(19)
(11)EP 2 507 519 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
08.03.2017 Bulletin 2017/10

(21)Application number: 10798594.7

(22)Date of filing:  25.11.2010
(51)Int. Cl.: 
F15B 19/00  (2006.01)
(86)International application number:
PCT/IB2010/003011
(87)International publication number:
WO 2011/064652 (03.06.2011 Gazette  2011/22)

(54)

OUT-OF-RANGE SENSOR RECALIBRATION

NEUKALIBRIERUNG EINES SENSORS AUSSERHALB DES VORGEGEBENEN BEREICHS

RÉ-ÉTALONNAGE D'UN CAPTEUR HORS DE PORTÉE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.11.2009 US 626970

(43)Date of publication of application:
10.10.2012 Bulletin 2012/41

(73)Proprietor: Eaton Corporation
Cleveland, Ohio 44122 (US)

(72)Inventors:
  • GEHLHOFF, Wade, L.
    Shakopee MN 55379 (US)
  • SCHOTTLER, Chris, W.
    Chanhassen MN 55317 (US)
  • BALASUBRAMANIAN, Kishore
    Bloomington MN 55438 (US)
  • FAGERLUND, Christian
    S-504 96 Bredared (SE)

(74)Representative: Schwan Schorer & Partner mbB 
Patentanwälte Bauerstrasse 22
80796 München
80796 München (DE)


(56)References cited: : 
EP-A2- 1 258 717
US-B1- 6 615 114
WO-A1-2008/027169
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to sensor calibration, and, more particularly, to a preset, or automatic recalibration of an out-of-range sensor for a hydraulic actuation system.

    BACKGROUND OF THE INVENTION



    [0002] Hydraulic actuation systems, as employed to operate load transferring equipment, such as construction machinery, typically include a pressure source such as a pump, a fluid tank and at least one fluid cylinder to control a lifting arm of the subject machine.

    [0003] It is known in the art to utilize various sensors, such as for sensing pressure of a working fluid or position of a valve, to control the operation of such hydraulic actuation systems. It is conceivable that such a pressure sensor may lose calibration or fall out of detection range, and fail to generate signals that properly correspond to the sensed parameters. Such a fault may lead to loss of critical data, and render the system inoperative. In US 6615 114 B1 there is disclosed a conventional calibration method for a pressure sensor, in which high and low pressure values are used for determining a straight line correlation.

    SUMMARY OF THE INVENTION



    [0004] A method is provided for resetting a calibration of a sensor operating out of a prescribed range in a hydraulic actuation system. The hydraulic actuation system includes a pump arranged to supply fluid flow in response to a fluid flow demand, a reservoir arranged to hold fluid, and a plurality of work-ports. The pump is in fluid communication with the reservoir and with the plurality of work-ports.

    [0005] The hydraulic actuation system also includes a plurality of sensors, each sensor arranged to sense pressure at each corresponding work-port. The hydraulic actuation system additionally includes a valve system arranged to control fluid between the pump, the reservoir and the plurality of work-ports. The hydraulic actuation system also includes a controller arranged to regulate the pump and the valve system in response to the fluid flow demand and to the sensed pressures.

    [0006] The method includes detecting the sensor operating out of the prescribed range, relieving pressure in the hydraulic actuation system, opening all work-ports to the reservoir, sensing pressure at each sensor, and resetting all sensors to reservoir pressure. The method additionally includes supplying all sensors with fluid at maximum pump pressure, sensing the maximum pump pressure at each sensor, and determining an average pressure value across all sensors whose sensed pressure is within the prescribed range of the maximum pump pressure.

    [0007] Furthermore, the method includes assigning the determined average pressure value to the sensor that is operating out of the prescribed range, if the sensor operating out of the prescribed range is within the permitted error band relative to the maximum pump pressure. Moreover, the method includes resetting the calibration of the sensor that is operating out of the prescribed range based on the reservoir pressure and the average pressure values.

    [0008] The method may also include identifying whether the sensor operating out of the prescribed range is within a permitted error band relative to the maximum pump pressure. In such a case, assigning the determined average pressure value to the sensor that is operating out of the prescribed range is accomplished if the sensor operating out of the prescribed range is within the permitted error band relative to the maximum pump pressure. If, on the other hand, the sensor operating out of the prescribed range is not within the permitted error band relative to the maximum pump pressure, the method may further include generating a malfunction signal.

    [0009] According to the method, relieving pressure in the hydraulic actuation system may be performed for a predetermined amount of time, and may be accomplished either automatically, or manually by an operator of the hydraulic actuation system. The opening of all work-ports to the reservoir may be performed one at a time, in no particular order. The supplying of all sensors with fluid at maximum pump pressure may similarly be performed one at a time.

    [0010] The above method may be applied to a machine operated via a hydraulic actuation system. The hydraulic actuation system of the machine employs a plurality of work-ports that are arranged to provide energy-transfer in response to the fluid flow controlled according to the above description.

    [0011] The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0012] 

    Figure 1 is a schematic diagram illustrating a hydraulic actuation system employing pressure sensors for controlling system function; and

    Figure 2 is a flowchart of a method for controlling the hydraulic actuation system of Figure 1 operating with an out-of-range pressure sensor.


    DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0013] Referring to the drawings wherein like reference numbers correspond to like or similar components throughout the several figures, Figure 1 illustrates a schematic diagram illustrating a hydraulic actuation system 10, employing pressure sensors for controlling system function. Hydraulic actuation system 10 is commonly employed in earth moving or construction machines (not shown) for accomplishing a prescribed task, such as transferring a load.

    [0014] Hydraulic actuation system 10 includes a fluid reservoir 12 in fluid communication with a pressure source, such as a pump 14 via a fluid passage 13. The pressure source 14 is in fluid communication with a first pressure sensor 18 via a fluid passage 16. Sensor 18 is arranged to sense pressure Ps of the fluid supplied by the pressure source 14. After sensor 18, the fluid is communicated via a passage 20. Passage 20 communicates fluid to a junction from which the fluid is communicated via a passage 21 to an orifice 22. The orifice 22 is in fluid communication with a second pressure sensor 24. The pressure sensor 24 is arranged to sense pressure Pa1 of the fluid supplied to a hydraulic actuator 28 via a fluid passage 26.

    [0015] The hydraulic actuator 28 includes a moveable piston 30 that includes a piston head 30a and a rod 30b. The piston 30 separates the hydraulic actuator into a first work-port or pressure chamber 32 on the side of the piston head 30a, and a second work-port or pressure chamber 34 on the side of the piston rod 30b. Specifically, the pressure Pa1 sensed by the pressure sensor 24 corresponds to pressure of the fluid inside the first pressure chamber 32.

    [0016] At the junction with passage 21, passage 20 is also in fluid communication with a fluid passage 36, which supplies fluid to an orifice 38. The orifice 38 is in fluid communication with a third pressure sensor 40. The pressure sensor 40 is arranged to sense pressure Pb1 of the fluid supplied to the hydraulic actuator 28 via a fluid passage 42. Specifically, the pressure Pb1 sensed by the pressure sensor 40 corresponds to pressure of the fluid inside the second pressure chamber 34.

    [0017] The sensor 24 is also in fluid communication with an orifice 46 via a fluid passage 44. The orifice 46 is in fluid communication with a fourth pressure sensor 48 via a fluid passage 47. Pressure sensor 48 is arranged to sense pressure Pt of the fluid returned to the reservoir 12 via a fluid passage 50. The orifice 22 and the orifice 46 may be separate control valves configured to regulate fluid flow between the pressure source 14, the reservoir 12 and the first pressure chamber 32, or be combined into a single control valve structure.

    [0018] The sensor 40 is also in fluid communication with an orifice 54 via a fluid passage 52. The orifice 54 is in fluid communication with the pressure sensor 48. The orifice 38 and the orifice 54 may be separate control valves configured to regulate fluid flow between the pressure source 14, the reservoir 12 and the second pressure chamber 34, or be combined into a single control valve structure.

    [0019] Following the sensor 18, the fluid is additionally communicated via a passage 56 to a junction from which the fluid is communicated via a passage 57 to an orifice 58. The orifice 58 is in fluid communication with a fifth pressure sensor 60. The pressure sensor 60 is arranged to sense pressure Pa2 of the fluid supplied to a hydraulic actuator 64 via a fluid passage 62.

    [0020] The hydraulic actuator 64 includes a moveable piston 66 that includes a piston head 66a and a rod 66b. The piston 66 separates the hydraulic actuator into a first work-port or pressure chamber 68 on the side of the piston head 66a, and a second work-port or pressure chamber 70 on the side of the piston rod 66b. Specifically, the pressure Pa2 sensed by the pressure sensor 60 corresponds to pressure of the fluid inside the first pressure chamber 68.

    [0021] At the junction with passage 57, passage 56 is also in fluid communication with a fluid passage 72, which supplies fluid to an orifice 74. The orifice 74 is in fluid communication with a sixth pressure sensor 76. The pressure sensor 76 is arranged to sense pressure Pb2 of the fluid supplied to the hydraulic actuator 64 via a fluid passage 78. Specifically, the pressure Pb2 sensed by the pressure sensor 76 corresponds to pressure of the fluid inside the second pressure chamber 70.

    [0022] The sensor 60 is also in fluid communication with an orifice 82 via a fluid passage 80. The orifice 82 is in fluid communication with a fourth pressure sensor 48 via a fluid passage 84, from where the fluid is communicated to the reservoir 12 via passage 50. The orifice 58 and the orifice 82 may be separate control valves configured to regulate fluid flow between the pressure source 14, the reservoir 12 and the first pressure chamber 68, or be combined into a single control valve structure.

    [0023] The sensor 76 is also in fluid communication with an orifice 88 via a fluid passage 86. The orifice 88 is in fluid communication with the pressure sensor 48. The orifice 74 and the orifice 88 may be separate control valves configured to regulate fluid flow between the pressure source 14, the reservoir 12 and the second pressure chamber 70, or be combined into a single control valve structure.

    [0024] Together, the eight orifices 22, 38, 46, 54, 58, 74, 82, and 88 form a valve system for managing fluid flow through the hydraulic actuation system 10. A controller 90, such as an electronic control unit (ECU), is programmed to regulate the pressure source 14 and the orifices 22, 38, 46, 54, 58, 74, 82, and 88. As understood by those skilled in the art, controller 90 regulates the pressure source 14 and the orifices 22, 38, 46, 54, 58, 74, 82, and 88 based on differences between pressures Ps, Pa1, Pb1, Pa2, Pb2 and Pt calculated by the controller, as well as according to the fluid flow demand. The fluid flow demand is generally established by a request from a construction machine's operator, for example, to raise or lower a particular load.

    [0025] The pressure data sensed and communicated to the controller 90 is additionally employed to determine which of the two chambers 32 and 34 of actuator 28, as well as which of the two chambers 68 and 70 of actuator 64, is subjected to a load. For example, in order to raise a load via the actuator 28, hydraulic actuation system 10 is regulated to supply fluid to chamber 32 such that the pressure generated within passage 16 exceeds the pressure seen by chamber 32. As known by those skilled in the art, the velocity with which a load is to be raised, which is set up by the flow rate through a particular orifice, is controlled by varying the restriction at the particular orifice and the difference in pressure between Pa1, Pb1, Ps, and Pt. It is to be additionally appreciated that when raising a specific load, chamber 32 is required to operate against the force of gravity to handle the load, i.e., the load is "passive", and thus operates an upstream work-port connecting to pressure source 14. In such a situation, chamber 34 operates as a downstream work-port connecting fluid flow to reservoir 12. On the other hand, when lowering a load, the force of gravity assists operation of the chamber 32, i.e., the load is "overrunning", and thus operates as a downstream work-port, while chamber 34 operates as an upstream work-port. Actuator 64 operates similarly to actuator 28, and is therefore also controlled according to the above description.

    [0026] At least one of the pressure sensors, 18, 24, 40, 48, 60 and 76, may contain a temperature sensor (not shown) in order to detect temperature of the pressurized fluid and provide such data to the controller 90. Having such temperature data, enables the controller 90 to calculate viscosity of the fluid. As appreciated by those skilled in the art, with fluid viscosity, as well as the pressure drop across each particular orifice being known, fluid flow across each orifice may be regulated. The controller 90 regulates fluid flow by adjusting the opening of each respective orifice 22, 38, 46, 54, 58, 74, 82, and 88, and the pressure Ps provided by the pressure source 14. Operation of the hydraulic actuation system 10 is subject to the maximum fluid flow capacity or capability of the pressure source 14. Therefore, fluid flows to chambers 32 and 34, as well as to chambers 68 and 70, are reduced by an identical ratio, in order to ensure that the maximum capacity of the pressure source is not exceeded, and the machine operator's request to handle a particular load is satisfied.

    [0027] Referring to Figure 2 in conjunction with the structure disclosed in Figure 1 and described above, a method 100 is provided for resetting calibration of a pressure sensor that is operating out of a prescribed range. According to the method 100, the resetting of the calibration takes place while the hydraulic actuation system 10 is fully operational, and is provided to facilitate a more precise response by the system 10 to fluid flow demand generated by the machine's operator.

    [0028] Typically, a pressure sensor, such as one of the sensors, 18, 24, 40, 48, 60 and 76, falling out-of-range may result in erroneous pressure data being communicated to the controller 90, and consequently being used to control the hydraulic actuation system 10. Such an event may lead to a partial or even complete loss of control over the hydraulic actuation system 10, because with the loss of control via pressure regulation, control over the fluid flow is similarly lost. Method 100, on the other hand, allows recalibration of an out-of-range sensor without removing the machine from service, such that the desired operation of the machine is restored.

    [0029] Method 100 shown in Figure 2 commences with a frame 102 where a sensor operating out of the prescribed range is detected. Out-of-range operation of one of sensors 18, 24, 40, 48, 60 and 76 is typically detected by the controller 90 via registering a sensed pressure value that is outside a prescribed tolerance or margin with respect to the expected pressure reading. Typically, pressure sensors such as contemplated herein, operate based on a gain that has a linear progression, i.e., the sensor's output is directly proportional to the received input. Thus, to estimate gain for subsequent calibration of a sensor such as 18, 24, 40, 48, 60 and 76, only two values need to be established. In order to limit inaccuracy in the estimated gain, it is preferred that one of the established values be at the lower end of the sensing range, and the other value at the upper end.

    [0030] Following frame 102, the method proceeds to frame 104, where pressure in the hydraulic actuation system 10 is relieved to the atmosphere. In order for the hydraulic actuation system 10 to enter the pressure relief mode, a.k.a., "float mode", the system may request the operator to confirm the desired operation. In frame 104, the pressure in the hydraulic actuation system 10 is preferably relieved for a predetermined amount of time to assure that the system has been substantially depressurized.

    [0031] After relieving the pressure in the hydraulic actuation system 10, the method advances to frame 106, where all work-ports, 32, 34, 68 and 70 are opened. Work-ports 32, 34, 68 and 70 are opened, via opening orifices 22, 38, 46, 54, 58, 74, 82, and 88 one at a time, but in no particular order, to the reservoir 12. From frame 106, the method advances to frame 108, where the pressure at each sensor is sensed and stored by the controller 90. Following frame 108, the method proceeds to frame 110, where all sensors are reset to pressure of reservoir 12. Depending on various functional requirements, pressure of reservoir 12 may be set up at some elevated pressure value, but will typically be set at 1 Bar (100 kPa) or lower. Hence, a value at the lower end of the sensing range for the out-of-range sensor is thereby established.

    [0032] After frame 110, the method advances to frame 112, where all sensors are supplied with fluid at a maximum pressure that pump 14 is capable of providing. After the maximum fluid pressure is provided to the sensors, the method proceeds to frame 114. In frame 114, the maximum pump pressure is sensed at each of the sensors, 18, 24, 40, 48, 60 and 76. Following frame 114, the method advances to frame 116. In frame 116, an average pressure value across all sensors whose sensed pressure is within a prescribed, i.e., acceptable, range of the maximum pump pressure, is determined.

    [0033] Such an acceptable range for the sensed maximum pump pressure will be established during design and development of hydraulic actuation system 10 based on the system's design parameters and its functional requirements. The acceptable range for the sensed maximum pump pressure will typically be within a small percentage variance of the expected, i.e., known, maximum pump pressure value. Additionally, the determination of the average pressure value may be based on a plurality of sensors whose sensed values are within a certain percentage variance of each other.

    [0034] Following frame 116, the method proceeds to frame 118, where the determined average pressure value is assigned to the sensor that is operating out of the prescribed range. Hence, a value at the upper end of the sensing range for the out-of-range sensor is thereby established. The determined average pressure value may be assigned to the out-of-range sensor, if the particular sensor remains within the permitted error band relative to the maximum pump pressure. Such a permitted error band is typically established during design and development of hydraulic actuation system 10 based on the system's design parameters, as well as on the functional requirements. Following frame 118, the method advances to frame 120, where the calibration or gain of the sensor that is operating out of the prescribed range is reset based on the reservoir pressure and the average of the maximum pressure values.

    [0035] As a result of implementation of method 100, in spite of one of the sensors 18, 24, 40, 48, 60 and 76 operating out-of-range, the hydraulic actuation system 10 is controlled to recalibrate the out-of-range sensor to return the machine to expected performance. It may, however, be determined that the out-of-range sensor is not operating within the permitted error band relative to the maximum pump pressure. In such a case, a malfunction signal may be generated by the controller 90 to alert the machine's operator that a recalibration of the out-of-range sensor was unsuccessful, and an actual repair may be required.

    [0036] While the best modes for carrying out the invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.


    Claims

    1. A method for resetting a calibration of a sensor operating out of a prescribed range in a hydraulic actuation system (10), the hydraulic actuation system including:

    a pump (14) arranged to supply fluid flow in response to a fluid flow demand; a reservoir (12) arranged to hold fluid; a plurality of work-ports (32, 34, 68, 70), such that the pump is in fluid communication with the reservoir and the plurality of work-ports; a plurality of sensors (18, 24, 40, 48, 60, 76), each sensor arranged to sense pressure at a corresponding one of the plurality of work-ports (32, 34, 68, 70); a valve system (22, 38, 46, 54, 58, 74, 82, 88) arranged to control fluid flow between the pump, the reservoir and the plurality of work-ports (32, 34, 68, 70); and a controller (90) arranged to regulate the pump (14) and the valve system (22, 38, 46, 54, 58, 74, 82, 88) in response to the fluid flow demand and to the sensed pressures;

    the method comprising:

    detecting the sensor operating out of the prescribed range;

    relieving pressure in the hydraulic actuation system (10);

    opening all work-ports (32, 34, 68, 70) to the reservoir;

    sensing pressure at each sensor (18, 24, 40, 48, 60, 76);

    resetting all the sensors (18, 24, 40, 48, 60, 76) to a reservoir (12) pressure;

    supplying all the sensors (18, 24, 40, 48, 60, 76) with the fluid at a maximum pump (14) pressure;

    sensing the maximum pump (14) pressure at each of the plurality of sensors (18, 24, 40, 48, 60, 76);

    determining an average pressure value across all sensors of the plurality of sensors (18, 24, 40, 48, 60, 76) whose sensed pressure is within the prescribed range of the maximum pump pressure;

    assigning the determined average pressure value to the sensor that is operating out of the prescribed range; and

    resetting the calibration of the sensor that is operating out of the prescribed range based on the reservoir (12) pressure and the average pressure values.


     
    2. The method according to claim 1, further comprising identifying whether the sensor operating out of the prescribed range is within a permitted error band relative to the maximum pump (14) pressure, wherein said assigning the determined average pressure value to the sensor that is operating out of the prescribed range is accomplished if the sensor operating out of the prescribed range is within the permitted error band relative to the maximum pump (14) pressure.
     
    3. The method according to claim 2, further comprising generating a malfunction signal, if the sensor operating out of the prescribed range is not within the permitted error band relative to the maximum pump (14) pressure.
     
    4. The method according to claim 1, wherein said relieving pressure in the hydraulic actuation system (10) is accomplished manually by an operator of the hydraulic actuation system.
     
    5. The method according to claim 1, wherein said relieving pressure in the hydraulic actuation system (10) is performed for a predetermined amount of time.
     
    6. The method according to claim 1, wherein said opening all work-ports (32, 34, 68, 70) to the reservoir (12) is performed one at a time.
     
    7. The method according to claim 1, wherein said supplying all sensors (18, 24, 40, 48, 60, 76) with fluid at maximum pump (14) pressure is performed one at a time.
     
    8. A method for restoring desired operation of a machine controlled by a hydraulic actuation system (10) having a sensor that is operating out of a prescribed range, the hydraulic actuation system including:

    a pump (14) arranged to supply fluid flow in response to a fluid flow demand; a reservoir (12) arranged to hold fluid; a plurality of work-ports (32, 34, 68, 70), such that the pump (14) is in fluid communication with the reservoir (12) and the plurality of work-ports (32, 34, 68, 70); a plurality of sensors (18, 24, 40, 48, 60, 76), each sensor arranged to sense pressure at a corresponding one of the plurality of work-ports (32, 34, 68, 70); a valve system (22, 38, 46, 54, 58, 74, 82, 88) arranged to control fluid flow between the pump (14), the reservoir (12) and the plurality of work-ports (32, 34, 68, 70); and a controller (90) arranged to regulate the pump (14) and the valve system (22, 38, 46, 54, 58, 74, 82, 88) in response to the fluid flow demand and to the sensed pressures to operate the machine; the method comprising:

    detecting the sensor operating out of the prescribed range;

    relieving pressure in the hydraulic actuation system (10);

    opening all work-ports (32, 34, 68, 70) to the reservoir;

    sensing pressure at each sensor;

    resetting all the sensors to a reservoir (12) pressure;

    supplying all the sensors with the fluid at a maximum pump (14) pressure;

    sensing the maximum pump (14) pressure at each of the plurality of sensors (18, 24, 40, 48, 60, 76);

    determining an average pressure value across all sensors of the plurality of sensors (18, 24, 40, 48, 60, 76) whose sensed pressure is within the prescribed range of the maximum pump (14) pressure;

    assigning the determined average pressure value to the sensor that is operating out of the prescribed range; and

    resetting the calibration of the sensor that is operating out of the prescribed range based on the reservoir (12) pressure and the average pressure values, such that the desired operation of the machine is restored.


     
    9. The method according to claim 8, additionally comprising identifying whether the sensor operating out of the prescribed range is within a permitted error band relative to the maximum pump (14) pressure, wherein said assigning the determined average pressure value to the sensor that is operating out of the prescribed range is accomplished if the sensor operating out of the prescribed range is within the permitted error band relative to the maximum pump (14) pressure
     


    Ansprüche

    1. Verfahren zum Rücksetzen einer Kalibrierung eines außerhalb eines vorgewählten Bereichs arbeitenden Sensors in einem hydraulischen Betätigungssystem (10), wobei das hydraulische Betätigungssystem versehen ist mit:

    einer Pumpe (14), die angeordnet ist, um in Ansprechen auf eine Fluidstrom-Anfrage einen Fluidstrom bereitzustellen; einem Reservoir (12), welches angeordnet ist, um ein Fluid zu beinhalten; einer Mehrzahl von Arbeits anschlüssen (32, 34, 68, 70), wobei die Pumpe in Fluidkommunikation mit den Reservoir und der Mehrzahl von Arbeitsanschlüssen steht; einer Mehrzahl von Sensoren (18, 24, 40, 48, 60, 76), wobei jeder Sensor angeordnet ist, um den Druck in einem entsprechenden der Mehrzahl von Arbeitsanschlüssen (32, 34, 68, 70) zu erfassen; einem Ventilsystem (22, 38, 46, 54, 58, 74, 82, 88), welches angeordnet ist, um den Fluidstrom zwischen der Pumpe, dem Reservoir und der Mehrzahl von Arbeitsanschlüssen (32, 34, 68, 70) zu steuern; und einem Steuergerät (90), welches angeordnet ist, die Pumpe (14) und das Ventilsystem (22, 38, 46, 54, 58, 74, 82, 88) in Ansprechen auf die Fluidstrom-Anfrage und die erfassten Drücke zu steuern;

    wobei im Zuge des Verfahrens:

    der außerhalb des vorgewählten Bereichs arbeitende Sensor ermittelt wird;

    der Druck in dem hydraulischen Betätigungssystem (10) entspannt wird;

    alle Arbeitsanschlüsse (32, 34, 68, 70) zu dem Reservoir geöffnet werden;

    der Druck an jedem Sensor (18, 24, 40, 48, 60, 76) erfasst wird;

    alle Sensoren (18, 24, 40, 48, 60, 76) auf einen Druck des Reservoirs (12) zurückgesetzt werden;

    alle Sensoren (18, 24, 40, 48, 60, 76) mit dem Fluid bei einem Maximaldruck der Pumpe (14) beaufschlagt werden;

    der Maximaldruck der Pumpe (14) an jedem der Mehrzahl von Sensoren (18, 24, 40, 48, 60, 76) ermittelt wird;

    ein durchschnittlicher Druckwert über alle Sensoren der Mehrzahl von Sensoren (18, 24, 40, 48, 60, 76), deren erfasster Druck innerhalb des vorgewählten Bereichs des maximalen Pumpendrucks liegt, ermittelt wird;

    der ermittelte Durchschnittsdruckwert demjenigen Sensor zugeordnet wird, welcher außerhalb des vorgeschriebenen Bereichs arbeitet; und

    die Kalibrierung des Sensors, welcher außerhalb des vorgeschriebenen Bereichs arbeitet, basierend auf dem Druck des Reservoirs (12) und den Durchschnittsdruckwerten rückgesetzt wird.


     
    2. Verfahren gemäß Anspruch 1, bei welchem ferner ermittelt wird, ob der außerhalb des vorgeschriebenen Bereichs arbeitende Sensor innerhalb eines zulässigen Fehlerbands mit Bezug auf den Maximaldruck der Pumpe (14) arbeitet, wobei das Zuordnen des ermittelten Durchschnittsdruckwerts zu dem außerhalb des vorgeschriebenen Bereichs arbeitenden Sensor vorgenommen wird, falls der außerhalb des vorgeschriebenen Bereichs arbeitende Sensor innerhalb des zulässigen Fehlerbands mit Bezug auf den Maximaldruck der Pumpe (14) liegt.
     
    3. Verfahren gemäß Anspruch 2, bei welchem ferner ein Fehlfunktionssignal erzeugt wird, falls der außerhalb des vorgewählten Bereichs arbeitende Sensor nicht innerhalb des zulässigen Fehlerbands mit Bezug auf den Maximaldruck der Pumpe (14) liegt.
     
    4. Verfahren gemäß Anspruch 1, bei welchem das Entspannen des Drucks in dem hydraulischen Betätigungssystem (10) manuell durch einen Bediener des hydraulischen Betätigungssystems bewerkstelligt wird.
     
    5. Verfahren gemäß Anspruch 1, bei welchem das Entspannen des Drucks in dem hydraulischen Betätigungssystem (10) über eine vorgewählte Zeitdauer ausgeführt wird.
     
    6. Verfahren gemäß Anspruch 1, bei welchem das Öffnen aller Arbeitsanschlüsse (32, 34, 68, 70) zu dem Reservoir (12) Stück für Stück ausgeführt wird.
     
    7. Verfahren gemäß Anspruch 1, bei welchem das Versorgen aller Sensoren (18, 24, 40, 48, 60, 76) mit Fluid bei dem Maximaldruck der Pumpe (14) Stück für Stück ausgeführt wird.
     
    8. Verfahren zum Wiederherstellen eines gewünschten Betriebs einer Maschine, die durch ein hydraulisches Betätigungssystem (10) mit einem Sensor gesteuert wird, der außerhalb eines vorbestimmten Bereichs arbeitet, wobei das hydraulische Betätigungs System versehen ist mit:

    einer Pumpe (14), die angeordnet ist, um in Ansprechen auf eine Fluidstrom-Anfrage einen Fluidstrom bereitzustellen; einem Reservoir (12), welches angeordnet ist, um ein Fluid zu beinhalten; einer Mehrzahl von Arbeitsanschlüssen (32, 34, 68, 70), wobei die Pumpe (14) in Fluidkommunikation mit den Reservoir und der Mehrzahl von Arbeitsanschlüssen (32, 34, 68, 70) steht; einer Mehrzahl von Sensoren (18, 24, 40, 48, 60, 76), wobei jeder Sensor angeordnet ist, um den Druck in einem entsprechenden der Mehrzahl von Arbeitsanschlüssen (32, 34, 68, 70) zu erfassen; einem Ventilsystem (22, 38, 46, 54, 58, 74, 82, 88), welches angeordnet ist, um den Fluidstrom zwischen der Pumpe (14), dem Reservoir (12) und der Mehrzahl von Arbeitsanschlüssen (32, 34, 68, 70) zu steuern; und einem Steuergerät (90), welches angeordnet ist, die Pumpe (14) und das Ventilsystem (22, 38, 46, 54, 58, 74, 82, 88) in Ansprechen auf die Fluidstrom-Anfrage und die erfassten Drücke zu steuern, um die Maschine zu betreiben;

    wobei im Zuge des Verfahrens:

    der außerhalb des vorgewählten Bereichs arbeitende Sensor ermittelt wird;

    der Druck in dem hydraulischen Betätigungssystem (10) entspannt wird;

    alle Arbeitsanschlüsse (32, 34, 68, 70) zu dem Reservoir geöffnet werden;

    der Druck an jedem Sensor erfasst wird;

    alle Sensoren auf einen Druck des Reservoirs (12) zurückgesetzt werden;

    alle Sensoren (18, 24, 40, 48, 60, 76) mit dem Fluid bei einem Maximaldruck der Pumpe (14) beaufschlagt werden;

    der Maximaldruck der Pumpe (14) an jedem der Mehrzahl von Sensoren (18, 24, 40, 48, 60, 76) ermittelt wird;

    ein durchschnittlicher Druckwert über alle Sensoren der Mehrzahl von Sensoren (18, 24, 40, 48, 60, 76), deren erfasster Druck innerhalb des vorgewählten Bereichs des maximalen Drucks der Pumpe (14) liegt, ermittelt wird;

    der ermittelte Durchschnittsdruckwert demjenigen Sensor zugeordnet wird, welcher außerhalb des vorgeschriebenen Bereichs arbeitet; und

    die Kalibrierung des Sensors, welcher außerhalb des vorgeschriebenen Bereichs arbeitet, basierend auf dem Druck des Reservoirs (12) und den Durchschnittsdruckwerten rückgesetzt wird, sodass der gewünschte Betrieb der Maschine wiederhergestellt wird.


     
    9. Verfahren gemäß Anspruch 8, im Zuge dessen ferner ermittelt wird, ob der außerhalb des vorgeschriebenen Bereichs arbeitende Sensor innerhalb eines zulässigen Fehlerbands mit Bezug auf den Maximaldruck der Pumpe (14) liegt, wobei das Zuordnen des ermittelten Durchschnittsdruckwerts zu dem außerhalb des vorgeschriebenen Bereichs arbeitenden Sensor vorgenommen wird, falls der außerhalb des vorgeschriebenen Bereichs arbeitende Sensor innerhalb des zulässigen Fehlerbands mit Bezug auf den Maximaldruck der Pumpe (14) liegt.
     


    Revendications

    1. Procédé pour réinitialiser un étalonnage d'un capteur fonctionnant hors d'une plage prescrite dans un système d'actionnement hydraulique (10), le système d'actionnement hydraulique comprenant :

    une pompe (14) agencée pour fournir l'écoulement de fluide en réponse à une demande d'écoulement de fluide ; un réservoir (12) agencé pour contenir le fluide ; une pluralité d'orifices de travail (32, 34, 68, 70), de sorte que la pompe est en communication de fluide avec le réservoir et la pluralité d'orifices de travail ; une pluralité de capteurs (18, 24, 40, 48, 60, 76), chaque capteur étant agencé pour détecter la pression à un orifice correspondant de la pluralité d'orifices de travail (32, 34, 68, 70) ; un système de valve (22, 38, 46, 54, 58, 74, 82, 88) agencé pour contrôler l'écoulement de fluide entre la pompe, le réservoir et la pluralité d'orifices de travail (32, 34, 68, 70) ; et un organe de commande (90) agencé pour réguler la pompe (14) et le système de valve (22, 38, 46, 54, 58, 74, 82, 88) en réponse à la demande d'écoulement de fluide et aux pressions détectées ;

    le procédé comprenant :

    la détection du capteur fonctionnant hors de la plage prescrite ;

    la réduction de la pression dans le système d'actionnement hydraulique (10) ;

    l'ouverture de tous les orifices de travail (32, 34, 68, 70) par rapport au réservoir ;

    la détection de la pression de chaque capteur (18, 24, 40, 48, 60, 76) ;

    la réinitialisation de tous les capteurs (18, 24, 40, 48, 60, 76) par rapport à une pression de réservoir (12) ;

    l'alimentation de tous les capteurs (18, 24, 40, 48, 60, 76) avec le fluide à une pression de pompe (14) maximum ;

    la détection de la pression de pompe (14) maximum au niveau de chacun de la pluralité de capteurs (18, 24, 40, 48, 60, 76) ;

    la détermination d'une valeur de pression moyenne sur tous les capteurs de la pluralité de capteurs (18, 24, 40, 48, 60, 76) dont la pression détectée est dans la plage prescrite de la pression de pompe maximum ;

    l'attribution de la valeur de pression moyenne déterminée au capteur qui fonctionne hors de la plage prescrite ; et

    la réinitialisation de l'étalonnage du capteur qui fonctionne hors de la plage prescrite en fonction de la pression de réservoir (12) et des valeurs de pression moyennes.


     
    2. Procédé selon la revendication 1, comprenant en outre l'identification de si le capteur fonctionnant hors de la plage prescrite est dans une marge d'erreur autorisée par rapport à la pression de pompe (14) maximum, dans lequel ladite attribution de la valeur de pression moyenne déterminée au capteur qui fonctionne hors de la plage prescrite est réalisée, si le capteur fonctionnant hors de la plage prescrite est dans la marge d'erreur autorisée par rapport à la pression de pompe (14) maximum.
     
    3. Procédé selon la revendication 2, comprenant en outre la génération d'un signal de dysfonctionnement, si le capteur fonctionnant hors de la plage prescrite n'est pas dans la marge d'erreur autorisée par rapport à la pression de pompe (14) maximum.
     
    4. Procédé selon la revendication 1, dans lequel ladite réduction de pression dans le système d'actionnement hydraulique (10) est réalisée manuellement par un opérateur du système d'actionnement hydraulique.
     
    5. Procédé selon la revendication 1, dans lequel ladite réduction de la pression dans le système d'actionnement hydraulique (10) est réalisée pendant une période de temps prédéterminée.
     
    6. Procédé selon la revendication 1, dans lequel ladite ouverture de tous les orifices de travail (32, 34, 68, 70) par rapport au réservoir (12) est réalisée un par un.
     
    7. Procédé selon la revendication 1, dans lequel ladite alimentation de tous les capteurs (18, 24, 40, 48, 60, 76) avec le fluide à la pression de pompe (14) maximum est réalisée un à un.
     
    8. Procédé pour rétablir le fonctionnement souhaité d'une machine contrôlée par un système d'actionnement hydraulique (10) ayant un capteur qui fonctionne hors d'une plage prescrite, le système d'actionnement hydraulique comprenant :

    une pompe (14) agencée pour fournir l'écoulement de fluide en réponse à une demande d'écoulement de fluide ; un réservoir (12) agencé pour contenir le fluide ; une pluralité d'orifices de travail (32, 34, 68, 70) de sorte que la pompe (14) est en communication de fluide avec le réservoir (12) et la pluralité d'orifices de travail (32, 34, 68, 70) ; une pluralité de capteurs (18, 24, 40, 48, 60, 76), chaque capteur étant agencé pour détecter la pression au niveau d'un orifice correspondant de la pluralité d'orifices de travail (32, 34, 68, 70) ; un système de valve (22, 38, 46, 54, 58, 74, 82, 88) agencé pour contrôler l'écoulement de fluide entre la pompe (14), le réservoir (12) et la pluralité d'orifices de travail (32, 34, 68, 70) ; et un organe de commande (90) agencé pour réguler la pompe (14) et le système de valve (22, 38, 46, 54, 58, 74, 82, 88) en réponse à la demande d'écoulement de fluide et aux pressions détectées pour actionner la machine ; le procédé comprenant :

    la détection du capteur fonctionnant hors de la plage prescrite ;

    la réduction de la pression dans le système d'actionnement hydraulique (10) ;

    l'ouverture de tous les orifices de travail (32, 34, 68, 70) par rapport au réservoir ;

    la détection de la pression au niveau de chaque capteur ;

    la réinitialisation de tous les capteurs par rapport à une pression de réservoir (12) ;

    l'alimentation de tous les capteurs avec le fluide à une pression de pompe (14) maximum ;

    la détection de la pression de pompe (14) maximum au niveau de chacun de la pluralité de capteurs (18, 24, 40, 48, 60, 76) ;

    la détermination d'une valeur de pression moyenne sur tous les capteurs de la pluralité de capteurs (18, 24, 40, 48, 60, 76) dont la pression détectée est dans la plage prescrite de la pression de pompe (14) maximum ;

    l'attribution de la valeur de pression moyenne déterminée au capteur qui fonctionne hors de la plage prescrite ; et

    la réinitialisation de l'étalonnage du capteur qui fonctionne hors de la plage prescrite en fonction de la pression de réservoir (12) et des valeurs de pression moyennes, de sorte que le fonctionnement souhaité de la machine est rétabli.


     
    9. Procédé selon la revendication 8, comprenant de plus l'identification de si le capteur fonctionnant hors de la plage prescrite est dans une marge d'erreur autorisée par rapport à la pression de pompe (14) maximum, dans lequel ladite attribution de la valeur de pression moyenne déterminée au capteur qui fonctionne hors de la plage prescrite est réalisée si le capteur fonctionnant hors de la plage prescrite est dans la marge d'erreur autorisée par rapport à la pression de pompe (14) maximum.
     




    Drawing









    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description