(19)
(11)EP 2 512 187 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 10841973.0

(22)Date of filing:  23.12.2010
(51)International Patent Classification (IPC): 
H04W 48/12(2009.01)
H04B 7/26(2006.01)
H04W 72/12(2009.01)
H04L 5/00(2006.01)
H04W 84/04(2009.01)
H04W 72/04(2009.01)
H04W 88/08(2009.01)
H04W 74/04(2009.01)
H04L 1/00(2006.01)
(86)International application number:
PCT/CN2010/080192
(87)International publication number:
WO 2011/082630 (14.07.2011 Gazette  2011/28)

(54)

MAPPING AND RESOURCE ALLOCATION METHOD FOR RELAY LINK-PHYSICAL DOWNLINK SHARED CHANNEL

VERFAHREN ZUM MAPPING UND ZUR ZUORDNUNG VON RESSOURCEN FÜR EINEN GEMEINSAM GENUTZTEN PHYSIKALISCHEN RELAISVERKNÜPFUNGS-DOWNLINK-KANAL

PROCÉDÉ POUR LE MAPPAGE ET L'ALLOCATION DE RESSOURCES À UN CANAL PHYSIQUE PARTAGÉ SUR LA LIAISON DESCENDANTE DE LA LIAISON RELAIS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.01.2010 CN 201010042713

(43)Date of publication of application:
17.10.2012 Bulletin 2012/42

(73)Proprietor: ZTE Corporation
Shenzhen, Guangdong 518057 (CN)

(72)Inventors:
  • BI, Feng
    Guangdong 518057 (CN)
  • YANG, Jin
    Guangdong 518057 (CN)
  • YUAN, Ming
    Guangdong 518057 (CN)
  • LIANG, Feng
    Guangdong 518057 (CN)
  • WU, Shuanshuan
    Guangdong 518057 (CN)
  • JIANG, Jing
    Guangdong 518057 (CN)

(74)Representative: V.O. 
P.O. Box 87930
2508 DH Den Haag
2508 DH Den Haag (NL)


(56)References cited: : 
EP-A1- 1 983 671
WO-A1-2008/054147
WO-A2-2007/136212
WO-A2-2009/058906
CN-A- 101 204 101
CN-A- 101 350 940
US-A1- 2005 094 605
US-A1- 2008 165 873
US-A1- 2009 257 390
US-B1- 7 006 475
EP-A1- 2 104 391
WO-A2-2007/051158
WO-A2-2009/012272
CN-A- 1 139 295
CN-A- 101 299 634
CN-A- 101 516 104
US-A1- 2008 075 181
US-A1- 2008 304 588
US-B1- 6 944 146
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical field



    [0001] The present disclosure relates to the field of wireless mobile communication, particularly to a mapping and resource allocation method and apparatus for Relay link-Physical Downlink Shared Channel (R-PDSCH).

    Background



    [0002] A Long Term Evolution (LTE) system, a Long Term Evolution-Advanced (LTE-A) system, an International Mobile Telecommunication Advanced (IMT-Advanced) system are all based on the technique of Orthogonal Frequency Division Multiplexing (OFDM). A time-frequency two-dimensional data form is mainly adopted in the OFDM system. In the LTE and the LTE-A, a Resource Block (RB, when the RB is mapped on to the physical resource, the RB is called a Physical Resource Block (PRB)) is defined as OFDM symbols inside a slot on a time domain, and 12 or 24 subcarriers on a frequency domain, so that one RB consists of

    resource elements (RE), wherein the Nsymb indicates the number of the OFDM symbols inside one slot, and

    indicates the number of subcarriers occupied by the RB on the frequency domain. That is to say, the resource block refers to a plurality of subcarriers (for example, 12 subcarriers) occupied in the frequency direction and all OFDM symbols occupied inside one slot in the time direction; and a resource block pair refers to a pair of resource blocks corresponding to two slots in one subframe (in the frame structure shown in Fig. 2, a wireless frame comprises ten subframes, and each subframe comprises 2 slots. In the case of normal cyclic prefix, one slot comprises seven OFDM symbols, and in the case of extended cyclic prefix, one slot comprises six OFDM symbols).

    [0003] Moreover, the concept of resource block group is also defined in the system, that is, a plurality of continuous resource blocks forms a resource block group. The size of the resource block group is determined by the system bandwidth. For example, when the system bandwidth is less than or equals to ten resource blocks, the resource block group comprises 1 resource block. For another example, when the system bandwidth is 11 to 26 resource blocks, the resource block group consists of 2 resource blocks. For another example, when the system bandwidth is 27 to 63 resource blocks, the resource block group consists of three resource blocks; and when the system bandwidth is 64 to 110 resource blocks, the resource block group consists of four resource blocks.

    [0004] In the LTE-A system, a new link is added after the Relay Node (RN) is introduced, as is shown in Fig. 1, the link between an eNode-B and a relay is called a backhaul link or relay link; the link between the relay and the User Equipment (UE) is called an access link; and the link between the eNode-B and the UE is called a direct link.

    [0005] WO 2008/054147 discloses a method for transmitting control information and packet data, in which two methods for preventing the resources allocated for the control channels, the control indication channels and the data channels from being overlapped are disclosed.

    [0006] WO 2009/012272 discloses a method for adaptive transmission of control information in a wireless communication system including generating a control segment carrying control information.

    [0007] WO 2007/051158 discloses a signalling channel that punctures traffic channels.

    [0008] At present, it is a hotspot, in the LTE-A system, of researching the multiplex mode between a control channel and a traffic channel after a relay node is introduced, for example, Time Division Multiplex (TDM), Frequency Division Multiplex (FDM), and FDM+TDM are adopted for multiplexing. However, the research on resource allocation for R-PDSCH has not been developed, which is the problem the present disclosure aims to solve. Wherein
    TDM refers to that the Relay link-Physical Downlink Control Channel (R-PDCCH) and R-PDSCH are transmitted in different OFDM symbols;
    FDM refers to that the R-PDCCH and the R-PDSCH are transmitted in different PRBs;
    FDM+TDM refers to that the R-PDCCH and the R-PDSCH are transmitted in identical or different PRBs.

    [0009] A PDCCH includes at least DL grant and UL grant. For PDCCH, the DL grant and the UL grant are carried on the first, the first two, the first three or the first four OFDM symbols of the first slot, and occupy the whole system bandwidth in the frequency direction. For R-PDCCH, the DL grant is carried on the available OFDM symbols of the first slot, the UL grant is carried on the available OFDM symbols of the second slot, and the DL grant and the UL grant occupy a plurality of resource blocks in the frequency direction, and the occupied maximal band width can be up to the whole system bandwidth.

    [0010] So far, there has not been proposed a mapping and resource allocation method for R-PDSCH.

    Summary



    [0011] The technical problem to be solved by the present disclosure is to provide a mapping and resource allocation method and apparatus for R-PDSCH, which is well applicable to the link between an eNode-B and a relay node, thereby ensuring the backward compatibility (compatible with the LTE system), and also solving the problem of mapping and resource allocation of the R-PDSCH.

    [0012] To solve the problem above, the present disclosure provides a mapping and resource allocation method as defined in claim 1.

    [0013] Furthermore, when resources allocated for DL grant of the R-PDCCH overlap with the resource allocated for the R-PDSCH, the data of the R-PDSCH may not be mapped or sent on resources occupied by the DL grant, or the data of the R-PDSCH to be sent on the resources occupied by the DL grant may be punctured; and
    the data of the R-PDSCH may be mapped and sent on all or partial resources which are not occupied by the DL grant.

    [0014] Furthermore, when resources allocated for UL grant of the R-PDCCH overlap with the resource allocated for the R-PDSCH, the data of the R-PDSCH may not be mapped or sent on resources occupied by the UL grant, or the data of the R-PDSCH to be sent on the resources occupied by the UL grant may be punctured; and
    the data of the R-PDSCH may be mapped and sent on all or partial resources which are not occupied by the UL grant.

    [0015] Furthermore, when resources allocated for DL and UL grant of the R-PDCCH overlap with the resource allocated for the R-PDSCH, the data of the R-PDSCH may not be mapped or sent on resources occupied by the DL and UL grant, or the data of the R-PDSCH to be sent on the resources occupied by the DL and UL grant may be punctured; and
    the data of the R-PDSCH may be mapped and sent on all or partial allocated resources which are not occupied by the DL and UL grant.

    [0016] The downlink control format may include format 0, format 1/1A/1B/1C/1D and format 2/2A.

    [0017] One of the following items may be reused in the resource allocation for the R-PDSCH: resource block assignment and hopping resource allocation in the format 0; resource allocation header and resource block assignment in the format 1/2/2A; localized/distributed VRB assignment flag and resource block assignment in the format 1A/1B/1D; resource block assignment in the format 1C.

    [0018] Furthermore, when the R-PDSCH carries data of a UE of R8, or R9 or R10, the R-PDSCH may refer to a Physical Downlink Shared Channel (PDSCH) from an eNode-B to the UE.

    [0019] Furthermore, when the resources allocated for the R-PDCCH overlap with the resources allocated for the PDSCH from the eNode-B to the UE of R8 or R9, the data of the PDSCH to be sent on the over-lapped resources may be punctured;
    when the resources allocated for the R-PDCCH overlap with the resources allocated for the PDSCH from the eNode-B to the UE of R10, the data of the PDSCH may not be mapped or sent on the over-lapped resource, or the data of the PDSCH to be sent on the overlapped resources may be punctured.

    [0020] The present disclosure also provides a mapping and resource allocation apparatus as defined in claim 10.

    [0021] Furthermore, the mapping module may be configured to map and send data of the R-PDSCH on all or partial resources which are not occupied by DL grant and/or UL grant.

    [0022] Furthermore, the shunning module may further be configured to, when the resources allocated for the R-PDCCH overlap with the resources allocated for the R-PDSCH from an eNode-B to a UE of R10, not map or send the data of the R-PDSCH on the over-lapped resources.

    [0023] Furthermore, the puncturing module may further be configured to, when the resources allocated for the R-PDCCH overlap with the resources allocated for the R-PDSCH from an eNode-B to a UE of R8, R9 or R10, puncture data of the R-PDSCH on the over-lapped resources.

    [0024] The mapping and resource allocation method for R-PDSCH provided by the present disclosure, can be well applicable to the link between the eNode-B and the relay node, and the resource allocation mode is flexible, the signaling overhead is lowered, therefore, not only the backward compatibility (compatible with the LTE system) is ensured, but also the problem of mapping and resource allocation of the R-PDSCH is solved.

    Brief description of the drawings



    [0025] 

    Fig. 1 shows a structural diagram of a conventional relay system;

    Fig. 2 shows a diagram of the resource block and subcarrier;

    Fig. 3 shows a diagram of R-PDCCH and R-PDSCH in TDM mode;

    Fig. 4 shows a diagram of R-PDCCH and R-PDSCH in FDM mode;

    Fig. 5 shows a diagram of R-PDCCH and R-PDSCH in FDM and TDM mode;

    Fig. 6 shows a structural diagram of an apparatus disclosed by the present disclosure.


    Detailed description



    [0026] The invention made is disclosed in the attached set of claims. Further embodiments are disclosed in the attached set of dependent claims.

    [0027] In order to make description more clearly, some relevant terms are introduced. As shown in Fig. 2, "resource block" refers to a plurality of subcarriers (for example, 12 subcarriers) occupied in the frequency direction and all OFDM symbols occupied inside one slot in the time direction; "resource block pair" refers to a pair of resource blocks corresponding to two slots in one subframe; "frequency resource" refers to a plurality of subcarriers (for example, 12 subcarriers) occupied in the frequency direction, and a plurality of OFDM symbols, or all OFDM symbols in a slot or in a subframe in the time direction. When the frequency resource occupies all OFDM symbols in one slot or in one subframe in the time direction, the frequency resource equals to the resource block or the resource block pair.

    [0028] The basic idea of the present disclosure is: when resources allocated for R-PDCCH overlap with resources allocated for R-PDSCH, data of the R-PDSCH is not mapped or sent on the over-lapped resources in the allocated resources, or the data of the R-PDSCH to be sent on the over-lapped resources is punctured; the data of the R-PDSCH is mapped and sent on all or partial resources, in the allocated resources, which are not occupied by the R-PDCCH; and the receiving end receives data according to the mapping method for the R-PDSCH.

    Specifically:



    [0029] when resources allocated for the DL grant of the R-PDCCH overlap with resources allocated for the R-PDSCH, the data of the R-PDSCH is not mapped or sent on the resources occupied by the DL grant, or the data of the R-PDSCH to be sent on the resources occupied by the DL grant is punctured; the data of the R-PDSCH is mapped and sent on all or partial allocated resources which are not occupied by the DL grant;
    when resources allocated for the UL grant of the R-PDCCH overlap with resources allocated for the R-PDSCH, the data of the R-PDSCH is not mapped or sent on the resources occupied by the UL grant, or the data of the R-PDSCH to be sent on the resource occupied by the UL grant is punctured; and the data of the R-PDSCH is mapped and sent on all or partial allocated resources which are not occupied by the UL grant; and
    when resources allocated for the DL and UL grant of the R-PDCCH overlap with resources allocated for the R-PDSCH, the data of the R-PDSCH is not mapped or sent on the resources occupied by the DL grant and the UL grant, or the data of the R-PDSCH to be sent on the resources occupied by the DL grant and the UL grant is punctured; and the data of the R-PDSCH is mapped and sent on all or partial allocated resources which are not occupied by the DL grant and the UL grant.

    [0030] A resource allocation mode, not forming part of the present invention, corresponding to a shared channel in an LTE system is reused or a grouping-tree resource allocation mode, in accordance with the present invention, is used to allocate resources for the R-PDSCH. Specifically,

    [0031] A resource allocation mode reused by the R-PDSCH is the same as the resource allocation mode corresponding to the PDSCH or the PUSCH between the eNode-B and the UE in the LTE system, i.e. a resource allocation model corresponding to each resource allocation domain in the downlink control format transmitted by the PDCCH between the eNode-B and the UE.

    [0032] The downlink control format transmitted by the PDCCH between the eNode-B and the UE in the LTE system includes format 0, format 1/1A/1B/1C/1D and format 2/2A. Particularly, one of the following items can be reused in the resource allocation for R-PDSCH: 1) the resource block assignment and hopping resource allocation in format 0, here, the uplink resource allocation is applied to the downlink resource allocation, and the parameters corresponding to the original uplink represent the parameters corresponding to the downlink; 2) the resource allocation header and resource block assignment in format 1/2/2A; 3) localized/distributed VRB (Virtual Resource Block) assignment flag and resource block assignment in the format 1A/1B/1D; and 4) resource block assignment in the format 1C.

    [0033] Particularly, the R-PDSCH uses a resource allocation model which is different from the resource allocation model corresponding to the PDSCH or the PUSCH between the eNode-B and the UE in the LTE system. A grouping-tree resource allocation mode, in accordance with the present invention, is adopted and presents a grouping position of continuous resource blocks or the resource block pairs or the frequency resources started from any positions, namely the resource blocks, the resource blocks pair or the frequency resources are grouped first, and then tree-shaped resource allocation is performed on the grouped resources, wherein the bit number of the position information is ┌log2(n·(n+1)/2)┐ when the grouping-tree resource allocation mode is adopted, where n refers to the number of available groups, and ┌ ┐ refers to ceiling.

    [0034] The present disclosure is described below with reference to the accompanying drawings and embodiments of the disclosure in detail.

    Embodiment 1: Fig. 3 shows a diagram of R-PDCCH and R-PDSCH in TDM mode, as is shown in Fig. 3, when the R-PDSCH is used for carrying the data of the UE of R8 (Release 8 version), or R9 or R10, the R-PDSCH refers to PDSCH. Here, when the resources allocated for the R-PDCCH overlap with the resources allocated for the PDSCH from the eNode-B to the UE of R8 or R9, the data of the PDSCH from the eNode-B to the UE of R8 or R9 on the overlapped resources is punctured. When the resources allocated for the R-PDCCH overlap with the resources allocated for the PDSCH from the eNode-B to the UE of R10, a shunning strategy is adopted for PDSCH, or the data of the PDSCH on the over-lapped resources is punctured. The shunning strategy refers to that no data is mapped or sent on the overlapped resources which are carried with the shared channel corresponding to the R-PDCCH. The puncturing refers to that: the resource mapping is performed assumed there is no R-PDCCH, and data which is to be sent on the overlapped resources is wiped out when overlap occurs.

    Embodiment 2: Fig. 4 shows a diagram of R-PDCCH and the R-PDSCH in FDM mode, as is shown in Fig. 4, the shared channel can be used for carrying data of the UE of R8, or R9 or R10. If there are two RNs, i.e. RN1 and RN2, are scheduled in the system, and if the resources allocated for the R-PDCCH do not overlap with the resources allocated for the PDSCH from the eNode-B to the UE, then no puncturing or shunning operation is performed on the PDSCH.
    The R-PDCCH corresponding to RN1 occupies two slots in the sixth resource block pair, wherein the DL grant occupies the first slot, the UL grant occupies the second slot, and the R-PDSCHs corresponding RN1 are allocated on two slots in the first to fifth resource pairs (counting from the bottom up in the figure). For RN1, the resources allocated for the DL grant and the UL grant do not overlap with the resources allocated for the R-PDSCH, therefore no puncturing or shunning operation are performed on the R-PDSCH corresponding to RN1.
    The R-PDCCH corresponding to RN2 occupies two slots in the ninth and tenth resource block pairs, wherein the DL grant occupies the first slot, the UL grant occupies the second slot, and the corresponding R-PDSCHs are allocated on two slots in the ninth to twelfth resource block pairs. For RN2, the resources allocated for the DL grant and UL grant overlap with the resources allocated for the R-PDSCH on the two slots in the ninth and tenth resource block pairs, therefore puncturing or shunning operation needs to be performed on the R-PDSCH corresponding to RN2. Puncturing or shunning operation can be known from Embodiment 1. By taking the shunning operation as an example, the data of the R-PDSCH is not mapped or sent on the two slots in the ninth and tenth resource block pairs, but mapped and sent on the two slots in the eleventh and twelfth resource blocks.

    Embodiment 3: Fig. 5 shows a diagram of R-PDCCH and R-PDSCH in FDM and TDM mode. It is supposed that 4 RNs, i.e. RN1, RN2, RN3 and RN4, are scheduled in the system, and as is shown is Fig. 5, in Embodiment 3, the second, third, fourth, sixth, ninth, tenth and twelfth resource block pairs include R-PDCCHs of 4 RNs which are interleaved together.
    The R-PDCCH corresponding to RN1 occupies the first slot in the second, third, fourth, sixth, ninth, tenth and twelfth resource block pairs, and carries DL grant, and the R-PDSCH corresponding to RN1 is allocated on two slots in the second, third, fourth, sixth, ninth, tenth and twelfth resource block pairs. For RN1, the resources allocated for the DL grant overlaps with the resources allocated for the R-PDSCH on the first slot in the second, third, fourth, sixth, ninth, tenth and twelfth resource block pairs, therefore the shunning puncturing operation needs to be performed on the R-PDSCH corresponding to RN1. Puncturing or shunning operation can be known from Embodiment 1. By taking the shunning operation as an example, the data of the R-PDSCH is not mapped or sent on the first slot in the second, third, fourth, sixth, ninth, tenth and twelfth resource block pairs, but is mapped and sent on the second slot in the second, third, fourth, sixth, ninth, tenth and twelfth resource block pairs.
    The R-PDCCHs corresponding to RN2, RN3 and RN4 occupies the first slot in the second, third, fourth, sixth, ninth, tenth and twelfth resource block pairs and carries DL grant. It is supposed that the DL grant does not overlap with the resources allocated for R-PDSCHs corresponding to RN2, RN3, RN4, therefore no puncturing or shunning operation are performed on the R-PDSCHs corresponding to RN2, RN3 and RN4.

    Embodiment 4: Fig. 5 shows the diagram of R-PDCCH and R-PDSCH in FDM and TDM mode. It is supposed that 4 RNs, i.e. RN1, RN2, RN3 and RN4, are scheduled in the system, as is shown in Fig. 5, the R-PDCCH corresponding to RN1 occupies the first slot in the second, third and fourth resource block pairs and carries DL grant, the R-PDSCH corresponding to RN1 is allocated on the two slots in the first to fourth resource block pairs. For RN1, the resources allocated for the DL grant overlap with the resources allocated for the R-PDSCH on the first slot in the second to fourth resource block pairs, therefore puncturing or shunning operation is performed on the R-PDSCH corresponding to RN1. Puncturing or shunning operation can be known from Embodiment 1. By taking the shunning operation as an example, the data of the R-PDSCH is not mapped or sent on the first slot in the second to fourth resource block pairs, but mapped and sent on the second slot in the second to fourth resource block pairs, and also mapped and sent on the two slots in the first resource block pair, that is to say, the data of the R-PDSCH corresponding to RN1 is mapped and sent on all available resources which are not occupied by the DL grant.
    The R-PDCCH corresponding to RN2 occupies the first slot in the sixth resource block pair and carries DL grant, the R-PDSCH corresponding to RN2 is allocated on the two slots in the sixth resource block pair. For RN2, the resources allocated for the DL grant overlap with the resources allocated for the R-PDSCH on the first slot in the sixth resource block pair, therefore puncturing or shunning operation needs to be performed on the R-PDSCH corresponding to RN2. Puncturing or shunning operation can be known from Embodiment 1. By taking the shunning operation as an example, the data of the R-PDSCH is not mapped or sent on the first slot in the sixth resource block pair, but mapped and sent on the second slot in the sixth resource block pair.
    The R-PDCCH corresponding to RN3 occupies the fist slot in the ninth and tenth resource block pairs and carries DL grant, and the R-PDSCH corresponding to RN3 is allocated on the two slots in the eighth and eleventh resource block pairs. For RN3, the resources allocated for the DL grant do not overlap with the resources allocated for R-PDSCH, so that no puncturing or shunning operation is performed on the R-PDSCH corresponding to RN3.
    The R-PDCCH corresponding to RN4 occupies the first slot in the twelfth resource block pair and carries DL grant, and the R-PDSCH corresponding to RN4 is allocated on the two slots in the twelfth to fifteenth resource block pairs. For RN4, the resources allocated for the DL grant overlap with the resources allocated for the R-PDSCH on the first slot in the twelfth resource block pair, therefore puncturing or shunning operation needs to be performed on the R-PDSCH corresponding to RN4. Puncturing or shunning operation can be known from Embodiment 1. By taking the shunning operation as an example, the data of the R-PDSCH is not mapped or sent on the first slot in the twelfth resource block pair, and no data is mapped or sent on the second slot in the twelfth resource block pair, or the UL grant is mapped and sent on the second slot in the twelfth resource block pair, the data of the R-PDSCH is mapped and sent on the two slots in the thirteenth to fifteenth resource block pairs, that is to say, the data of the R-PDSCH corresponding to RN4 is mapped and sent on the available resources which is not occupied by the DL grant.

    Embodiment 5: the grouping-tree resource allocation mode, in accordance with the present invention, is adopted. The following table, agreed in the LTE, indicates resource block grouping rules under conditions of different system bandwidths. In this embodiment, there are 15 resource blocks in the frequency direction, it is determined, according to table 1, that the system bandwidth is within the region of 11 to 26 resource blocks, each resource block group consists of two resource blocks, the number of the groups is n=┌15/2┐=8, namely 8 groups, then ┌log2(8·(8+1)/2)┐=6, where ┌ ┐ refers to ceiling. The 6bits indicates a grouping position of continuous resource blocks started from any positions, and all the resource blocks or resource block pairs in the group can carry the R-PDSCH.

    Table 1
    System BandwidthRBG Size


    (P)
    ≤10 1
    11 - 26 2
    27 - 63 3
    64 - 110 4


    [0035] On the basis of the same inventive concept, the embodiment of the present disclosure also provides a resource allocation apparatus for R-PDSCH, the principle for solving problems by this apparatus is the same as that by the resource allocation method for R-PDSCH, so please the implementation of the apparatus can be known from the implementation of the method, and tautology is omitted.

    [0036] Fig. 6 shows a structure diagram of a resource allocation apparatus for R-PDSCH in the present disclosure, as shown in Fig. 6, the apparatus includes a mapping and resource allocation module configured to map R-PDSCH, wherein a resource allocation mode corresponding to a shared channel in an LTE system is reused or a grouping-tree resource allocation mode, in accordance with the present invention, is used to allocate resources for the R-PDSCH.

    [0037] The reused resource allocation mode corresponding to the shared channel in the LTE system is a resource allocation mode corresponding to each resource allocation domain in a downlink control format transmitted by a PDCCH from an eNode-B to a UE.

    [0038] The resource allocation module is configured to adopt the grouping-tree resource allocation mode which comprises: grouping resource blocks, or resource block pairs or frequency resources, and performing tree-shaped resource allocation on the grouped resources, wherein bit number of position information is ┌log2(n·(n+1)/2)┐ when the grouping-tree resource allocation mode is adopted, where n refers to number of available groups, and ┌ ┐ refers to ceiling.

    [0039] The mapping and resource allocation module is configured to map and send data of the R-PDSCH on all or partial resources which are not occupied by DL grant and/or UL grant. Specifically:

    when resources allocated for DL grant of the R-PDCCH overlap with the resource allocated for the R-PDSCH, the data of the R-PDSCH is not mapped or sent on resources occupied by the DL grant, or the data of the R-PDSCH to be sent on the resources occupied by the DL grant is punctured; and the data of the R-PDSCH is mapped and sent on all or partial resources which are not occupied by the DL grant;

    when resources allocated for UL grant of the R-PDCCH overlap with the resource allocated for the R-PDSCH, the data of the R-PDSCH is not mapped or sent on resources occupied by the UL grant, or the data of the R-PDSCH to be sent on the resources occupied by the UL grant is punctured; and the data of the R-PDSCH is mapped and sent on all or partial resources which are not occupied by the UL grant;

    when resources allocated for DL and UL grant of the R-PDCCH overlap with the resource allocated for the R-PDSCH, the data of the R-PDSCH is not mapped or sent on resources occupied by the DL and UL grant, or the data of the R-PDSCH to be sent on the resources occupied by the DL and UL grant is punctured; and the data of the R-PDSCH is mapped and sent on all or partial resources which are not occupied by the DL and UL grant.



    [0040] As is shown in Fig. 6, the apparatus of the present disclosure further includes a shunning module configured to, when resources allocated for a R-PDCCH overlap with the resources allocated for the R-PDSCH, not map or send data of the R-PDSCH on the over-lapped resources. The shunning module is further configured to, when the resources allocated for the R-PDCCH overlap with the resources allocated for the R-PDSCH from an eNode-B to a UE of R10, not map or send the data of the R-PDSCH on the over-lapped resources.

    [0041] As is shown in Fig. 6, the apparatus of the present disclosure further includes a puncturing module configured to, when resources allocated for a R-PDCCH overlap with the resources allocated for the R-PDSCH, puncture data of the R-PDSCH on the over-lapped resources. The puncturing module is further configured to, when the resources allocated for the R-PDCCH overlap with the resources allocated for the R-PDSCH from an eNode-B to a UE of R8, R9 or R10, puncture data of the R-PDSCH on the over-lapped resources.

    [0042] Certainly, there may be various other embodiments included in the present disclosure. Those skilled in the art can, without departing from the principle of the present disclosure, make various corresponding changes and modifications, which shall fall within the protection scope of the present disclosure.


    Claims

    1. A mapping and resource allocation method for Relay link-Physical Downlink Shared Channel, R-PDSCH, in Long Term Evolution, LTE, system and Long Term Evolution-Advanced, LTE-A, system, the method comprising:

    when resources allocated for a Relay link-Physical Downlink Control Channel, R-PDCCH, overlap with resources allocated for a R-PDSCH, mapping the data of the R-PDSCH on all or partial allocated resources which are not occupied by the R-PDCCH or sending the data of the R-PDSCH on all or partial allocated resources which are not occupied by the R-PDCCH;

    wherein a grouping-tree resource allocation mode is used to allocate resources for the R-PDSCH;

    the grouping-tree resource allocation mode comprises: grouping resource blocks, or resource block pairs or frequency resources, and performing tree-shaped resource allocation on the grouped resources, wherein bit number of position information is ┌log2((n+1)/2)┐ when the grouping-tree resource allocation mode is adopted, where n refers to number of available groups, and ┌ ┐ refers to ceiling.


     
    2. The method according to claim 1, wherein when resources allocated for DownLink, DL, grant of the R-PDCCH overlap with the resource allocated for the R-PDSCH, the data of the R-PDSCH is not mapped or sent on resources occupied by the DL grant, or the data of the R-PDSCH to be sent on the resources occupied by the DL grant is punctured; and
    the data of the R-PDSCH is mapped and sent on all or partial allocated resources which are not occupied by the DL grant.
     
    3. The method according to claim 1, wherein when resources allocated for UpLink, UL, grant of the R-PDCCH overlap with the resource allocated for the R-PDSCH, the data of the R-PDSCH is not mapped or sent on resources occupied by the UL grant, or the data of the R-PDSCH to be sent on the resources occupied by the UL grant is punctured; and
    the data of the R-PDSCH is mapped and sent on all or partial allocated resources which are not occupied by the UL grant.
     
    4. The method according to claim 1, wherein when resources allocated for DL and UL grant of the R-PDCCH overlap with the resource allocated for the R-PDSCH, the data of the R-PDSCH is not mapped or sent on resources occupied by the DL and UL grant, or the data of the R-PDSCH to be sent on the resources occupied by the DL and UL grant is punctured; and
    the data of the R-PDSCH is mapped and sent on all or partial allocated resources which are not occupied by the DL and UL grant.
     
    5. The method according to claim 1, wherein the downlink control format comprises format 0, format 1/1A/1B/1C/1D and format 2/2A.
     
    6. The method according to claim 5, wherein one of the following items is used in the resource allocation for the R-PDSCH: resource block assignment and hopping resource allocation in the format 0; resource allocation header and resource block assignment in the format 1/2/2A; localized/distributed VRB assignment flag and resource block assignment in the format 1A/1B/1D; resource block assignment in the format 1C.
     
    7. The method according to claim 1, wherein when the R-PDSCH carries data of a UE of Release 8 version, R8, or Release 9 version, R9 or Release 10 version, R10, the R-PDSCH refers to a Physical Downlink Shared Channel, PDSCH, from an eNode-B to the UE.
     
    8. The method according to claim 7, wherein when the resources allocated for the R-PDCCH overlap with the resources allocated for the PDSCH from the eNode-B to the UE of R8 or R9, the data of the PDSCH to be sent on the over-lapped resources is punctured;
    when the resources allocated for the R-PDCCH overlap with the resources allocated for the PDSCH from the eNode-B to the UE of R10, the data of the PDSCH is not mapped or sent on the over-lapped resource, or the data of the PDSCH to be sent on the overlapped resources is punctured.
     
    9. The method according to claim 2, further comprising: receiving, by a receiving end, the data according to the mapping method for the R-PDSCH.
     
    10. A mapping and resource allocation apparatus for Relay link-Physical Downlink Shared Channel, R-PDSCH, in Long Term Evolution, LTE, system and Long Term Evolution-Advanced, LTE-A, system, the apparatus comprising:

    a mapping and resources allocation module configured to map and send data of the R-PDSCH on allocated resources, wherein a grouping-tree resource allocation mode is used to allocate resources for the R-PDSCH; and

    a shunning module configured to, when resources allocated for a Relay link-Physical Downlink Control Channel, R-PDCCH, overlap with the resources allocated for the R-PDSCH, map the data of the R-PDSCH on all or partial allocated resources which are not occupied by the R-PDCCH or send the data of the R-PDSCH on all or partial allocated resources which are not occupied by the R-PDCCH;

    wherein the mapping and resource allocation module is configured to adopt the grouping-tree resource allocation mode which comprises: grouping resource blocks, or resource block pairs or frequency resources, and performing tree-shaped resource allocation on the grouped resources, wherein bit number of position information is ┌log2((n+1)/2)┐ when the grouping-tree resource allocation mode is adopted, where n refers to number of available groups, and ┌ ┐ refers to ceiling.


     
    11. The apparatus according to claim 10, wherein the mapping and resource allocation module is configured to map and send data of the R-PDSCH on all or partial allocated resources which are not occupied by DL grant and/or UL grant.
     
    12. The apparatus according to claim 10, wherein the shunning module is further configured to, when the resources allocated for the R-PDCCH overlap with the resources allocated for the R-PDSCH from an eNode-B to a UE of R10, not map or send the data of the R-PDSCH on the over-lapped resources.
     
    13. The apparatus according to any one of claims 10 to 12, further comprising: a puncturing module configured to, when resources allocated for the R-PDCCH overlap with the resources allocated for the R-PDSCH, puncture data of the R-PDSCH on the over-lapped resources.
     
    14. The apparatus according to claim 13, wherein the puncturing module is further configured to, when the resources allocated for the R-PDCCH overlap with the resources allocated for the R-PDSCH from an eNode-B to a UE of Release 8 version, R8, Release 9 version, R9 or Release 10 version, R10, puncture data of the R-PDSCH on the over-lapped resources.
     


    Ansprüche

    1. Mapping- und Ressourcen-Zuweisungsverfahren für einen R-PDSCH, Relay link-Physical Downlink Shared Channel, in einem LTE-, Long Term Evolution, System und einem LTE-A-, Long Term Evolution-Advanced, System, wobei das Verfahren umfasst:

    wenn für einen R-PDCCH, Relay link-Physical Downlink Control Channel, zugewiesene Ressourcen sich mit für einen P-RDSCH zugewiesenen Ressourcen überlappen, Mappen der Daten des R-PDSCH auf alle oder einen Teil der zugewiesenen Ressourcen, die nicht von dem R-PDCCH belegt sind, oder Senden der Daten des R-PDSCH auf allen oder einem Teil der zugewiesenen Ressourcen, die nicht von dem R-PDCCH belegt sind;

    wobei ein Gruppierungsbaum-Ressourcen-Zuweisungsmodus dazu verwendet wird, Ressourcen für den R-PDSCH zuzuweisen;

    der Gruppierungsbaum-Ressourcen-Zuweisungsmodus umfasst: Gruppieren von Ressourcenblocks oder Ressourcenblockpaaren oder Frequenzressourcen und Durchführen einer baumartigen Ressourcenzuweisung an den gruppierten Ressourcen, wobei die Bitwertigkeit der Positionsinformation ┌log2((n+1)/2)┐ ist, wenn der Gruppierungsbaum-Ressourcen-Zuweisungsmodus angewandt wird, wobei n sich auf eine Anzahl verfügbarer Gruppen bezieht und ┌ ┐ sich auf eine Aufrundungszahl bezieht.


     
    2. Verfahren gemäß Anspruch 1, wobei, wenn für einen DownLink, DL, -Grant des R-PDCCH zugewiesene Ressourcen sich mit der für den R-PDSCH zugewiesenen Ressource überlappen, die Daten des R-PDSCH nicht auf Ressourcen gemappt oder gesendet werden, die von dem DL-Grant belegt sind, oder die Daten des R-PDSCH, die auf der von dem DL-Grant belegten Ressource zu senden sind, punktiert werden; und
    die Daten des R-PDSCH auf allen oder einem Teil der zugewiesenen Ressourcen gemappt und gesendet werden, die nicht von dem DL-Grant belegt sind.
     
    3. Verfahren gemäß Anspruch 1, wobei, wenn für einen UpLink, UL, -Grant des R-PDCCH zugewiesene Ressourcen sich mit der Ressource überlappen, die für den R-PDSCH zugewiesen ist, die Daten des R-PDSCH nicht auf Ressourcen gemappt oder gesendet werden, die von dem UL-Grant belegt sind, oder die Daten des R-PDSCH, die auf den von dem UL-Grant belegten Ressourcen zu senden sind, punktiert werden; und
    die Daten des R-PDSCH auf allen oder einem Teil der zugewiesenen Ressourcen gemappt und gesendet werden, die nicht von dem UL-Grant belegt sind.
     
    4. Verfahren gemäß Anspruch 1, wobei, wenn für einen DL- und UL-Grant des R-PDCCH zugewiesene Ressourcen sich mit der für den R-PDSCH zugewiesenen Ressource überlappen, die Daten des R-PDSCH nicht auf Ressourcen gemappt oder gesendet werden, die von dem DL- und UL-Grant belegt sind, oder die Daten des R-PDSCH, die auf den von dem DL- und UL-Grant belegten Ressourcen zu senden sind, punktiert werden; und
    die Daten des R-PDSCH auf allen oder einem Teil der zugewiesenen Ressourcen gemappt und gesendet werden, die nicht von dem DL- und UL-Grant belegt sind.
     
    5. Verfahren gemäß Anspruch 1, wobei das Downlink-Control-Format das Format 0, das Format 1/1A/1B/1C/1D und das Format 2/2A umfasst.
     
    6. Verfahren gemäß Anspruch 5, wobei eines der Folgenden bei der Ressourcen-Zuweisung für den R-PDSCH verwendet wird:
    Ressourcenblockzuweisung und Hopping-Ressourcenzuweisung im Format 0; Ressourcenzuweisungs-Header und Ressourcenblockzuweisung im Format 1/2/2A; lokalisierter/verteilter VRB-Zuweisungsflag und Ressourcenblockzuweisung im Format 1A/1B/1D; Ressourcenblockzuweisung im Format 1C.
     
    7. Verfahren gemäß Anspruch 1, wobei, wenn der R-PDSCH Daten eines Benutzergeräts (UE) der Version des Release 8, R8, oder der Version des Release 9, R9, oder der Version des Release 10, R10, trägt, der R-PDSCH auf einen PDSCH (Physical Downlink Shared Channel) von einer eNode-B an das UE bezogen ist.
     
    8. Verfahren gemäß Anspruch 7, wobei, wenn die für den R-PDCCH zugewiesenen Ressourcen sich mit den für den PDSCH von der eNode-B an das UE von R8 oder R9 zugewiesenen Ressourcen überlappen, die Daten des PDSCH, die auf den überlappenden Ressourcen zu senden sind, punktiert werden;
    wenn die für den R-PDCCH zugewiesenen Ressourcen sich mit den für den PDSCH von der eNode-B an das UE von R10 zugewiesenen Ressourcen überlappen, die Daten des PDSCH nicht auf der überlappten Ressource gemappt oder gesendet werden, oder die Daten des PDSCH, die auf den überlappten Ressourcen zu senden sind, punktiert werden.
     
    9. Verfahren gemäß Anspruch 2, ferner umfassend: Empfangen, durch ein empfangendes Ende, der Daten gemäß dem Mapping-Verfahren für den R-PDSCH.
     
    10. Mapping- und Ressourcen-Zuweisungsvorrichtung für einen R-PDSCH, Relay link-Physical Downlink Shared Channel, in einem LTE-System, Long Term Evolution, und einem LTE-A-System, Long Term Evolution-Advanced, wobei die Vorrichtung umfasst:

    ein Mapping- und Ressourcen-Zuweisungsmodul, das dazu konfiguriert ist, Daten des R-PDSCH auf zugewiesenen Ressourcen zu mappen und zu senden, wobei ein Gruppierungsbaum-Ressourcen-Zuweisungsmodus verwendet wird, um Ressourcen für den R-PDSCH zuzuweisen; und

    ein Shunning-Modul, das dazu konfiguriert ist, wenn für einen R-PDCCH, Relay link-Physical Downlink Control Channel, zugewiesene Ressourcen sich mit für einen P-RDSCH zugewiesenen Ressourcen überlappen, die Daten des R-PDSCH auf alle oder einen Teil der zugewiesenen Ressourcen zu mappen, die nicht von dem R-PDCCH belegt sind, oder die Daten des R-PDSCH auf allen oder einem Teil der zugewiesenen Ressourcen zu senden, die nicht von dem R-PDCCH belegt sind;

    wobei das Mapping- und Ressourcen-Zuweisungsmodul dazu konfiguriert ist, den Gruppierungsbaum-Ressourcen-Zuweisungsmodus zu verwenden, der umfasst: Gruppieren von Ressourcenblocks oder Ressourcenblockpaaren oder Frequenzressourcen und Durchführen einer baumartigen Ressourcenzuweisung an den gruppierten Ressourcen, wobei die Bitwertigkeit der Positionsinformation ┌log2((n+1)/2)┐ ist, wenn der Gruppierungsbaum-Ressourcen-Zuweisungsmodus angewandt wird, wobei n sich auf eine Anzahl verfügbarer Gruppen bezieht und ┌ ┐ sich auf eine Aufrundungszahl bezieht.


     
    11. Vorrichtung gemäß Anspruch 10, wobei das Mapping- und Ressourcen-Zuweisungsmodul dazu konfiguriert ist, Daten des R-PDSCH auf allen oder einem Teil der zugewiesenen Ressourcen zu mappen und zu senden, die nicht von DL-Grant und/oder UL-Grant belegt sind.
     
    12. Vorrichtung gemäß Anspruch 10, wobei das Shunning-Modul ferner dazu konfiguriert ist, wenn die für den R-PDCCH zugewiesenen Ressourcen sich mit den für den R-PDSCH von der eNode-B an das UE von R10 zugewiesenen Ressourcen überlappen, die Daten des R-PDSCH nicht auf den überlappten Ressourcen zu mappen oder zu senden.
     
    13. Vorrichtung gemäß einem der Ansprüche 10 bis 12, ferner umfassend: ein Punktierungsmodul, das dazu konfiguriert ist, wenn für den R-PDCCH zugewiesene Ressourcen sich mit den für den R-PDSCH zugewiesenen Ressourcen überlappen, Daten des R-PDSCH auf den überlappten Ressourcen zu punktieren.
     
    14. Vorrichtung gemäß Anspruch 13, wobei das Punktierungsmodul ferner dazu konfiguriert ist, wenn die für den R-PDCCH zugewiesene Ressourcen sich mit den für den R-PDSCH von einer eNode-B an ein UE der Version des Release 8, R8, der Version des Release 9, R9, oder der Version des Release 10, R10, zugewiesenen Ressourcen überlappen, Daten des R-PDSCH auf den überlappten Ressourcen zu punktieren.
     


    Revendications

    1. Procédé de mappage et d'allocation de ressource pour un Canal Partagé de Liaison descendante Physique de liaison Relais, R-PDSCH, dans un système d'Evolution à Long Terme, LTE, et un système d'Evolution à Long Terme Avancée, LTE-A, le procédé comprenant :

    lorsque des ressources allouées pour un Canal de Contrôle de Liaison descendante Physique de liaison Relais, R-PDCCH, se chevauchent avec des ressources allouées pour un R-PDSCH, le mappage des données du R-PDSCH sur tout ou partie des ressources allouées qui ne sont pas occupées par le R-PDCCH ou l'envoi des données du R-PDSCH sur tout ou partie des ressources allouées qui ne sont pas occupées par le R-PDCCH ;

    dans lequel un mode d'allocation de ressource d'arbre de regroupement est utilisé pour allouer des ressources pour le R-PDSCH ;

    le mode d'allocation de ressource d'arbre de regroupement comprend : le regroupement de blocs de ressources, ou de paires de blocs de ressources ou de ressources de fréquences, et la réalisation d'une allocation de ressource en forme d'arbre sur les ressources regroupées, où un nombre de bits d'informations de position est ┌log2((n+1)/2)┐ lorsque le mode d'allocation de ressource d'arbre de regroupement est adopté, où n fait référence au nombre de groupes disponibles, et ┌ ┐ fait référence au plafond.


     
    2. Procédé selon la revendication 1, dans lequel lorsque des ressources allouées pour un octroi de Liaison Descendante, DL, du R-PDCCH se chevauchent avec la ressource allouée pour le R-PDSCH, les données du R-PDSCH ne sont pas mappées ou envoyées sur des ressources occupées par l'octroi DL, ou les données du R-PDSCH à envoyer sur les ressources occupées par l'octroi DL sont perforées ; et
    les données du R-PDSCH sont mappées et envoyées sur tout ou partie des ressources allouées qui ne sont pas occupées par l'octroi DL.
     
    3. Procédé selon la revendication 1, dans lequel lorsque des ressources allouées pour un octroi de Liaison Montante, UL, du R-PDCCH se chevauchent avec la ressource allouée pour le R-PDSCH, les données du R-PDSCH ne sont pas mappées ou envoyées sur des ressources occupées par l'octroi UL, ou les données du R-PDSCH à envoyer sur les ressources occupées par l'octroi UL sont perforées ; et
    les données du R-PDSCH sont mappées et envoyées sur tout ou partie des ressources allouées qui ne sont pas occupées par l'octroi UL.
     
    4. Procédé selon la revendication 1, dans lequel lorsque des ressources allouées pour un octroi DL et UL du R-PDCCH se chevauchent avec la ressource allouée pour le R-PDSCH, les données du R-PDSCH ne sont pas mappées ou envoyées sur des ressources occupées par l'octroi DL et UL, ou les données du R-PDSCH à envoyer sur les ressources occupées par l'octroi DL et UL sont perforées ; et
    les données du R-PDSCH sont mappées et envoyées sur tout ou partie des ressources allouées qui ne sont pas occupées par l'octroi DL et UL.
     
    5. Procédé selon la revendication 1, dans lequel le format de contrôle de liaison descendante comprend un format 0, un format 1/1A/1B/1C/1D et un format 2/2A.
     
    6. Procédé selon la revendication 5, dans lequel l'un des éléments suivants est utilisé dans l'allocation de ressource pour le R-PDSCH : assignation de bloc de ressources et allocation de ressource à sauts au format 0 ; en-tête d'allocation de ressource et assignation de bloc de ressources au format 1/2/2A ; drapeau d'assignation VRB localisé/distribué et assignation de bloc de ressources au format 1A/1B/1D ; assignation de bloc de ressources au format 1C.
     
    7. Procédé selon la revendication 1, dans lequel lorsque le R-PDSCH transporte des données d'un UE de version Release 8, R8, ou de version Release 9, R9, ou de version Release 10, R10, le R-PDSCH fait référence à un Canal Partagé de Liaison descendante Physique, PDSCH, d'un eNode-B à l'UE.
     
    8. Procédé selon la revendication 7, dans lequel lorsque les ressources allouées pour le R-PDCCH se chevauchent avec les ressources allouées pour le PDSCH de l'eNode-B à l'UE de R8 ou R9, les données du PDSCH à envoyer sur les ressources faisant l'objet d'un chevauchement sont perforées ;
    lorsque les ressources allouées pour le R-PDCCH se chevauchent avec les ressources allouées pour le PDSCH de l'eNode-B à l'UE de R10, les données du PDSCH ne sont pas mappées ou envoyées sur la ressource faisant l'objet d'un chevauchement, ou les données du PDSCH à envoyer sur les ressources faisant l'objet d'un chevauchement sont perforées.
     
    9. Procédé selon la revendication 2, comprenant en outre : la réception, par une extrémité de réception, des données selon le procédé de mappage pour le R-PDSCH.
     
    10. Appareil de mappage et d'allocation de ressource pour un Canal Partagé de Liaison descendante Physique de liaison Relais, R-PDSCH, dans un système d'Evolution à Long Terme, LTE, et un système d'Evolution à Long Terme Avancée, LTE-A, l'appareil comprenant :

    un module de mappage et d'allocation de ressources configuré pour mapper et envoyer des données du R-PDSCH sur des ressources allouées, dans lequel un mode d'allocation de ressource d'arbre de regroupement est utilisé pour allouer des ressources pour le R-PDSCH ; et

    un module d'évitement configuré pour, lorsque des ressources allouées pour un Canal de Contrôle de Liaison descendante Physique de liaison Relais, R-PDCCH, se chevauchent avec les ressources allouées pour le R-PDSCH, mapper les données du R-PDSCH sur tout ou partie des ressources allouées qui ne sont pas occupées par le R-PDCCH ou envoyer les données du R-PDSCH sur tout ou partie des ressources allouées qui ne sont pas occupées par le R-PDCCH ;

    dans lequel le module de mappage et d'allocation de ressource est configuré pour adopter le mode d'allocation de ressource d'arbre de regroupement qui comprend : le regroupement de blocs de ressources, ou de paires de blocs de ressources ou de ressources de fréquences, et la réalisation d'une allocation de ressource en forme d'arbre sur les ressources regroupées, où un nombre de bits d'informations de position est ┌log2(n·(n+1)/2)┐ lorsque le mode d'allocation de ressource d'arbre de regroupement est adopté, où n fait référence au nombre de groupes disponibles, et ┌ ┐ fait référence au plafond.


     
    11. Appareil selon la revendication 10, dans lequel le module de mappage et d'allocation de ressource est configuré pour mapper et envoyer des données du R-PDSCH sur tout ou partie des ressources allouées qui ne sont pas occupées par un octroi DL et/ou un octroi UL.
     
    12. Appareil selon la revendication 10, dans lequel le module d'évitement est en outre configuré pour, lorsque les ressources allouées pour le R-PDCCH se chevauchent avec les ressources allouées pour le R-PDSCH d'un eNode-B à un UE de R10, ne pas mapper ou envoyer les données du R-PDSCH sur les ressources faisant l'objet d'un chevauchement.
     
    13. Appareil selon l'une quelconque des revendications 10 à 12, comprenant en outre : un module de perforation configuré pour, lorsque des ressources allouées pour le R-PDCCH se chevauchent avec les ressources allouées pour le R-PDSCH, perforer des données du R-PDSCH sur les ressources faisant l'objet d'un chevauchement.
     
    14. Appareil selon la revendication 13, dans lequel le module de perforation est en outre configuré pour, lorsque les ressources allouées pour le R-PDCCH se chevauchent avec les ressources allouées pour le R-PDSCH d'un eNode-B à un UE de version Release 8, R8, de version Release 9, R9, ou de version Release 10, R10, perforer des données du R-PDSCH sur les ressources faisant l'objet d'un chevauchement.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description