operates the system accordingly.

    [0037] Referring now to Fig. 5, multiple HCLs 1201, 1202 ... 120i of different wavelengths may be included in the source module 102. Alternatively, some or all of the light sources 120i may be electrodeless discharge lamps (EDLs). Multiple lamps may be positioned to operate simultaneously with the coupling unit with only a selected lamp or lamps operating at any given time or, as discussed below, the coupling unit may be repositioned relative to a selected lamp. A user or the system controller selects which of the HCLs and/or EDLs to use for a given analysis, and the system controller then controls the operation of the selected lamp appropriately to perform the analysis.

    [0038] The coupling unit 124 may be moveable relative to the HCLs and/or EDLs, by a slight bending of the fiber optic cable 128. The coupling unit is thus moved to a designated position (shown by dotted lines) proximate to the selected lamp, without altering the alignment between the coupler and the entrance 130 of the fiber optic cable 128. Alternatively, the lamps may be arranged on a turnstile (not shown) that rotates either under the control of the user or under system control to bring the selected lamp into position at the focal point of a stationary coupler, or both the lamps and the coupler may be moveable relative to one another to designated positions. In addition, multiple couplers and fiber optic cables may be used, with the respective optical fibers of the multiple cables being bundled through the selector/mapper 130 into the fiber optic cables 108, 109. With such an arrangement, the light of two or more wavelengths may also be provided to the atomizer simultaneously.

    [0039] Referring now also to Fig. 6, certain atomic absorption operations, for example, certain analyses that utilize the furnace 140, need not employ a reference signal. Accordingly, a sample module 104 may be constructed with two side-by-side in-line furnaces 140 and 950, such that the selected furnace operates while a user arranges a next sample to be analyzed in the non-selected atomizer. In response to system controller instructions, the processing sub-system 194 processes the signals from the selected atomizer as measurement signals. Presumably, the non-selected processor does not pass optical information through to the second set of fiber optic cables. The throughput of the system can thus be increased by the selectable and interchangeable use of the two furnace atomizers, without requiring a reconfiguration and/or re-alignment of the system components.

    [0040] Alternatively, as depicted in Fig. 7, the system may be configured with a separately routed, dedicated reference fiber cable 960. The detector 160 thus operates with three sensing regions or three sensors (not shown). In this configuration, the system controller 184 controls the processor sub-system 194 to ensure that the signals from the selected atomizer are processed as measurement signals, the signals from the non-selected atomizer are not processed, and the signals from the dedicated reference path are processed as reference signals. The measurement path in this configuration is selectably interchangeable, to provide the system flexibility described above.

    [0041] The systems described herein may be configured with more than two atomizers in selectable and interchangeable measurement and reference paths, with the user selecting one of the atomizers for sample measurement at a given time and either the user or the system controller assigning one of the non-selected atomizers to act as part of the reference path. The system controller instructs the processing sub-system 194 to process the signals associated with the selected processor as the measurement signals and, as appropriate, the signals associated with the non-selected assigned atomizer as the reference signals. In such a system, any or all of the non-selected atomizers may operate in stand-by mode and pass signals from the first to the second set of fiber optic cables, with only the signals from the non-selected atomizer that is assigned to the reference path being processed by the processing sub-system. As discussed, the reference path may instead be provided by a dedicated fiber optic cable. The multiple atomizer configuration of the system provides the same flexibility described above, since the measurement path and, as appropriate, the reference path, are selectable and interchangeable through the system.

    [0042] The system may provide to a given atomizer different ratios or intensities of HCL and/or DU light when, for example, greater intensities of light may be required to perform an anlysis. The selector/mapper may provide a mix of 60%/40% HCL/DU light, or other selected ratios such as 70%/30%, by appropriately mapping and bundling the light from the respective sources to the atomizers. The selector/mixer may similarly provide simultaneously to one of the atomizers various mixes of different wavelengths of light produced by two or more HCL's.

    [0043] Alternatively, or in addition, a switching mechanism (not shown) may be employed to provide increased throughput to a given atomizer that utilizes only light from a single type of light source, such as an HCL, as opposed to light from both the HCL and a D2 lamp. When an atomizer that requires only the HCL light is selected, the switching mechanism mechanically connects a single light source to an additional fiber cable (not shown) that by-passes the selector/mapper and runs to the atomizer, such as the furnace 140. Otherwise, the switching mechanism provides light from both the HCL and the D2 lamp to the selector/mapper, which in-turn, provides mixed HCL and D2 light to both atomizers over the second set of fiber optic cables 108 and 109.

    [0044] The foregoing description has been limited to a specific embodiment of this invention. It will be apparent, however, that variations and modifications may be made to the invention, such as the use of other light sources, for example, electrodeless discharge lamps, other types of atomizers, for example, cold vapor cells, in place of or in addition to the lamps and atomizers described above, the selector/mapper may map the light from particular light sources to sub-sets of the atomizers, light from multiple HCLs and/or EDLs may be mapped simultaneously to the atomizers through bundling of the associated optical fibers and a polychromatic detector may be used in place of the monochromatic detector, light from a single light source may be mapped to each atomizer, and so forth, with the attainment of some or all of its advantages.


    Claims

    1. A photonic measurement system including two or more light sources (120, 122);
    at least two analysis chambers (140, 150);
    a first set of fiber optic cables (128, 129) that guides light produced by the two or more light sources to a selector/mapper (130);
    a second set of fiber optic cables (108, 109);
    said selector/mapper (130) being arranged to bundle optical fibers of the first set of fiber optic cables (128, 129) and to map the optical fibers of each cable of the first set of the fiber optic cables to the fiber optic cables of the second set of fiber optic cables (108, 109); said second set of fiber optic cables being arranged to guide the light simultaneously to each of the at least two analysis chambers (140, 150);
    a third set of fiber optic cables (110, 111) that guide light from the respective analysis chambers to a detector (106);
    the detector configured to produce signals corresponding to intensities of light guided to the detector from respective cables of the third set of fiber optic cables;
    a processing sub-system (194) that processes signals provided by the detector; and
    a system controller (180) that controls the two or more light sources and the analysis chambers to operate a selected analysis chamber to perform a sample analysis and controls the processing sub-system to process the signals associated with the selected analysis chamber as measurement signals.
     
    2. The photonic measurement system of claim 1 wherein the light sources are of first and second types.
     
    3. The photonic measurement system of claim 2 wherein the processing sub-system (194) processes signals associated with a non-selected analysis chamber as reference signals.
     
    4. The photonic measurement system of claim 3 wherein the system is an atomic absorption spectrometer and the analysis chambers are either a furnace atomizer and a flame atomizer or both furnaces.
     
    5. The photonic measurement system of claim 1 further including
    a first plurality of couplers to couple light to and from the fiber optic cables in the first set, and
    a second plurality of couplers to couple light to the fiber optic cables in the second set.
     
    6. The photonic measurement system of claim 5 wherein the first and second couplers are off-axis ellipsoid mirrors.
     
    7. The photonic measurement system of claim 2 further including
    a third fiber optic cable that provides light from the first and second types of light sources to the detector; and
    the processing sub-system processes signals associated with the third fiber optic cable as reference signals.
     
    8. The photonic measurement system of claim 4 wherein the first and second light sources are either hollow cathode lamps and Deuterium lamps (120, 122), or electrodeless discharge lamps and Deuterium lamps.
     
    9. The photonic measurement system of claim 1 wherein the system performs one of inductively coupled plasma optical emission spectroscopy, optical detection in liquid chromatography, Ultraviolet/visible spectroscopy and Ultraviolet/visible near infrared spectroscopy.
     
    10. The photonic measurement system of claim 4 further including a switching mechanism that provides light from the first source type to a first selected analysis chamber and light from both first and second source types to a different selected analysis chamber.
     
    11. A method of operating an atomic absorption spectrometer comprising a photonic measurement system according to any one of claims 1 to 11, the method comprising selecting an atomizer from at least two atomizers that are configured within respective guided light paths from light sources of source module (102) to a detector; and
    operating a processing sub-system that is configured to receive signals from the detector to process signals associated with the selected atomizer as measurement signals; and
    providing a first set of fiber optic cables (128, 129) and a second set of fiber optic cables (108, 109); the first set of fiber optic cables (128, 129) is configured to guide light to a selector/mapper (130); the selector/mapper (130) is arranged to bundle optical fibers of the first set of fiber optic cables (128, 129) and configured to map the optical fibers of each cable of the first set of the fiber optic cables to the fiber optic cables of the second set of fiber optic cables (108, 109), said second set of fiber optic cables (108, 109) is arranged to guide the light simultaneously to each of the at least two analysis chambers (140, 150).
     
    12. The method of claim 11 further including operating the processing sub-system to process signals associated with a given non-selected atomizer as reference signals.
     
    13. The method of claim 12 further including making a new atomizer selection; and
    operating the processing sub-system (194) to processing signals associated with the newly selected atomizer as measurement signals and signals associated with a given non-selected atomizer as reference signals.
     
    14. The photonic measurement system of claim 1 further including a source module including the two or more light sources;
    a sample module including the at least two analysis chambers (140, 150); a detection module including the detector, the detector producing signals associated with each of the analysis chambers.
     


    Ansprüche

    1. Photonenmesssystem, umfassend zwei oder mehrere Lichtquellen (120, 122);
    mindestens zwei Analysekammern (140, 150);
    einen ersten Satz faseroptischer Kabel (128, 129), die durch die zwei oder mehreren Lichtquellen erzeugtes Licht zu einem Selektor/Mapper (130) leiten;
    einen zweiten Satz faseroptischer Kabel (108, 109);
    wobei der Selektor/Mapper (130) angeordnet ist, um optische Fasern des ersten Satzes faseroptischer Kabel (128, 129) zu bündeln und die optischen Fasern jedes Kabels des ersten Satzes der faseroptischen Kabel auf die faseroptischen Kabel des zweiten Satzes faseroptischer Kabel (108, 109) abzubilden; wobei der zweite Satz faseroptischer Kabel angeordnet ist, um das Licht gleichzeitig zu jeder der mindestens zwei Analysekammern (140, 150) zu leiten;
    ein dritter Satz faseroptischer Kabel (110, 111), die das Licht von den jeweiligen Analysekammern zu einem Detektor (106) leiten;
    der Detektor so ausgeführt ist, dass Signale erzeugt werden, die Intensitäten von Licht entsprechen, das von jeweiligen Kabeln des dritten Satzes faseroptischer Kabel zu dem Detektor geführt wird;
    ein verarbeitendes Untersystem (194), das durch den Detektor bereitgestellte Signale verarbeitet; und
    eine Systemregelung (180), die die zwei oder mehreren Lichtquellen und die Analysekammern zum Bedienen einer ausgewählten Analysekammer steuert, um eine Probenanalyse durchzuführen, und das verarbeitende Untersystem steuert, um die der ausgewählten Analysekammer zugeordneten Signale als Messsignale zu verarbeiten.
     
    2. Photonenmesssystem nach Anspruch 1, wobei die Lichtquellen von erstem und zweitem Typ sind.
     
    3. Photonenmesssystem nach Anspruch 2, wobei das verarbeitende Untersystem (194) Signale, die einer nicht ausgewählten Analysekammer zugeordnet sind, als Referenzsignale verarbeitet.
     
    4. Photonenmesssystem nach Anspruch 3, wobei das System ein Atomabsorptionsspektrometer ist und die Analysekammern entweder ein Ofenzerstäuber und ein Flammenzerstäuber oder beide Öfen sind.
     
    5. Photonenmesssystem nach Anspruch 1, des Weiteren umfassend eine erste Vielzahl von Kopplern, um Licht zu und von den faseroptischen Kabeln im ersten Satz zu koppeln, und
    eine zweite Vielzahl von Kopplern, um Licht in die faseroptischen Kabel im zweiten Satz zu koppeln.
     
    6. Photonenmesssystem nach Anspruch 5, wobei der erste und der zweite Koppler außeraxiale Ellipsoidspiegel sind.
     
    7. Photonenmesssystem nach Anspruch 2, des Weiteren umfassend ein drittes faseroptisches Kabel, das Licht vom ersten und zweiten Typ der Lichtquellen dem Detektor zuführt;
    und das verarbeitende Untersystem dem dritten faseroptischen Kabel zugeordnete Signale als Referenzsignale verarbeitet.
     
    8. Photonenmesssystem nach Anspruch 4, wobei die erste und die zweite Lichtquelle entweder Hohlkathodenlampen und Deuteriumlampen (120, 122) oder elektrodenlose Entladungslampen und Deuteriumlampen sind.
     
    9. Photonenmesssystem nach Anspruch 1, wobei das System eins von induktiv gekoppelter, plasmaoptischer Emissionsspektroskopie, optischer Detektion in Flüssigchromatographie, UV/VIS-Spektroskopie und UV/VIS-Spektroskopie im Nahinfrarot ausführt.
     
    10. Photonenmesssystem nach Anspruch 4, des Weiteren umfassend einen Schaltmechanismus, der Licht von dem ersten Quellentyp einer ersten ausgewählten Analysekammer und Licht von beiden ersten und zweiten Quellentypen an eine andere ausgewählte Analysekammer bereitstellt.
     
    11. Verfahren zum Bedienen eines Atomabsorptionsspektrometers, das ein Photonenmesssystem nach einem der Ansprüche 1 bis 11 einschließt, wobei das Verfahren das Auswählen eines Zerstäubers von mindestens zwei Zerstäubern umfasst, die in jeweiligen Wegen geleiteten Lichts von Lichtquellen eines Quellenmoduls (102) zu einem Detektor gestaltet sind; und das Bedienen eines verarbeitenden Untersystems, das gestaltet ist, Signale vom Detektor zu empfangen, um dem ausgewählten Zerstäuber zugeordnete Signale als Messsignale zu verarbeiten; und
    Bereitstellen eines ersten Satzes faseroptischer Kabel (128, 129) und eines zweiten Satzes faseroptischer Kabel (108, 109); wobei der erste Satz faseroptischer Kabel (128, 129) gestaltet ist, um Licht zu einem Selektor/Mapper (130) zu leiten; der Selektor/Mapper (130) angeordnet ist, um optische Fasern des ersten Satzes faseroptischer Kabel (128, 129) zu bündeln und gestaltet ist, die optischen Fasern jedes Kabels des ersten Satzes faseroptischer Kabel auf die faseroptischen Kabel des zweiten Satzes faseroptischer Kabel (108, 109) abzubilden, wobei der zweite Satz faseroptischer Kabel (108, 109) angeordnet ist, um das Licht gleichzeitig zu jeder der mindestens zwei Analysekammern (140, 150) zu leiten.
     
    12. Verfahren nach Anspruch 11, des Weiteren umfassend das Bedienen des verarbeitenden Untersystems, um Signale, die einem vorgegebenen, nicht ausgewählten Zerstäuber zugeordnet sind, als Referenzsignale zu verarbeiten.
     
    13. Verfahren nach Anspruch 12, des Weiteren umfassend das Vornehmen der Auswahl eines neuen Zerstäubers; und
    das Bedienen des verarbeitenden Untersystems (194) zum Verarbeiten von Signalen, die dem neu ausgewählten Zerstäuber zugeordnet sind, als Messsignale, und von Signalen, die einem vorgegebenen, nicht ausgewählten Zerstäuber zugeordnet sind, als Referenzsignale.
     
    14. Photonenmesssystem nach Anspruch 1, des Weiteren umfassend ein Quellemodul mit den zwei oder mehreren Lichtquellen;
    in Probenmodul mit den mindestens zwei Analysekammern (140, 150);ein Detektionsmodul mit dem Detektor, wobei der Detektor Signale erzeugt, die jeder der Analysekammern zugeordnet sind.
     


    Revendications

    1. Système de mesure photonique incluant deux ou plusieurs sources de lumière (120, 122) ;
    au moins deux chambres d'analyse (140, 150) ;
    un premier ensemble de câbles à fibres optiques (128, 129) qui guide la lumière produite par les deux ou plusieurs sources de lumière vers un sélecteur/mappeur (130) ;
    un deuxième ensemble de câbles à fibres optiques (108, 109) ;
    ledit sélecteur/mappeur (130) étant agencé pour regrouper les fibres optiques du premier ensemble de câbles à fibres optiques (128, 129) et pour mapper les fibres optiques de chaque câble du premier ensemble de câbles à fibres optiques sur les câbles à fibres optiques du deuxième ensemble de câbles à fibres optiques (108, 109) ; ledit deuxième ensemble de câbles à fibres optiques étant agencé pour guider la lumière simultanément vers chacune desdites au moins deux chambres d'analyse (140, 150) ;
    un troisième ensemble de câbles à fibres optiques (110, 111) qui guide la lumière depuis les chambres d'analyse respectives vers un détecteur (106) ;
    le détecteur étant configuré pour produire des signaux correspondant aux intensités de la lumière guidée vers le détecteur depuis des câbles respectifs du troisième ensemble de câbles à fibres optiques ;
    un sous-système de traitement (194) qui traite les signaux fournis par le détecteur ; et
    un dispositif de commande de système (180) qui commande les deux ou plusieurs sources de lumière et les chambres d'analyse pour faire fonctionner une chambre d'analyse sélectionnée afin d'effectuer une analyse d'échantillon et commande le sous-système de traitement pour traiter les signaux associés à la chambre d'analyse sélectionnée comme des signaux de mesure.
     
    2. Système de mesure photonique selon la revendication 1, dans lequel les sources de lumière sont d'un premier et d'un deuxième type.
     
    3. Système de mesure photonique selon la revendication 2, dans lequel le sous-système de traitement (194) traite les signaux associés à une chambre d'analyse non sélectionnée comme des signaux de référence.
     
    4. Système de mesure photonique selon la revendication 3, dans lequel le système est un spectromètre d'absorption atomique et les chambres d'analyse sont soit un atomiseur de four et un atomiseur à flamme, soit toutes deux des fours.
     
    5. Système de mesure photonique selon la revendication 1, incluant en outre une première pluralité de coupleurs pour coupler la lumière vers et depuis les câbles à fibres optiques du premier ensemble et
    une deuxième pluralité de coupleurs pour coupler la lumière vers les câbles à fibres optiques du deuxième ensemble.
     
    6. Système de mesure photonique selon la revendication 5, dans lequel les premiers et deuxièmes coupleurs sont des miroirs ellipsoïdaux excentrés.
     
    7. Système de mesure photonique selon la revendication 2, incluant en outre un troisième câble à fibres optiques qui fournit la lumière provenant des premier et deuxième types de sources de lumière au détecteur ; et
    le sous-système de traitement traite les signaux associés au troisième câble à fibres optiques comme des signaux de référence.
     
    8. Système de mesure photonique selon la revendication 4, dans lequel les premières et deuxièmes sources de lumière sont soit des lampes à cathode creuse et des lampes au deutérium (120, 122), soit des lampes à décharge sans électrodes et des lampes au deutérium.
     
    9. Système de mesure photonique selon la revendication 1, dans lequel le système effectue l'une des opérations suivantes : spectroscopie d'émission optique sur plasma à couplage inductif, détection optique en chromatographie liquide, spectroscopie ultraviolet/visible et spectroscopie ultraviolet/visible/proche infrarouge.
     
    10. Système de mesure photonique selon la revendication 4, incluant en outre un mécanisme de commutation qui fournit la lumière du premier type de source à une première chambre d'analyse sélectionnée et la lumière des premier et deuxième types de source à une chambre d'analyse sélectionnée différente.
     
    11. Procédé de fonctionnement d'un spectromètre d'absorption atomique comprenant un système de mesure photonique selon l'une quelconque des revendications 1 à 11, le procédé comprenant les étapes consistant à sélectionner un atomiseur parmi au moins deux atomiseurs qui sont configurés dans des trajets de lumière guidée respectifs allant de sources de lumière d'un module de source (102) à un détecteur ;
    faire fonctionner un sous-système de traitement qui est configuré pour recevoir les signaux du détecteur afin de traiter les signaux associés à l'atomiseur sélectionné en tant que signaux de mesure ; et
    fournir un premier ensemble de câbles à fibres optiques (128, 129) et un deuxième ensemble de câbles à fibres optiques (108, 109) ; le premier ensemble de câbles à fibres optiques (128, 129) est configuré pour guider la lumière vers un sélecteur/mappeur (130) ; le sélecteur/mappeur (130) est agencé pour regrouper les fibres optiques du premier ensemble de câbles à fibres optiques (128, 129) et configuré pour mapper les fibres optiques de chaque câble du premier ensemble de câbles à fibres optiques sur les câbles à fibres optiques du deuxième ensemble de câbles à fibres optiques (108, 109), ledit deuxième ensemble de câbles à fibres optiques (108, 109) est agencé pour guider la lumière simultanément vers chacune desdites au moins deux chambres d'analyse (140, 150).
     
    12. Procédé selon la revendication 11, consistant en outre à faire fonctionner le sous-système de traitement pour traiter les signaux associés à un atomiseur non sélectionné donné comme des signaux de référence.
     
    13. Procédé selon la revendication 12, consistant en outre à effectuer une nouvelle sélection d'atomiseur ; et
    faire fonctionner le sous-système de traitement (194) pour traiter les signaux associés à l'atomiseur nouvellement sélectionné comme des signaux de mesure et les signaux associés à un atomiseur non sélectionné donné comme des signaux de référence.
     
    14. Système de mesure photonique selon la revendication 1, incluant en outre un module de source incluant les deux ou plusieurs sources de lumière ;
    un module d'échantillon incluant lesdites au moins deux chambres d'analyse (140, 150) ;
    un module de détection incluant le détecteur, le détecteur produisant des signaux associés à chacune des chambres d'analyse.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description