(19)
(11)EP 2 511 500 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.12.2019 Bulletin 2019/49

(21)Application number: 12162211.2

(22)Date of filing:  29.03.2012
(51)Int. Cl.: 
F02C 7/36  (2006.01)
F01D 5/06  (2006.01)

(54)

A gas turbine engine and method of assembling the same

Gasturbine und Verfahren zur Montage derselben

Turbine à gaz et procédé d'assemblage d'une telle turbine


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 15.04.2011 US 201113087446

(43)Date of publication of application:
17.10.2012 Bulletin 2012/42

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • McCune, Michael E.
    Colchester, CT Connecticut 06415 (US)
  • Cigal, Brian P.
    Windsor, CT Connecticut 06095 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
GB-A- 802 264
US-A- 4 744 214
US-A1- 2010 150 702
US-A- 3 915 521
US-A- 5 433 674
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The present disclosure relates to a gas turbine engine, and in particular, to a coupling shaft.

    [0002] Advanced gas turbine engines may employ an epicyclic gear train connected to a turbine section of the engine, which is used to drive the turbo fan. In a typical epicyclic gear train, a sun gear receives rotational input from a turbine shaft through a compressor shaft.

    [0003] Stresses due to misalignments can be reduced by the use of flexible couplings to connect the gear train to external devices such as rotating shafts or nonrotating supports. The flexible coupling may be mounted between the compressor shaft and the gear train so that the sun gear maintains an ideal orientation with respect to the mating gears irrespective of engine deflections.

    [0004] A gas turbine engine having the features of the preamble of claim 1 is disclosed in US 2010/0150702 A1. Improvements in or relating to gas turbine engines are disclosed in GB 802264 A .

    SUMMARY



    [0005] From a first aspect, the present invention provides a gas turbine engine as set forth in claim 1.

    [0006] The invention also provides a method for assembling a gas turbine engine as set forth in claim 9.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:

    Figure 1 is a schematic cross-section of a gas turbine engine;

    Figure 2 is an enlarged cross-section of a sectional of the gas turbine engine which illustrates a coupling shaft assembly;

    Figure 3 is an enlarged cross-section of the coupling shaft assembly; and

    Figure 4 is an enlarged perspective partial cross-section of the coupling shaft assembly.


    DETAILED DESCRIPTION



    [0008] Figure 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 22 drives air along a bypass flowpath while the compressor section 24 drives air along a core flowpath for compression and communication into the combustor section 26 then expansion through the turbine section 28. Although depicted as a turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines.

    [0009] The engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.

    [0010] The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. A combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. The inner shaft 40 and the outer shaft 50 are concentric and rotate about the engine central longitudinal axis A which is collinear with their longitudinal axes.

    [0011] The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.

    [0012] The main engine shafts 40, 50 are supported at a plurality of points by the bearing system 38 within the static structure 36. In one non-limiting embodiment, bearing system 38 includes a number two bearing system 38A located within the compressor section 24.

    [0013] With reference to Figure 2, the geared architecture 48 generally includes a epicyclic gear system 60 driven by the low speed spool 30 through a coupling shaft assembly 62. The coupling shaft assembly 62 facilitates a modular engine construction, a compact package, and a relatively short overall engine length. The coupling shaft assembly 62 transfers torque from the low speed spool 30 to the geared architecture 48 as well as facilitates the segregation of vibrations and other transients therebetween.

    [0014] The coupling shaft assembly 62 generally includes a forward coupling shaft section 64 and an aft coupling shaft section 66. The forward coupling shaft section 64 includes an interface spline 68 and a mid shaft interface spline 70. The aft coupling shaft section 66 includes a mid shaft interface spline 72 and an interface spline 74. The relatively larger inner diameter of the coupling shaft assembly 62 facilitates receipt of fasteners and tools to secure componentry.

    [0015] The interface spline 68 is joined, by a gear spline 76, to a sun gear 78 of the epicyclic gear system 60. The sun gear 78 is in meshed engagement with multiple planet gears 86, of which the illustrated planet gear 86 is representative. Each planet gear 86 is rotatably mounted in a planet carrier 82 by a journal pin 80 so that rotary motion of the sun gear 78 urges each planet gear 86 to rotate about a respective longitudinal axis P. Each planet gear 86 is also in meshed engagement with rotating ring gear 88 that is mechanically connected to the engine fan shaft 130. Since the planet gears 86 mesh with both the rotating ring gear 88 as well as the rotating sun gear 78, the planet gears 86 rotate about their own axes to drive the ring gear 88 to rotate about engine axis A. The rotation of the ring gear 88 is conveyed to the fan 42 (Figure 1) through fan shaft 130 to thereby drive the fan 42 at a lower speed than the low speed spool 30. It should be understood that the described geared architecture 48 is but a single non-limiting embodiment and that various other geared architectures will alternatively benefit herefrom.

    [0016] The forward coupling shaft section 64 may include a convolute 90 which facilities desired coupling shaft assembly 62 stiffness requirements. The convolute 90 may also include an oil aperture 92 to direct oil from an oil supply nozzle 94 toward the geared architecture 48. An oil dam 93 is located on the inner diameter of the forward coupling shaft section 64 to prevent oil from flowing forward. The forward coupling shaft section 64 can be tapered radially outward to encourage oil flow toward an aft direction due to centrifugal force on a sloped surface.

    [0017] The mid shaft interface spline 70 of the forward coupling shaft section 64 is engaged with the mid shaft interface spline 72 of the aft coupling shaft section 66 to provide a slip-joint therebetween. The mid shaft interface spline 70 is located upon a vertical diaphragm 94 which further facilities desired coupling shaft assembly 62 stiffness requirements. The vertical diaphragm 94 is essentially a radial flange with a radial section 96 perpendicular to engine axis A and an axial section 98 parallel to engine axis A.

    [0018] The mid shaft interface spline 72 of the aft coupling shaft section 66 is located within a cylindrical extension 100 of the aft coupling shaft section 66 such that the axial section 98 fits at least partially therein. The cylindrical extension 100 and the axial section 98 may include respective grooves to receive a seal 102. The interface spline 74 of the aft coupling shaft section 66 connects the coupling shaft assembly 62 to the low pressure spool 30 through, in this non limiting embodiment, splined engagement with a low pressure compressor hub 104 of the low pressure compressor 44.

    [0019] With reference to Figure 3, the coupling shaft assembly 62 also includes an oil distribution feature 106 between the forward coupling shaft section 64 and the aft coupling shaft section 66. The oil distribution feature 106 guides oil from the forward mounted oil supply nozzle 94 to desired features.

    [0020] An axial extending fluid bridge 114 of the oil distribution feature 106 contains an inner diameter circumferential groove 116 to provide equal distribution of oil to multiple axial slots 118 (also illustrated in Figure 4), some of which may direct oil to the mid splines 70, 72, others of which allow passage of oil to a collection plenum 120 so as to collect then direct oil to the bearing package 110 to facilitate a relatively small diameter bearing housing which further reduces weight, part complexity and part count.

    [0021] The circumferential groove 116 collects oil and facilitates an equalized distribution to downstream features. The multiple axial slots 118 further facilitate oil metering and distribution through a radial hole 124 for oil delivery to the mid splines 70, 72. The collection plenum 120 may also communicate collected oil through a path 128 to deliver oil to the bearing package 110 and the carbon seal 112 (Figure 2). A forward extending portion 130 of the collection plenum 120 facilitates the retention of oil within the collection plenum 120. An extension feature 132 of the forward extending portion 130 abuts the forward portion of the axial extending fluid bridge 114 at the separation of the forward coupling shaft section 64 and the aft coupling shaft section 66 yet forms the collection plenum 120. The extension feature 132 may alternatively or additionally include an elastomeric seal which mates to the axial extending fluid bridge 114.

    [0022] It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom.

    [0023] Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present invention.

    [0024] The foregoing description is exemplary rather than defined by the limitations within. Various non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced other than as specifically described. For that reason the appended claims should be studied to determine true scope and content.


    Claims

    1. A gas turbine engine comprising:
    a coupling shaft assembly (62) comprising:

    a forward coupling shaft section (64) includes a forward interface spline (68) and a forward mid shaft interface spline (70); and

    an aft coupling shaft section (66) includes an aft mid shaft interface spline (72) and an aft interface spline (74), said aft mid shaft interface spline (72) engageable with said forward mid shaft interface spline (70);

    said gas turbine engine further comprising:
    a geared architecture (48) having a sun gear (78), said forward interface spline (68) being engaged with said sun gear (78) of said geared architecture (48); characterised in that said gas turbine further comprises:
    an oil distribution feature (106) between said forward coupling shaft section (64) and said aft coupling shaft section (66) and including an axial extending fluid bridge (114) having a circumferential groove (116) and a multiple of axial grooves (118).


     
    2. The gas turbine engine as recited in claim 1, wherein said forward mid shaft interface spline (70) is located upon a vertical diaphragm (94).
     
    3. The gas turbine engine as recited in claim 2, wherein said vertical diaphragm (94) includes a radial section (96) perpendicular to an engine axis (A) and an axial section (98) parallel to the engine axis (A).
     
    4. The gas turbine engine as recited in claim 3, wherein said forward mid shaft interface spline (70) is located upon said axial section (98).
     
    5. The gas turbine engine as recited in any preceding claim, wherein said forward mid shaft interface spline (70) fits within said aft mid shaft interface spline (72).
     
    6. The gas turbine engine of any preceding claim, wherein said geared architecture (48) comprises an epicyclic gear system (60) along an engine longitudinal axis (A) and having said sun gear (78), said engine further comprising a low pressure spool (30) along said engine longitudinal axis (A), and said aft coupling shaft section being along said engine longitudinal axis (A) and said aft interface spline (74) being engaged with said low pressure spool (30).
     
    7. The gas turbine engine as recited in claim 6, wherein said oil distribution feature (106) communicates oil toward a bearing system (110) which at least partially supports said low pressure spool (30).
     
    8. The gas turbine engine as recited in claim 6 or 7, wherein said epicyclic gear system (60) drives a fan section (22) at a speed different than said low speed spool (30).
     
    9. A method for assembling a gas turbine engine (20) comprising:
    mounting a forward coupling shaft section (64) that includes a forward interface spline (68) and a forward mid shaft interface spline (70) to an aft coupling shaft section (66) at an aft mid shaft interface spline (72), the aft coupling shaft section (66) having an aft interface spline (74), and mounting the forward interface spline (68) to a geared architecture (48) of the engine, the gas turbine engine (20) comprising an oil distribution feature (106) between said forward coupling shaft section (64) and said aft coupling shaft section (66) and including an axial extending fluid bridge (114) having a circumferential groove (116) and a multiple of axial grooves (118).
     
    10. The method as recited in claim 9, further comprising mounting the forward coupling shaft section (64) at least partially within the aft coupling shaft section (66).
     
    11. The method as recited in claim 9 or 10, further comprising mounting the aft interface spline (74) to a low pressure spool (30).
     


    Ansprüche

    1. Gasturbinentriebwerk, umfassend:
    eine Kupplungswellenbaugruppe (62), umfassend:

    ein vorderer Kupplungswellenabschnitt (64) schließt einen vorderen Schnittstellenkeil (68) und einen vorderen Schnittstellenkeil (70) auf der Mitte der Welle ein; und

    ein hinterer Kupplungswellenabschnitt (66) schließt einen hinteren Schnittstellenkeil (72) auf der Mitte der Welle und einen hinteren Schnittstellenkeil (74) ein, wobei der hintere Schnittstellenkeil (72) auf der Mitte der Welle mit dem vorderen Schnittstellenkeil (70) auf der Mitte der Welle in Eingriff gebracht werden kann;

    wobei das Gasturbinentriebwerk ferner Folgendes umfasst:

    eine Getriebearchitektur (48), die ein Sonnenrad (78) aufweist, wobei der vordere Schnittstellenkeil (68) mit dem Sonnenrad (78) der Getriebearchitektur (48) in Eingriff steht; dadurch gekennzeichnet, dass die Gasturbine ferner Folgendes umfasst:

    ein Ölverteilungsmerkmal (106) zwischen dem vorderen Kupplungswellenabschnitt (64) und dem hinteren Kupplungswellenabschnitt (66) und einschließend eine sich axial erstreckende Fluidbrücke (114), die eine Umfangsnut (116) und eine Vielzahl von Axialnuten (118) aufweist.


     
    2. Gasturbinentriebwerk nach Anspruch 1, wobei sich der vordere Schnittstellenkeil (70) auf der Mitte der Welle auf einer vertikalen Membran (94) befindet.
     
    3. Gasturbinentriebwerk nach Anspruch 2, wobei die vertikale Membran (94) einen radialen Abschnitt (96) senkrecht zu einer Triebwerksachse (A) und einen axialen Abschnitt (98) parallel zu der Triebwerksachse (A) einschließt.
     
    4. Gasturbinentriebwerk nach Anspruch 3, wobei sich der vordere Schnittstellenkeil (70) auf der Mitte der Welle auf dem axialen Abschnitt (98) befindet.
     
    5. Gasturbinentriebwerk nach einem der vorhergehenden Ansprüche, wobei der vordere Schnittstellenkeil (70) auf der Mitte der Welle in den hinteren Schnittstellenkeil (72) auf der Mitte der Welle passt.
     
    6. Gasturbinentriebwerk nach einem der vorhergehenden Ansprüche, wobei die Getriebearchitektur (48) ein Planetengetriebesystem (60) entlang einer Triebwerkslängsachse (A) umfasst und das Sonnenrad (78) aufweist, wobei das Triebwerk ferner eine Niederdruckwelle (30) entlang der Triebwerkslängsachse (A) umfasst, und der hintere Kupplungswellenabschnitt entlang der Triebwerkslängsachse (A) verläuft und der hintere Schnittstellenkeil (74) mit der Niederdruckwelle (30) in Eingriff steht.
     
    7. Gasturbinentriebwerk nach Anspruch 6, wobei das Ölverteilungsmerkmal (106) Öl zu einem Lagersystem (110) kommuniziert, welches zumindest teilweise die Niederdruckwelle (30) stützt.
     
    8. Gasturbinentriebwerk nach Anspruch 6 oder 7, wobei das Planetengetriebesystem (60) einen Fanabschnitt (22) mit einer Drehzahl antreibt, die sich von der der Welle (30) mit niedriger Drehzahl unterscheidet.
     
    9. Verfahren zur Montage eines Gasturbinentriebwerks (20), umfassend:
    Befestigen eines vorderen Kupplungswellenabschnitts (64), der einen vorderen Schnittstellenkeil (68) und einen vorderen Schnittstellenkeil (70) auf der Mitte der Welle einschließt, an einem hinteren Kupplungswellenabschnitt (66) an einem hinteren Schnittstellenkeil (72) auf der Mitte der Welle, wobei der hintere Kupplungswellenabschnitt (66) einen hinteren Schnittstellenkeil (74) aufweist, und Befestigen des vorderen Schnittstellenkeils (68) an einer Getriebearchitektur (48) des Triebwerks, wobei das Gasturbinentriebwerk (20) ein Ölverteilungsmerkmal (106) zwischen dem vorderen Kupplungswellenabschnitt (64) und dem hinteren Kupplungswellenabschnitt (66) umfasst und eine sich axial erstreckende Fluidbrücke (114) einschließt, die eine Umfangsnut (116) und eine Vielzahl von Axialnuten (118) aufweist.
     
    10. Verfahren nach Anspruch 9, ferner umfassend das Befestigen des vorderen Kupplungswellenabschnitts (64) zumindest teilweise in dem hinteren Kupplungswellenabschnitt (66).
     
    11. Verfahren nach Anspruch 9 oder 10, ferner umfassend das Befestigen des hinteren Schnittstellenkeils (74) an einer Niederdruckwelle (30).
     


    Revendications

    1. Moteur à turbine à gaz comprenant :
    un ensemble d'arbre de couplage (62) comprenant :

    une section d'arbre de couplage avant (64) qui comprend une cannelure d'interface avant (68) et une cannelure d'interface d'arbre intermédiaire avant (70) ; et

    une section d'arbre de couplage arrière (66) qui comprend une cannelure d'interface d'arbre intermédiaire arrière (72) et une cannelure d'interface arrière (74), ladite cannelure d'interface d'arbre intermédiaire arrière (72) pouvant être en prise avec ladite cannelure d'interface d'arbre intermédiaire avant (70) ;

    ledit moteur à turbine à gaz comprenant en outre :
    une architecture à engrenages (48) ayant une roue solaire (78), ladite cannelure d'interface avant (68) étant en prise avec ladite roue solaire (78) de ladite architecture à engrenages (48) ; caractérisé en ce que ladite turbine à gaz comprend en outre :
    une caractéristique de distribution d'huile (106) entre ladite section d'arbre de couplage avant (64) et ladite section d'arbre de couplage arrière (66) et comprenant un pont de fluide s'étendant axialement (114) ayant une gorge circonférentielle (116) et plusieurs gorges axiales (118).


     
    2. Moteur à turbine à gaz selon la revendication 1, dans lequel ladite cannelure d'interface d'arbre intermédiaire avant (70) est située sur un diaphragme vertical (94).
     
    3. Moteur à turbine à gaz selon la revendication 2, dans lequel ledit diaphragme vertical (94) comprend une section radiale (96) perpendiculaire à un axe de moteur (A) et une section axiale (98) parallèle à l'axe de moteur (A).
     
    4. Moteur à turbine à gaz selon la revendication 3, dans lequel ladite cannelure d'interface d'arbre intermédiaire avant (70) est située sur ladite section axiale (98).
     
    5. Moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel ladite cannelure d'interface d'arbre intermédiaire avant (70) s'adapte à l'intérieur de ladite cannelure d'interface d'arbre intermédiaire arrière (72).
     
    6. Moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel ladite architecture à engrenages (48) comprend un système à engrenages épicycloïdal (60) le long d'un axe longitudinal de moteur (A) et comportant ladite roue solaire (78), ledit moteur comprenant en outre un corps basse pression (30) le long dudit axe longitudinal de moteur (A), et ladite section d'arbre de couplage arrière étant le long dudit axe longitudinal de moteur (A) et ladite cannelure d'interface arrière (74) étant en prise avec ledit corps basse pression (30) .
     
    7. Moteur à turbine à gaz selon la revendication 6, dans lequel ladite caractéristique de distribution d'huile (106) fait communiquer l'huile vers un système de palier (110) qui supporte au moins partiellement ledit corps basse pression (30) .
     
    8. Moteur à turbine à gaz selon la revendication 6 ou 7, dans lequel ledit système à engrenages épicycloïdal (60) entraîne une section de soufflante (22) à une vitesse différente de celle dudit corps basse vitesse (30).
     
    9. Procédé d'assemblage d'un moteur à turbine à gaz (20) comprenant :
    le montage d'une section d'arbre de couplage avant (64) qui comprend une cannelure d'interface avant (68) et une cannelure d'interface d'arbre intermédiaire avant (70) sur une section d'arbre de couplage arrière (66) au niveau d'une cannelure d'interface d'arbre intermédiaire arrière (72), la section d'arbre de couplage arrière (66) ayant une cannelure d'interface arrière (74), et le montage de la cannelure d'interface avant (68) sur une architecture à engrenages (48) du moteur, le moteur à turbine à gaz (20) comprenant une caractéristique de distribution d'huile (106) entre ladite section d'arbre de couplage avant (64) et ladite section d'arbre de couplage arrière (66) et comprenant un pont de fluide s'étendant axialement (114) ayant une gorge circonférentielle (116) et plusieurs gorges axiales (118).
     
    10. Procédé selon la revendication 9, comprenant en outre le montage de la section d'arbre de couplage avant (64) au moins partiellement à l'intérieur de la section d'arbre de couplage arrière (66).
     
    11. Procédé selon la revendication 9 ou 10, comprenant en outre le montage de la cannelure d'interface arrière (74) sur un corps basse pression (30).
     




    Drawing















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description