(19)
(11)EP 2 513 611 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
15.12.2021 Bulletin 2021/50

(21)Application number: 10801290.7

(22)Date of filing:  08.11.2010
(51)International Patent Classification (IPC): 
G01F 1/66(2006.01)
G10K 11/26(2006.01)
(52)Cooperative Patent Classification (CPC):
G01F 1/667; G01F 1/662; Y10T 137/0324; Y10T 137/8376
(86)International application number:
PCT/US2010/055867
(87)International publication number:
WO 2011/075234 (23.06.2011 Gazette  2011/25)

(54)

ULTRASONIC TRANSDUCER, FLOW METER AND METHOD

ULTRASCHALLWANDLER, DURCHFLUSSMESSER UND VERFAHREN

TRANSDUCTEUR ULTRASONORE, DÉBITMÈTRE ET PROCÉDÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.12.2009 US 653913

(43)Date of publication of application:
24.10.2012 Bulletin 2012/43

(73)Proprietor: Sensia Netherlands B.V.
2514 JG The Hague (NL)

(72)Inventors:
  • AUGENSTEIN, Donald R.
    Pittsburgh, Pennsylvania 15243 (US)
  • GRIFFITH, Bobbie W.
    Harrisville, Pennsylvania 16038 (US)

(74)Representative: Gill Jennings & Every LLP 
The Broadgate Tower 20 Primrose Street
London EC2A 2ES
London EC2A 2ES (GB)


(56)References cited: : 
EP-A2- 1 387 149
FR-A1- 2 449 871
US-A- 3 741 014
FR-A1- 2 356 127
GB-A- 2 257 254
US-A- 4 391 149
  
  • None
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

CROSS REFERENCE TO RELATED APPLICATION FIELD OF THE INVENTION


FIELD OF THE INVENTION



[0001] The present invention is related to determining fluid flowrate in a pipe using an ultrasonic transducer. (As used herein, references to the "present invention" or "invention" relate to exemplary embodiments and not necessarily to every embodiment encompassed by the appended claims.) More specifically, the present invention is related to determining fluid flowrate in a pipe using an ultrasonic transducer where the face of the transducer has at a portion which is shaped such that it causes the plane waves generated by the transducer to be directed outward towards the pipe's interior wall so a full cross-section of the pipe's interior can be measured.

BACKGROUND OF THE INVENTION



[0002] This section is intended to introduce the reader to various aspects of the art that may be related to various aspects of the present invention. The following discussion is intended to provide information to facilitate a better understanding of the present invention. Accordingly, it should be understood that statements in the following discussion are to be read in this light, and not as admissions of prior art.

[0003] The current invention is applicable for measuring flow rates with ultrasonic transit time technology (e.g., ultrasonic flow meters, or UFM). The application is specifically developed for a flow meter to monitor chemical injection in subsea oil wells (typically injecting monoethylene glycol or MEG). This specific subsea application has flow rates that range from 100 liters/hr to 30,000 liters/hr. For this flow range and product viscosity - the Reynolds Number ranges from laminar flow to fully turbulent flow. This range of Reynolds Number produces velocity profiles that vary from parabolic to nearly flat. As a flow meter, the average velocity (e.g. integral of velocity profile divided by the area) must be measured.

[0004] The current ultrasonic flow meter arrangement uses in one embodiment two transducers at opposing ends of a pipe/tube where one is upstream from the fluid flow and other is downstream from the fluid flow, both transducers transmit and receive signals. Each transducer generates plane waves into the fluid. The difference in transit times between the upstream and downstream signal is used to calculate the velocity between the two transducers. This difference in transit time reflects the average fluid velocity projected onto the acoustic path.

[0005] An example of those kind of transducers is given in patent document FR 2356127 A1.

[0006] Unless the transducer is larger than the diameter of the pipe/tube, the acoustic path measures a cross section of velocities that represent an area that is less than the full cross section of the pipe/tube. Only if the transducer is larger than the tube itself can the full cross section be measured. A transducer large enough to completely cover the pipe/tube cross section is not always possible or even practical depending upon the pipe/tube size or pressure (e.g., required wall thicknesses). Some UFM have used multiple bounces; but these multiple bounces cannot get the full cross section.

[0007] By measuring the full cross section, velocity profile effects are addressed (for example any distortions due to hydraulics or changes in the velocity profile due to transition from laminar to turbulent).

BRIEF SUMMARY OF THE INVENTION



[0008] The present invention pertains to the measurement of flowing fluid through a pipe. The measurement is performed with a transit time ultrasonic flow meter having transducers that are disposed in alignment with the fluid flow through the pipe. The radiation pattern of the plane waves produced by the transducers propagates through the flowing fluid in the pipe and is used by the flow meter to determine the flowrate of the fluid.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING



[0009] In the accompanying drawings, the preferred embodiment of the invention and preferred methods of practicing the invention are illustrated in which: i

Figure 1 is a standard design of the present invention.

Figure 2 is an example of a conical faced transducer.

Figure 3 shows the calculation of the transducer face angles.

Figure 4 shows an antenna pattern for transducer shown in figure 2.

Figure 5a shows an insertion transducer configuration.

Figure 5b shows an end cap transducer configuration.

Figure 6 is an example of improved linearity possible by integrating the full cross section.

Figure 7 shows that change the viscosity from 10 cSt to 20 cSt to 50 cSt has no effect on the linearity, even over a 200:1 Reynolds number range.

Figure 8 shows linearity insensitivity to hydraulic changes.

Figure 9 shows a single support 30. Figure 10 shoes a dounle support 30. Figure 11 shows a cantilevered support 30.


DETAILED DESCRIPTION OF THE INVENTION



[0010] Referring now to the drawings wherein like reference numerals refer to similar or identical parts throughout the several views, and more specifically to figure 2 thereof, there is shown an ultrasonic transducer 10 for a pipe 12. The transducer 10 comprises an ultrasonic source 14 which produces plane waves. The transducer 10 comprises a housing 16 having a face 18 at least a portion of which is curved through which the plane waves produced from the source 14 disposed in the housing 16 are emitted and directed outward towards the pipe's 12 interior wall 26 so a full cross-section of the pipe's 12 interior can be measured. See figure 3. The transducer 10 is a standard transducer 10 available from many suppliers, with the only difference being the face 18 has at least the portion which is shaped, as described above. The shaped portion of the face 18, which in one embodiment was made of stainless steel, causes the plane waves to refract as they propagate according to Snell's law through the face 18 and be directed outward toward the interior wall 26 of the pipe 12. Similarly, upon reception, the plane waves at various angles to the shaped portion of the face 18 are refracted back to an angle that can be captured by the transducer 10 according to Snell's law to produce a signal based on the flow rate, as is well known in the art.

[0011] At least a portion of the face 18 may be a portion of a cone. In one embodiment the face 18 may be conically shaped. A desired angle, ϕ desired, of the conical shape may be defined by


where D is the diameter of the pipe 12, L is the length of the pipe 12, r is the radius of the transducer 10,






[0012] The present invention pertains to a flow meter 20 for detecting fluid flow rates in a pipe 12, as shown in figure 1 and figure 5b. The flow meter 20 comprises an upstream ultrasonic transducer 22 having a face 18 at least a portion of which is shaped in communication with the pipe 12 interior and positioned so plane waves generated by the upstream transducer 22 are directed outward towards the pipe's interior wall 26 and propagate along the pipe's interior so a full cross-section of the pipe's interior can be measured. See figure 3. The flow meter 20 comprises a controller 28 in communication with the upstream transducer 22 which calculates fluid flow rate from the plane waves that have propagated along the pipe's interior. The calculation of fluid flow rate from the received plane waves is well known in the art. [Refer to Chapter 5 in: Physical Acoustics - Principles and Methods, W. P. Mason and R. N. Thurston (Editors), Vol. 14, pp. 407-525, Academic Press (1979).

[0013] The flow meter 20 may include a downstream ultrasonic transducer 24 having a face 18 at least a portion of which is curved in communication with the pipe's interior and positioned so plane waves generated by the downstream transducer 24 are directed outward towards the pipe's interior wall 26 and propagate along the pipe's interior so a full cross-section of the pipe's interior can be measured and are received by the upstream transducer 22 which produces an upstream transducer 22 signal. The downstream transducer 24 receives the plane waves from the upstream transducer 22 and provides a downstream transducer 24 signal. The controller 28 is in communication with the upstream and downstream transducers 24 which calculates fluid flow rate from the upstream transducer 22 signal and the downstream transducer 24 signal.

[0014] At least a portion of each face 18 may be a portion of a cone. Each face 18 may be conically shaped.

[0015] A desired angle, ϕ desired, of the conical shape may be defined by



where D is the diameter of the pipe 12, L is the length of the pipe 12, r is the radius of the upstream transducer 22,







[0016] The flow meter 20 may include a support 30 that extends from the pipe 12 wall 26 into the pipe 12 interior upon which the upstream transducer 22 is mounted. See figure 5a. Figure 9 shows a single support 30. Figure 10 shows a double support 30 and figure 11 shows a cantilevered support 30.

[0017] The present invention pertains to a method for detecting fluid flow rates in a pipe 12. The method comprises the steps of generating plane waves by an upstream transducer 22 having a face 18 at least a portion of which is curved in communication with the pipe 12 interior and positioned so plane waves are directed outward towards the pipe's interior wall 26 and propagate along the pipe's interior so a full cross-section of the pipe's interior can be measured. There is the step of calculating fluid flow rate from the plane waves that have propagated along the pipe's interior with a controller 28 in communication with the upstream transducer 22.

[0018] There can be the steps of generating plane waves with a downstream ultrasonic transducer 24 having a face 18 at least a portion of which is curved and in communication with the pipe's interior and positioned so the plane waves are directed outward towards the pipe's interior wall 26 and propagate along the pipe's interior so a full cross-section of the pipe's interior can be measured..There can be a step of receiving the plane waves generated by the downstream transducer 24 at the upstream transducer 22 which produces an upstream transducer 22 signal. There can be the step of receiving the plane waves generated by the upstream transducer 22 at the downstream transducer 24 which produces a downstream transducer 24 signal. There can be the step of providing to the controller 28 in communication with the upstream and downstream transducers the upstream and downstream signals. There can be the step of calculating with the controller 28 fluid flowrate from the upstream transducer 22 signal and the downstream transducer 24 signal.

[0019] At least a portion of each face 18 may be a portion of a cone. Each face 18 may be conically shaped. A desired angle, ϕ desired, of the conical shape may be defined by



where D is the diameter of the pipe 12, L is the length of the pipe 12, r is the radius of the transducer 10,





[0020] In the operation of the invention, one pair of transducers is used to ensonify the full cross section of the measuring tube or pipe. The end result is a time of flight measurement that reflects the full cross section of velocities. This produces a flow meter that is essentially insensitive to changes in viscosity (e.g., Reynolds number) and upstream hydraulics. The present invention uses a transducer 10 having a face 18 at least a portion of which is curved face 18, and ideally is of a conical shape. The angle of the cone is designed based on the length and size of the measurement tube. The angle of the cone considers refraction (due to Snell's law). The effect of refraction is computed to be insignificant. This conical face 18 makes the acoustic energy radiate out to the sides of the tube from the center of the transducer 10. At the walls, the sound then reflects back to the center. The result is that the flow meter measures the full cross section of the measuring tube.

[0021] The transducers were at opposing ends of the tube. See Figure 1. Figure 1 is a standard design of the present invention. The standard transducer 10 window face 18 (the side facing the fluid) is typically flat. The present invention puts a conical face 18 to refract the sound out to the walls. See Figure 2. Figure 2 is an example of a conical faced transducer 10. The design of the conical face 18 depends upon the dimensions of the measuring tube and the refraction due to the fluid to transducer 10 face 18 interface (e.g., Snell's law). The following calculation is set out with reference to Figure 3, which also shows an example antenna pattern. Figure 3 shows the calculation of the transducer 10 face angles.

[0022] A desired angle, ϕ desired, of the conical shape may be defined by

where D is the diameter of the pipe 12, L is the length of the pipe 12, r is the radius of the transducer 10,





[0023] The radiation pattern or antenna pattern of the transducer face 18 results in a spreading conical pattern (that is, until it hits the walls, at which point it becomes a focusing cone). The antenna pattern for one transducer 10 built (see Figure 2) is shown in Figure 4. This antenna had 3.5 MHz transducers, a 12.7 mm diameter transducer and the media had sound velocity of 1500 m/s. Figure 4 shows an antenna pattern for transducer 10 shown in figure 2.

[0024] The design of flow meters 20 need not be limited to meters that have the transducers at the ends of tubes. The principles can be used in other arrangements - for examples, figure 5a and figure 5b. Figure 5a shows an insertion transducer 10 configuration. Figure 5b shows an end cap transducer 10 configuration. There are arrangements at which the transducer 10 maybe be along one side or the other that uses a portion of a cone to radiate across the pipe 12 using the opposing side as a reflection source 14.

[0025] An example of the inventions improved linearity is demonstrated in figure 6. The figure shows the real performance improvement possible with the invention. The standard line of sight approach is represented by triangles. This standard meter had a 0.5 inch transducer 10 in a 1.5 inch diameter tube. Figure 6 is an example of improved linearity possible by integrating the full cross section. Figure 7 shows that change the viscosity from 10 cSt to 20 cSt to 50 cSt has no effect on the linearity, even over a 200:1 Reynolds number range. Figure 8 shows linearity insensitivity to hydraulic changes. Figure 8 shows that changes in the hydraulics (from a 90 elbow non-planar coupled with the 70 degree elbow, to three non-planar 90 degree elbows to one planar elbow, the linearity is unaffected. The present invention is not limited to a chemical injection meter since the invention solves the velocity profile integration problem.

[0026] Although the invention has been described in detail in the foregoing embodiments for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the scope of the invention except as it may be described by the following claims.


Claims

1. A flow meter (20) for a pipe comprising:
an upstream ultrasonic transducer (22) and a downstream ultrasonic transducer (24), each transducer comprising:

an ultrasonic source configured to produce plane waves; and

a housing (16) having a face (18) at least a portion of which is curved/shaped through which the plane waves produced from the source disposed in the housing are emitted and directed outward towards the pipe's interior wall (26) so a full cross-section of the pipe's interior can be measured, wherein the face is conically shaped, and wherein a desired angle, ϕ desired, of the conical shape is defined by

where D is the diameter of the pipe, L is the length of the pipe between the faces of the upstream and downstream ultrasonic transducer, r is the radius of the upstream or downstream transducer, and Φface is an angle of the face of the upstream or downstream transducer.


 
2. The flow meter of claim 1, further comprising:
a controller (28) in communication with the upstream and downstream ultrasonic transducers wherein the controller is configured to calculate fluid flow rate from the plane waves that have propagated along the pipe's interior.
 
3. The flow meter of claim 2 wherein plane waves generated by the downstream ultrasonic transducer are arranged to be received by the upstream transducer which is configured to produce an upstream transducer signal, and wherein the downstream transducer is configured to receive the plane waves from the upstream transducer and provide a downstream transducer signal, wherein the controller is configured to calculate the fluid flow rate from the upstream transducer signal and the downstream transducer signal.
 
4. The flow meter of claim 1 wherein the plane waves are arranged to refract through the faces of the upstream and the downstream transducer according to Snell's Law.
 
5. The flow meter of any of claims 2 to 4 including a support arranged to extend from the pipe wall into the pipe interior upon which the upstream transducer is mounted.
 
6. A method for detecting fluid flow rates in a pipe comprising the steps of:

generating plane waves by a flow meter comprising an upstream transducer and a downstream transducer as recited in claim 1; and

calculating fluid flow rate from the plane waves that have propagated along the pipe's interior with a controller in communication with the upstream transducer.


 
7. The method of claim 6 including the steps of

receiving the plane waves generated by the downstream transducer at the upstream transducer which produces an upstream transducer signal;

receiving the plane waves generated by the upstream transducer at the downstream transducer which produces a downstream transducer signal;

providing to the controller in communication with the upstream and downstream transducers the upstream and downstream signals; and

calculating with the controller fluid flow rate from the upstream transducer signal and the downstream transducer signal.


 
8. The method of claim 6 wherein the plane waves refract through faces of the upstream and the downstream transducer according to Snell's Law.
 


Ansprüche

1. Strömungsmesser (20) für ein Rohr, der Folgendes umfasst:
einen vorgeschalteten Ultraschallwandler (22) und einen nachgeschalteten Ultraschallwandler (24), wobei jeder Wandler Folgendes umfasst:

eine Ultraschallquelle, die konfiguriert ist, um ebene Wellen zu erzeugen; und

ein Gehäuse (16), das eine Fläche (18) aufweist, von der wenigstens ein Abschnitt gekrümmt/geformt ist, durch die die ebenen Wellen, die von der in dem Gehäuse eingerichteten Quelle erzeugt werden, ausgesendet werden und nach außen zu der Innenwand des Rohrs (26) gelenkt werden, sodass ein ganzer Querschnitt des Innenraums des Rohrs gemessen werden kann, wobei die Fläche konisch geformt ist und wobei ein gewünschter Winkel, ϕ gewünscht, der konischen Form durch Folgendes definiert ist:

wobei D der Durchmesser des Rohrs ist, L die Länge des Rohrs zwischen den Flächen des vorgeschalteten und des nachgeschalteten Ultraschallwandlers ist, r der Radius des vorgeschalteten oder des nachgeschalteten Wandlers ist, und φFläche ein Winkel der Fläche des vorgeschalteten oder des nachgeschalteten Wandlers ist.


 
2. Strömungsmesser nach Anspruch 1, der Folgendes umfasst:
eine Steuerung (28), die mit dem vorgeschalteten und dem nachgeschalteten Ultraschallwandler in Verbindung steht, wobei die Steuerung konfiguriert ist, um die Fluidströmungsrate von den ebenen Wellen zu berechnen, die sich entlang des Innenraums des Rohrs ausgebreitet haben.
 
3. Strömungsmesser nach Anspruch 2, wobei durch den nachgeschalteten Ultraschallwandler generierte ebene Wellen angeordnet sind, um durch den vorgeschalteten Wandler empfangen zu werden, der konfiguriert ist, um ein Signal des vorgeschalteten Wandlers zu erzeugen, und wobei der nachgeschaltete Wandler konfiguriert ist, um die ebenen Wellen von dem vorgeschalteten Wandler zu empfangen und ein Signal des nachgeschalteten Wandlers bereitzustellen, wobei die Steuerung konfiguriert ist, um die Fluidströmungsrate von dem Signal des vorgeschalteten Wandlers und dem Signal des nachgeschalteten Wandlers zu berechnen.
 
4. Strömungsmesser nach Anspruch 1, wobei die ebenen Wellen angeordnet sind, um durch die Flächen des vorgeschalteten und des nachgeschalteten Wandlers nach dem Snellius'schen Brechungsgesetz zu brechen.
 
5. Strömungsmesser nach einem der Ansprüche 2 bis 4, der einen Träger beinhaltet, der angeordnet ist, um sich von der Rohrwand in den Rohrinnenraum zu erstrecken, auf dem der vorgeschalteten Wandler montiert ist.
 
6. Verfahren zum Erfassen von Fluidströmungsraten in einem Rohr, das die folgenden Schritte umfasst:

Generieren ebener Wellen durch einen Strömungsmesser, der einen vorgeschalteten Wandler und einen nachgeschalteten Wandler nach Anspruch 1 umfasst; und

Berechnen der Fluidströmungsrate von den ebenen Wellen, die sich entlang des Innenraums des Rohrs ausgebreitet haben, mit einer Steuerung, die mit dem vorgeschalteten Wandler in Verbindung steht.


 
7. Verfahren nach Anspruch 6, das die folgenden Schritte beinhaltet:

Empfangen der ebenen Wellen, die durch den nachgeschalteten Wandler generiert werden, an dem vorgeschalteten Wandler, der ein Signal des vorgeschalteten Wandlers erzeugt;

Empfangen der ebenen Wellen, die durch den vorgeschalteten Wandler generiert werden, an dem nachgeschalteten Wandler, der ein Signal des nachgeschalteten Wandlers erzeugt;

Bereitstellen des vorgeschalteten und des nachgeschalteten Signals an die Steuerung, die mit dem vorgeschalteten und dem nachgeschalteten Wandler in Verbindung steht; und

Berechnen der Fluidströmungsrate mit der Steuerung von dem Signal des vorgeschalteten Wandlers und dem Signal des nachgeschalteten Wandlers.


 
8. Verfahren nach Anspruch 6, wobei die ebenen Wellen durch Flächen des vorgeschalteten und des nachgeschalteten Wandlers nach dem Snellius'schen Brechungsgesetz brechen.
 


Revendications

1. Débitmètre (20) pour un tuyau comprenant :
un transducteur ultrasonore amont (22) et un transducteur ultrasonore aval (24), chaque transducteur comprenant :

une source ultrasonore configurée pour produire des ondes planes ; et

un logement (16) ayant une face (18) dont au moins une partie est incurvée / formée à travers laquelle les ondes planes produites à partir de la source disposée dans le logement sont émises et dirigées vers l'extérieur vers la paroi intérieure (26) du tuyau de sorte qu'une section transversale complète de l'intérieur du tuyau peut être mesurée, la face étant de forme conique, et un angle souhaité, ϕ souhaité, de la forme conique étant défini par

où D est le diamètre du tuyau, L est la longueur du tuyau entre les faces du transducteur ultrasonore amont et aval, r est le rayon du transducteur amont ou aval, et φface est un angle de la face du transducteur amont ou aval.


 
2. Débitmètre selon la revendication 1, comprenant en outre :
un contrôleur (28) en communication avec les transducteurs ultrasonores amont et aval, le contrôleur étant configuré pour calculer le débit de fluide à partir des ondes planes qui se sont propagées le long de l'intérieur du tuyau.
 
3. Débitmètre selon la revendication 2, dans lequel les ondes planes générées par le transducteur ultrasonore aval sont agencées pour être reçues par le transducteur amont qui est configuré pour produire un signal de transducteur amont, et dans lequel le transducteur aval est configuré pour recevoir les ondes planes en provenance du transducteur amont et fournir un signal de transducteur aval, le contrôleur étant configuré pour calculer le débit de fluide à partir du signal de transducteur amont et du signal de transducteur aval.
 
4. Débitmètre selon la revendication 1, dans lequel les ondes planes sont agencées pour se réfracter à travers les faces du transducteur amont et aval selon la loi de Snell.
 
5. Débitmètre selon l'une quelconque des revendications 2 à 4, comportant un support agencé pour s'étendre de la paroi de tuyau dans l'intérieur de tuyau sur lequel le transducteur amont est monté.
 
6. Procédé de détection de débits de fluide dans un tuyau comprenant les étapes consistant à :

générer des ondes planes par un débitmètre comprenant un transducteur amont et un transducteur aval selon la revendication 1 ; et

calculer le débit de fluide à partir des ondes planes qui se sont propagées le long de l'intérieur du tuyau avec un contrôleur en communication avec le transducteur amont.


 
7. Procédé selon la revendication 6 comportant les étapes consistant à

recevoir les ondes planes générées par le transducteur aval au niveau du transducteur amont qui produit un signal de transducteur amont ;

recevoir les ondes planes générées par le transducteur amont au niveau du transducteur aval qui produit un signal de transducteur aval ;

fournir au contrôleur en communication avec les transducteurs amont et aval les signaux amont et aval ; et

calculer avec le contrôleur le débit de fluide à partir du signal du transducteur amont et du signal du transducteur aval.


 
8. Procédé selon la revendication 6, dans lequel les ondes planes se réfractent à travers les faces du transducteur amont et aval selon la loi de Snell.
 




Drawing























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description