(19)
(11)EP 2 516 032 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 10840022.7

(22)Date of filing:  20.12.2010
(51)International Patent Classification (IPC): 
B01D 15/08(2006.01)
G02B 6/36(2006.01)
G01N 21/03(2006.01)
G01N 21/05(2006.01)
B01L 3/00(2006.01)
G02B 6/38(2006.01)
G01N 21/51(2006.01)
(86)International application number:
PCT/US2010/061208
(87)International publication number:
WO 2011/079058 (30.06.2011 Gazette  2011/26)

(54)

FLUIDIC COUPLER ASSEMBLY WITH CONICAL FERRULE

FLUIDISCHE KOPPLERANORDNUNG MIT KONISCHER HÜLSE

ENSEMBLE COUPLEUR FLUIDIQUE AVEC FERRULE CONIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 22.12.2009 US 288915 P

(43)Date of publication of application:
31.10.2012 Bulletin 2012/44

(73)Proprietor: Waters Technologies Corporation
Milford, MA 01757 (US)

(72)Inventors:
  • JEANNOTTE, Anthony, C.
    Foxborough MA 01757 (US)
  • LEASON, John, A.
    Taunton MA 02780 (US)
  • MURPHY, Charles, T.
    Norton MA 02766 (US)

(74)Representative: Harding, Andrew Philip 
Forresters IP LLP Skygarden Erika-Mann-Strasse 11
80636 München
80636 München (DE)


(56)References cited: : 
WO-A1-2009/088663
WO-A2-2006/083597
GB-A- 2 054 194
US-A1- 2006 179 920
US-B1- 6 294 088
US-B1- 6 542 231
WO-A1-2009/143217
FR-A1- 2 296 862
US-A1- 2006 038 402
US-A1- 2008 038 152
US-B1- 6 358 874
US-B2- 7 207 727
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Invention



    [0001] This invention relates to a fluidic coupler assembly which accurately locates a tubular insert, such as an optical fibre and is particularly, although not exclusively, useful in a light guided flow cell of a chromatography system.

    [0002] GB2054194 discloses a light emitting device coupled to an optical fibre.

    [0003] WO2006/083597 discloses a nut and ferrule assembly for use in joining tubing to a fitting.

    [0004] US2008/0038152 discloses a device with connections capable of automated component changing, diagnostic leak and current sensing.

    [0005] WO2009/088663 discloses a method for making liquid chromatography apparatus.

    [0006] US3999837(FR2296862) discloses a connector for interconnecting and terminating bundles of light transmitting fibres.

    [0007] WO2009/143217 discloses a flow cell for a photometric device including a module having a body with a distal face defining an annular channel.

    Summary of the Invention



    [0008] The coupler assembly of the present invention is less sensitive to manufacturing tolerances than previous constructions and permits more sealing force to be applied so that the assembly can withstand higher fluidic pressures. Moreover, the assembly aligns a tubular insert such as an optical fibre precisely on the axial centreline of a main body of the coupler. A fluidic seal is also created and maintained at a sealing surface of the coupler body.

    [0009] One aspect of the present invention provides a fluidic coupler assembly for use in a light-guided flow cell as claimed.

    [0010] According to another feature of this aspect of the invention, the ferrule may have a frusto-conical nose which abuts a complementary frusto-conical portion of said through bore.

    [0011] According to a further feature of this aspect of the invention, the cone angle of the frusto-conical portion of the coupler body may be substantially larger than the complementary cone angle of the ferrule nose. Preferably, the cone angle of the frusto-conical portion of the coupler body is substantially 40° and the complementary cone angle of the ferrule nose is substantially 29°.

    [0012] According to a still further feature of this aspect of the invention, the coupler body may be formed from a material which is harder and/or less compliant than that of the ferrule.

    [0013] According to yet another feature of this aspect of the invention, the ferrule may be formed from a chemically inert polymer such as PEEK or fluropolymers including the various grades of Teflon AF.

    [0014] According to another feature of this aspect of the invention a plurality of coaxial tubular inserts may pass through the through bore of the coupler body and through the ferrule. In some constructions the or each tubular insert may be capillary, and optionally the or each tubular insert may be an optical fibre.

    [0015] A fluidic coupler assembly may comprise a first and a second sealing face disposed at opposite axial ends of the coupler body, wherein the at least one tubular insert passes through a through bore of the coupler body and through a ferrule located adjacent each of the opposed sealing faces of the coupler body and wherein the backing plug is within the couple body between, and providing a sealing face for, each of the ferrules.

    [0016] Another aspect of the invention provides a method of assembling a fluidic coupler for use in a light guided flow cell as claimed.

    [0017] According to a feature of this aspect of the invention, a further ferrule accommodated within a further coupler body may be threaded onto the or each tubular insert protruding from the backing plug remote from said sealing face and connecting together the coupler bodies so that a portion of the further ferrule is extruding from a sealing face of the further coupler body. According to a further feature of this aspect of the invention, the method may further comprise the step of trimming any excess tubular insert protruding from each sealing face and grinding, in each case the tubular insert, the extruded ferrule portion and the sealing face of each coupler body so that those respective components at each end of the assembly are flush.

    Description Of The Drawings



    [0018] Embodiments of the invention will now be described with reference to the accompanying drawings, in which:

    Figure 1 is a vertical cross-section through a fluidic coupler assembly according to the invention;

    Figure 2 is a vertical cross-section through a main coupler body of the assembly shown in figure 1 ;

    Figure 3 is a vertical cross-section through a ferrule of the assembly;

    Figure 4 is a vertical cross-section through a backing plug of the assembly

    Figure 5 is a vertical cross-section through the coupler assembly prior to grinding and polishing during the course of its manufacture.

    Figure 6 is a vertical cross-section through a coupler assembly which depicts a dual-ferruled captivation arrangement, and while Figure 6a is a vertical cross-section of the central tubular an alternative structure which comprises two coaxial tubes contained within a ferrule.


    Description Of The Invention



    [0019] Referring to the drawings, a coupler assembly 10 comprises a coupler body 12 which is machined from a suitable metal such as stainless steel but other materials are possible as long as the chosen material is harder or less compliant than the ferrule material. The assembly of this embodiment of the invention is described as incorporating an optic fibre 16 but other tubular inserts of various materials such as glass, metal and ceramics may be used. The coupler body has a generally cylindrical through bore 14 which at one end of the body has a frusto-conical portion 14a which terminates at a sealing face 10a of the coupler in a reduced diameter cylindrical portion 14b. This feature assures proper centering of the optical fibre 16. The coupler body incorporates a frusto-conical ferrule 18 which has a frusto-conical nose cone 18a which is complementary to the frusto-conical portion 14a of the through bore 14. The ferrule material must be softer or more compliant than the material of the coupler body 12. Such material may include but is not limited to chemically inert materials such as PEEK or fluoropolymers, including the various grades of Teflon AF. The ferrule has a cylindrical through bore 18b which is slightly larger in diameter than the diameter of the optical fibre 16 which it is to receive. The cone angle machined into the coupler body is larger than the ferrule cone angle. In one arrangement the cone angle of the coupler body is 40° and the cone angle of the ferrule is 29° in order to concentrate deformation of the tip of the ferrule nose cone near the reduced diameter portion 14b of the coupler body.

    [0020] The frusto-conical ferrule 18 will seal and accurately locate the optical fibre 16 in the coupler body 12. The ferrule is held in place within the coupler by a compression screw (not shown) or more preferably by means of a pressed-in cylindrical backing plug 20 having a through bore 20a. The backing plug has a slightly larger outside diameter than the inside diameter of the coupler body which creates an interference fit between the plug 20 and body 12 along the diameter 14. Depending upon the overall length of the body 12, it may be advantageous to make bore 14 slightly larger than diameter 20b of the backing plug but followed by the reduced diameter 14c which will now create the interference fit with plug 20. The diameter of the through bore 20a is sufficiently larger than the diameter of the optical fibre 16 so as to prevent damage to the optical fibre during assembly. The backing plug 20 is made from a material similar to the coupler body but sufficiently different in alloy composition as to reduce galling during assembly.

    [0021] In assembling the coupler, the optical fibre 16 is threaded through the through bore 14 of the coupler body 12 whereafter the ferrule 18 is threaded onto the optical fibre with its frusto-conical nose cone facing the frusto-conical end 14b of through bore 14a and the ferrule is then pushed into the coupler body. The backing plug 20 is then threaded onto the optical fibre 16 and is pressed into place within the through bore 14 or 14 c as the situation requires, causing a small amount 22 (Figure 5) of the ferrule to extrude through the reduced diameter portion 14b of the coupler bore at the coupler sealing face 10a, as shown in Figure 5. Any excess fibre beyond the extruded portion of the ferrule is trimmed and the optical fibre, the ferrule and the sealing face are then ground and polished so that they are completely flush with the coupler sealing face. It can be appreciated that the final compressive loading around and along the fiber may be controlled by the extent to which the plug 20 is pressed into the bore 14 against the ferrule, the strength of the ferrule material and the specific tapered surfaces of both the ferrule, 18a, and body, 14a.

    [0022] The foregoing method for securing an optical fiber within the body 12 may also be applied to other cylindrically-shaped objects; these could include glass, metal or polymeric capillaries or tubes, or wires. In the case of tubular inserts, it is oftentimes beneficial to install a sacrificial material such as a wax that can be easily removed after final processing, into the lumen of the tube prior to polishing. This provides a measure of mechanical support for the tube's inner diameter, minimizing edge chips or wall fractures.

    [0023] In an alternative embodiment of the invention, a double-ended seal may be effected using the captivation method described above. Figure 6 depicts a two-part coupler comprising coupler bodies 12a and 12b, each having a frusto-conical portion for receiving a ferrule 18, 19 respectively. As shown, the complete assembly has already been polished at each end to remove by means of grinding and polishing the extruded ferrule material and, in this instance, a glass capillary 16a. The plug 20 is pressed flushe to surface 12c of coupler 12a by which point the desired extrusion of ferrule 18 has been realized. Ferrule 19 is then threaded onto tube 16a followed by coupler body 12a which is held in concentric relationship to 12a through well-known means such as dowel pins in part 12b engaging a hole and a slot in face 12c of 12b. Fastening means such as screws are then employed for joining body 12b to 12a so that surfaces 12d of part 12b and 12c of part 12a are flush. This joining process necessarily serves to extrude ferrule 19 beyond the exterior surface of 12b in like manner to that of pressing plug 20 against ferrule 18. The amount of ferrule compression may be controlled by well-known means such as the use of physical features such as stops in the coupler body. Axially aligning body part 12b to 12a may also be effected by fabricating the same bore in 12a used to contain plug 20 part way into 12b. Adjustments of the length of the plug 20 can accommodate a wide range of ferrule and coupler lengths 12a and 12b making it possible to fabricate complete couplers of lengths from a few millimetres to tens of centimeters. It is not always necessary to have an interference fit between the plug 20 and its receiving bore; in these cases there is a simultaneous loading and extrusion of each ferrule as the two coupler parts are brought and permanently fastened to one another.

    [0024] In yet a further embodiment of this assembly method, Fig. 6a illustrates an axial cylindrical structure that may consist of more than one tubular insert; for example, a glass tube 16a contained within a polymeric tube 16b. In many cases it is difficult if not impossible to find commercially available tubes having the requisite outside and inside diameters. This ferruling method permits some slight gap between the two coaxial tubes which is then eliminated during the ferrule extrusion process.


    Claims

    1. A fluidic coupler assembly (10) for use in a light-guided flow cell, comprising:

    a coupler body (12) having a first sealing face (10a) and a through bore (14), the through bore having a first region, a second region and a frusto-conical portion, the first region having a first diameter, the second region having a second diameter, wherein the second region is disposed between the first region and the frusto-conical portion and the second diameter is less than the first diameter;

    at least one tubular insert passing through the through bore (14) of the coupler body (12) and through a first ferrule (18) located adjacent the first sealing face (10a) of the coupler body (12); and

    a backing plug (20) abutting the ferrule (18) within the through bore of the coupler body (12), the backing plug (20) having an outside diameter sufficient to form an interference fit within the second region of the through bore of the coupler body such that the backing plug (20) holds the first ferrule (18) in position within the coupler body (12);

    wherein the at least one tubular insert extends through the backing plug (20);

    wherein the at least one tubular insert and the first ferrule (18) are flush with the first sealing face (10a).


     
    2. A fluidic coupler assembly (10) according to claim 1, wherein the through bore (14) of the coupler body has a reduced diameter portion disposed between the frusto-conical portion of the coupler body (12) and the first sealing face (10a).
     
    3. A fluidic coupler assembly (10) according to claim 1 or claim 2, wherein the cone angle of the frusto-conical portion of the coupler body (12) is larger than the complementary cone angle of the ferrule nose (18).
     
    4. A fluidic coupler assembly (10) according to claim 3, wherein the cone angle of the frusto- conical portion of the coupler body (12) is substantially 40° and the complementary cone angle of the ferrule nose (18) is substantially 29°.
     
    5. A fluidic coupler assembly (10) according to any of the preceding claims wherein the coupler body (12) is formed from a material which is harder and/or less compliant than that of the ferrule (18).
     
    6. A fluidic coupler assembly (10) according to any of the preceding claims, wherein the ferrule (18) is formed from a chemically inert polymer such as PEEK or fluropolymers including the various grades of Teflon AF®.
     
    7. A fluidic coupler assembly (10) according to any of the preceding claims wherein a plurality of coaxial tubular inserts pass through the through bore (14) of the coupler body (12) and through the ferrule (18).
     
    8. A fluidic coupler assembly (10) according to any of the preceding claims wherein the or each tubular insert is a capillary.
     
    9. A fluidic coupler assembly (10) according to any of the preceding claims wherein the or each tubular insert is an optical fibre (16).
     
    10. A method of assembling a fluidic coupler for use in a light guided flow cell, which method comprises providing the fluidic coupler assembly of claim 1, threading the at least one tubular insert through the through bore (14) of the coupler body (12), threading the first ferrule (18) onto the tubular insert and inserting the ferrule (18) into the through bore (14) of the coupler body (12) until a face of the first ferrule (18) and a face of the through bore (14) are in abutment adjacent the first sealing face (10a) of the coupler body (12), threading the backing plug (20) onto the tubular insert, bringing the backing plug (20) into abutment with the ferrule (18) causing the backing plug (20) to exert sufficient force on the ferrule (18) that a portion of the ferrule (18) is extruded from the first sealing face (10a) of the coupler body (12) and trimming any excess tubular insert protruding from the first sealing face (10a) and grinding, in each case the tubular insert, the extruded ferrule (18) portion and the first sealing face (10a) of the coupler body (12) so that those respective components at the respective end of the assembly are flush.
     
    11. A method according to claim 10, wherein a further ferrule (18) accommodated within a further coupler body (12) is threaded onto the or each tubular insert protruding from the backing plug remote from said sealing face (10a) and connecting together the coupler bodies so that a portion of the further ferrule (18) is extruding from a second sealing face of the further coupler body (12b), further comprising the step of trimming any excess tubular insert protruding from the second sealing face and grinding, in each case the tubular insert, the extruded ferrule (18) portion and second sealing face of the further coupler body (12) so that those respective components at the respective end of the assembly are flush.
     


    Ansprüche

    1. Fluidische Koppleranordnung (10) zur Verwendung in einer lichtgeführten Durchflusszelle, umfassend:

    Einen Kopplerkörper (12) mit einer ersten Dichtfläche (10a) und einer Durchgangsbohrung (14), wobei die Durchgangsbohrung einen ersten Bereich, einen zweiten Bereich und einen kegelstumpfförmigen Abschnitt aufweist, der erste Bereich einen ersten Durchmesser aufweist, der zweite Bereich einen zweiten Durchmesser aufweist, wobei der zweite Bereich zwischen dem ersten Bereich und dem kegelstumpfförmigen Abschnitt angeordnet ist und der zweite Durchmesser geringer als der erste Durchmesser ist;

    zumindest einen röhrenförmigen Einsatz, der durch die Durchgangsbohrung (14) des Kopplerkörpers (12) und durch eine erste Hülse (18) hindurch geht, die sich angrenzend an die Dichtfläche (10a) des Kopplerkörpers (12) befindet; und

    einen Stützstopfen (20), der an die Hülse (18) innerhalb der Durchgangsbohrung des Kopplerkörpers (12) angrenzt, wobei der Stützstopfen (20) einen Außendurchmesser aufweist, der ausreicht, um eine Übermaßpassung innerhalb des zweiten Bereichs der Durchgangsbohrung des Kopplerkörpers zu bilden, derartig, dass der Stützstopfen (20) die erste Hülse (18) innerhalb des Kopplerkörpers (12) in Position hält;

    wobei sich zumindest ein röhrenförmiger Einsatz durch den Stützstopfen (20) erstreckt;

    wobei der zumindest eine röhrenförmige Einsatz und die erste Hülse (18) bündig mit der ersten Dichtfläche (10a) sind.


     
    2. Fluidische Koppleranordnung (10) nach Anspruch 1, wobei die Durchgangsbohrung (14) des Kopplerkörpers einen Abschnitt reduzierten Durchmessers aufweist, der zwischen dem kegelstumpfförmigen Abschnitt des Kopplerkörpers (12) und der ersten Dichtfläche (10a) angeordnet ist.
     
    3. Fluidische Koppleranordnung (10) nach Anspruch 1 oder Anspruch 2, wobei der Kegelwinkel des kegelstumpfförmigen Abschnitts des Kopplerkörpers (12) größer als der komplementäre Kegelwinkel der Hülsennase (18) ist.
     
    4. Fluidische Koppleranordnung (10) Anspruch 3, wobei der Kegelwinkel des kegelstumpfförmigen Abschnitts des Kopplerkörpers (12) im Wesentlichen 40° ist und der komplementäre Kegelwinkel der Hülsennase (18) im Wesentlichen 29° ist.
     
    5. Fluidische Koppleranordnung (10) nach einem der vorhergehenden Ansprüche, wobei der Kopplerkörper (12) aus einem Material gebildet ist, das härter und/oder weniger biegsam als jenes der Hülse (18) ist.
     
    6. Fluidische Koppleranordnung (10) nach einem der vorhergehenden Ansprüche, wobei die Hülse (18) aus einem chemisch inerten Polymer wie beispielsweise PEEK oder Fluorpolymeren gebildet ist, die verschiedene Grade von Teflon AF® einschließen.
     
    7. Fluidische Koppleranordnung (10) nach einem der vorhergehenden Ansprüche, wobei eine Vielzahl koaxialer röhrenförmiger Einsätze die die Durchgangsbohrung (14) des Kopplerkörpers (12) und durch die Hülse (18) hindurch geht.
     
    8. Fluidische Koppleranordnung (10) nach einem der vorhergehenden Ansprüche, wobei der oder jeder röhrenförmige Einsatz ein Kapillarröhrchen ist.
     
    9. Fluidische Koppleranordnung (10) nach einem der vorhergehenden Ansprüche, wobei der oder jeder röhrenförmige Einsatz eine optische Faser (16) ist.
     
    10. Verfahren zur Montage eines fluidischen Kopplers zur Verwendung in einer lichtgeführten Durchflusszelle, welches Verfahren das Bereitstellen der fluidischen Koppleranordnung nach Anspruch 1, das Fädeln des zumindest einen röhrenförmigen Einsatzes durch die Durchgangsbohrung (14) des Kopplerkörpers (12), das Fädeln der ersten Hülse (18) auf den röhrenförmigen Einsatz und das Einführen der Hülse (18) in die Durchgangsbohrung (14) des Kopplerkörpers (12) bis eine Fläche der ersten Hülse (18) und eine Fläche der Durchgangsbohrung (14) im Widerlager angrenzend an die erste Dichtfläche (10a) des Kopplerkörpers (12) sind, Fädeln des Stützstopfens (20) auf den röhrenförmigen Einsatz, Bringen des Stützstopfens (20) ins Widerlager mit der Hülse (18), welches bewirkt, dass der Stützstopfen (20) genügend Kraft auf die Hülse (18) ausübt, dass ein Abschnitt der Hülse (18) aus der ersten Dichtfläche (10a) des Kopplerkörpers (12) extrudiert wird und Abschneiden irgendwelchen überschüssigen röhrenförmigen Einsatzes, der aus der ersten Dichtfläche (10a) hervorsteht und Schleifen, in jedem Fall des röhrenförmigen Einsatzes, des extrudierten Abschnitts der Hülse (18) und der ersten Dichtfläche (10a) des Kopplerkörpers (12), sodass jene jeweiligen Komponenten am jeweiligen Ende der Anordnung bündig sind.
     
    11. Verfahren nach Anspruch 10, wobei eine weitere Hülse (18), die innerhalb eines weitere Kopplerkörpers (12) untergebracht ist, auf den oder jeden röhrenförmigen Einsatz gefädelt wird, der aus dem Stützstopfen fern von der Dichtfläche (10a) hervorsteht und Verbinden der Kopplerkörper, sodass ein Abschnitt der weiteren Hülse (18) aus einer zweiten Dichtfläche des weiteren Kopplerkörpers (12b) extrudiert wird, ferner den Schritt des Abschneidens irgendwelchen überschüssigen röhrenförmigen Einsatzes, der aus der zweiten Dichtfläche hervorsteht und Schleifen, in jedem Fall des röhrenförmigen Einsatzes, des extrudierten Abschnitts der Hülse (18) und der zweiten Dichtfläche des weiteren Kopplerkörpers (12), sodass jene jeweiligen Komponenten am jeweiligen Ende der Anordnung bündig sind.
     


    Revendications

    1. Un ensemble coupleur fluidique (10) pour utilisation dans une cellule à circulation à guidage optique, comprenant :

    un corps de coupleur (12) présentant une première face d'étanchéité (10a) et un trou de passage (14), le trou de passage présentant une première région, une deuxième région et une partie tronconique, la première région ayant un premier diamètre, la deuxième région ayant un deuxième diamètre, la deuxième région étant disposée entre la première région et la partie tronconique et le deuxième diamètre étant inférieur au premier diamètre ;

    au moins un insert tubulaire passant à travers le trou de passage (14) du corps de coupleur (12) et à travers une première ferrule (18) située en position adjacente à la première face d'étanchéité (10a) du corps de coupleur (12) ; et

    un bouchon de support (20) butant contre la ferrule (18) à l'intérieur du trou de passage du corps de coupleur (12), le bouchon de support (20) ayant un diamètre extérieur suffisant pour former un ajustement serré à l'intérieur de la deuxième région du trou de passage du corps de coupleur de sorte que le bouchon de support (20) tient la première ferrule (18) en place à l'intérieur du corps de coupleur (12) ;

    le au moins un insert tubulaire s'étendant à travers le bouchon de support (20) ;

    le au moins un insert tubulaire et la première ferrule (18) étant en affleurement avec la première face d'étanchéité (10a).


     
    2. Un ensemble coupleur fluidique (10) selon la revendication 1, dans lequel le trou de passage (14) du corps de coupleur présente une partie à diamètre réduit disposée entre la partie tronconique du corps de coupleur (12) et la première face d'étanchéité (10a).
     
    3. Un ensemble coupleur fluidique (10) selon la revendication 1 ou la revendication 2, dans lequel l'angle conique de la partie tronconique du corps de coupleur (12) est supérieur à l'angle conique complémentaire du nez de la ferrule (18).
     
    4. Un ensemble coupleur fluidique (10) selon la revendication 3, dans lequel l'angle conique de la partie tronconique du corps de coupleur (12) est sensiblement de 40° et l'angle conique complémentaire du nez de la ferrule (18) est sensiblement de 29°.
     
    5. Un ensemble coupleur fluidique (10) selon n'importe laquelle des revendications précédentes, dans lequel le corps de coupleur (12) est formé dans un matériau qui est plus dur et/ou moins souple que celui de la ferrule (18).
     
    6. Un ensemble coupleur fluidique (10) selon n'importe laquelle des revendications précédentes, dans lequel la ferrule (18) est formée dans un polymère chimiquement inerte tel que le PEEK ou des fluropolymères y compris les différentes qualités de Téflon AF®.
     
    7. Un ensemble coupleur fluidique (10) selon n'importe laquelle des revendications précédentes, dans lequel une pluralité d'inserts tubulaires coaxiaux passent à travers le trou de passage (14) du corps de coupleur (12) et à travers la ferrule (18).
     
    8. Un ensemble coupleur fluidique (10) selon n'importe laquelle des revendications précédentes, dans lequel le ou chaque insert tubulaire est un capillaire.
     
    9. Un ensemble coupleur fluidique (10) selon n'importe laquelle des revendications précédentes, dans lequel le ou chaque insert tubulaire est une fibre optique (16).
     
    10. Un procédé d'assemblage d'un coupleur fluidique pour utilisation dans une cellule à circulation à guidage optique, ce procédé comprenant les étapes consistant à fournir l'ensemble de coupleur fluidique de la revendication 1, enfiler le au moins un insert tubulaire à travers le trou de passage (14) du corps de coupleur (12), enfiler la première ferrule (18) sur l'insert tubulaire et insérer la ferrule (18) dans le trou de passage (14) du corps de coupleur (12) jusqu'à ce qu'une face de la première ferrule (18) et une face du trou de passage (14) soient en butée en position adjacente à la première face d'étanchéité (10a) du corps de coupleur (12), enfiler le bouchon de support (20) sur l'insert tubulaire, amener le bouchon de support (20) en butée contre la ferrule (18) ce qui amène le bouchon de support (20) à exercer suffisamment de force sur la ferrule (18) pour qu'une partie de la ferrule (18) soit extrudée de la première face d'étanchéité (10a) du corps de coupleur (12) et rogner tout excédent d'insert tubulaire en saillie de la première face d'étanchéité (10a) et meuler, dans chaque cas l'insert tubulaire, la partie de ferrule (18) extrudée et la première face d'étanchéité (10a) du corps de coupleur (12) de sorte que ces composants respectifs à l'extrémité respective de l'assemblage sont en affleurement.
     
    11. Un procédé selon la revendication 10, dans lequel une ferrule supplémentaire (18) logée dans un corps de coupleur supplémentaire (12) est enfilée dans le ou chaque insert tubulaire en saillie du bouchon de support à distance de ladite face d'étanchéité (10a) et les corps des coupleurs sont connectés l'un à l'autre de sorte qu'une partie de la ferrule supplémentaire (18) est en saillie d'une deuxième face d'étanchéité du corps de coupleur supplémentaire (12b), comprenant en sus l'étape consistant à rogner tout excédent d'insert tubulaire en saillie de la deuxième face d'étanchéité et à usiner, dans chaque cas l'insert tubulaire, la partie de ferrule extrudée (18) et la deuxième face d'étanchéité du corps de coupleur supplémentaire (12) de sorte que ces composants respectifs à l'extrémité respective de l'ensemble sont en affleurement.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description