(19)
(11)EP 2 519 905 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.09.2018 Bulletin 2018/36

(21)Application number: 10795050.3

(22)Date of filing:  17.11.2010
(51)Int. Cl.: 
G06F 19/00  (2018.01)
(86)International application number:
PCT/IB2010/055227
(87)International publication number:
WO 2011/080603 (07.07.2011 Gazette  2011/27)

(54)

BIOFEEDBACK FOR PROGRAM GUIDANCE IN PULMONARY REHABILITATION

BIOFEEDBACK FÜR EINE PROGRAMMANLEITUNG IN DER LUNGENREHABILITATION

BIORÉTROACTION POUR GUIDAGE DE PROGRAMME EN RÉÉDUCATION PULMONAIRE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.12.2009 US 290342 P

(43)Date of publication of application:
07.11.2012 Bulletin 2012/45

(73)Proprietor: Koninklijke Philips N.V.
5656 AE Eindhoven (NL)

(72)Inventors:
  • CHEUNG, Amy Oi Mee
    Briarcliff Manor New York 10510-8001 (US)
  • ATAKHORRAMI, Maryam, Roger
    Briarcliff Manor New York 10510-8001 (US)

(74)Representative: van Velzen, Maaike Mathilde et al
Philips Intellectual Property & Standards High Tech Campus 5
5656 AE Eindhoven
5656 AE Eindhoven (NL)


(56)References cited: : 
EP-A2- 0 176 277
US-A1- 2008 076 637
US-A- 5 706 822
US-B1- 6 626 800
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a computer implemented method and a system for providing exercise training plan for a patient.

    [0002] Chronic Obstructive Pulmonary Disease (COPD) is a respiratory disease that is characterized by inflammation of the airways. It is further characterized by an airflow limitation that is not fully reversible. The airflow limitation is both progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. Symptoms of COPD may include coughing, wheezing, and the production of mucus and the degree of severity can, in part, be viewed in terms of the volume and color of secretions.

    [0003] Pulmonary rehabilitation is a form of treatment for a COPD patient. The pulmonary rehabilitation may include, for example, exercise training, nutrition (weight management), education, psychological and social support, and/or medical management. The exercise training not only maintains, but also improves, the physical capacity of the COPD patient.

    [0004] Most exercise training plans are devised based on patient information and symptoms. The patient information may include patient's gender, age, weight, smoking history, and height. The patient symptoms may include dyspnea (or shortness of breath), cough, wheezing, mucus or sputum production, chest tightness, and fatigue. However, the patient information and symptoms only offer a limited information that is used to generate a suitable exercise training plan. Therefore, the exercise training plan devised based on the patient information and symptoms may not always be optimal for the patient (i.e., may not be tailored to an individual's health status).

    [0005] Further, the outcome of these exercise training sessions are measured via a set of questionnaires. For example, after the exercise training, a questionnaire such as the Borg scale questionnaire, which consists of a scale from 1 to 10 to quantify breathlessness, is used to determine the patient condition (i.e., after exercise training). However, these questionnaires are highly subjective, and rely on memory recall, which maybe demanding for the elderly patients. Thus, the measure of outcome of these exercise training sessions is rather subjective. US 2008/076637 A1 discloses a lifestyle companion system providing a platform to conduct a user interview. Based on the user interview responses, the system suggests activities, references and/or plug-in modules.

    [0006] Accordingly, it is an object of the present invention to provide a computer implemented method for providing an exercise training plan for a patient that overcomes the shortcomings of conventional techniques. The invention is defined in the appended claims. One aspect of the present disclosure provides a computer implemented method that includes a computer system comprising a processor configured to execute a computer programs module. The method includes receiving in one or more processors health information data from the patient, the health information data representative of patient information and/or patient symptoms; measuring physiological parameters of the patient with the at least one sensor to gather physiological data; executing, on the one or more processors of the computer system, one or more computer program modules configured to devise the exercise training plan for the patient based on the health information data and the physiological data; monitoring the physiological data during exercise training of the patient, to determine if the physiological data is within a predetermined range; and executing, on the one or more processors of the computer system, one or more computer program modules configured to modify the exercise training plan for the patient if the physiological data is outside the predetermined range.

    [0007] Another aspect of the present disclosure provides a system for providing an exercise training plan for a patient. The system includes at least one sensor, and at least one processor operatively connected to the at least one sensor. The sensor is configured to measure physiological parameters of the patient to gather physiological data. The processor is configured to: a) receive health information data from the patient, the health information data representative of patient information and patient symptoms; b) receive the physiological data from the at least one sensor; c) devise the exercise training plan for the patient based on the health information data and the physiological data; d) monitor the physiological data, during the exercise training of the patient, to determine if the physiological data is within a predetermined range; and e) modify the exercise training plan for the patient if the physiological data is outside the predetermined range.

    [0008] Another aspect of the present disclosure provides a system for providing an exercise training plan for a patient. The system includes at least one sensor, and at least one processor operatively connected to the at least one sensor. The sensor is configured to measure physiological parameters of the patient to gather physiological data. The processor is configured to: a) receive health information data from the patient, the health information data representative of patient information and patient symptoms; b) receive the physiological data from the at least one sensor; c) devise the exercise training plan for the patient based on the health information data and the physiological data; d) monitor the physiological data, during the exercise training of the patient; and e) modify the exercise training plan based on the physiological data.

    [0009] These and other aspects of the present disclosure, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the disclosure. It shall also be appreciated that the features of one aspect disclosed herein can be used in other aspects disclosed herein.

    [0010] FIGS. 1A and 1B show a flow chart illustrating a computer implemented method for providing an exercise training plan for a patient in accordance with an aspect of the present disclosure; and

    [0011] FIG. 2 shows a system for providing an exercise training plan for a patient in accordance with an aspect of the present disclosure.

    [0012] As used herein, the singular form of "a", "an", and "the" include plural references unless the context clearly dictates otherwise. As used herein, the statement that two or more parts or components are "coupled" shall mean that the parts are joined or operate together either directly or indirectly, i.e., through one or more intermediate parts or components, so long as a link occurs. As used herein, "directly coupled" means that two elements are directly in contact with each other. As used herein, "fixedly coupled" or "fixed" means that two components are coupled so as to move as one while maintaining a constant orientation relative to each other.

    [0013] As used herein, the word "unitary" means a component is created as a single piece or unit. That is, a component that includes pieces that are created separately and then coupled together as a unit is not a "unitary" component or body. As employed herein, the statement that two or more parts or components "engage" one another shall mean that the parts exert a force against one another either directly or through one or more intermediate parts or components. As employed herein, the term "number" shall mean one or an integer greater than one (i.e., a plurality).

    [0014] Directional phrases used herein, such as, for example and without limitation, top, bottom, left, right, upper, lower, front, back, and derivatives thereof, relate to the orientation of the elements shown in the drawings and are not limiting upon the claims unless expressly recited therein.

    [0015] FIGS. 1A and 1B show a flow chart illustrating a computer implemented method 100 for providing an exercise training plan for a patient in accordance with an aspect of the present disclosure.

    [0016] Before devising the exercise training plan for the patient, physiological parameters of the patient are measured and health information data (i.e., patient information and/or patient symptoms) of the patient is obtained. The physiological parameters of the patient together with the health information data of the patient are then used to devise an appropriate exercise training plan for the patient.

    [0017] During the exercise training plan, the physiological parameters are monitored to determine if the physiological data is within a predetermined range. If the physiological data is not within a predetermined range, the exercise training plan may be modified accordingly (e.g., lower or higher intensity exercise training plan; or shorter or longer duration exercise training plan). Therefore, the patient's physiological data may be used to guide the exercise training plan, resulting in a more individualized exercise training plan.

    [0018] By providing a tailored or an individualized exercise training plan for the patient, the exercise training and outcome may be optimized. In one aspect, computer implemented method 100 is also configured to assess the patient health status using the physiological data that is taken after exercise training plan is complete.

    [0019] Computer implemented method 100 is implemented in a computer system comprising one or more processors 214 (as shown in and described with reference to FIG. 2) configured to execute one or more computer programs modules. Method 100 begins at procedure 102. At procedure 104, health information data of the patient is received by one or more processors 214 from the patient (or healthcare personnel (caregiver)). In one aspect, the patient (or healthcare personnel) may manually input the health information data into a processor 214 (as shown in and described with reference to FIG. 2) and/or a data storage device 216 (as shown in and described with reference to FIG. 2) using an user interface 218 (as shown in and described with reference to FIG. 2). In one aspect, processor 214 can comprise either one or a plurality of processors therein.

    [0020] In one aspect, the health information data is representative of patient information and patient symptoms. In one aspect, the patient information may include patient's gender, patient's age, patient's weight, patient's smoking history, patient's height, or any combination thereof. The patient symptoms include dyspnea (or shortness of breath), cough, wheezing, mucus or sputum production, chest tightness, fatigue, or any combination thereof.

    [0021] At procedure 106, physiological parameters of the patient are measured to gather physiological data. In one aspect, the physiological parameters may include physical activity, respiration rate, amount of oxygen carried by red blood cells, heart rate, temperature, volume of air inspired and expired by the lungs, or any combination thereof.

    [0022] In another aspect, the physiological parameters may include physical activity, respiration rate, amount of oxygen carried by red blood cells, heart rate, or any combination thereof. In other words, in one aspect, the temperature and the volume of air inspired and expired by the lungs may be excluded as they (i.e., the temperature and the volume of air inspired and expired by the lungs) may not provide valuable information related to the pulmonary rehabilitation. The claimed invention involves gathering SpO2 data.

    [0023] In one aspect, the physiological parameters may be measured during exercise testing (e.g., a six-minute walk test that is generally used to evaluate the exercise capacity of the patient), or exercise training (e.g., cycling, treadmill, or weight training). In one aspect, the six-minute walk test is performed by using two cones (that are separated by a distance of, for example, thirty meters), and a stopwatch.

    [0024] In one aspect, the physiological parameters measured during exercise testing are not used in real time to modify the exercise training program. Instead, in one aspect, the physiological parameters measured during exercise testing are used offline once the current exercise training program/session has ended.

    [0025] In one aspect, the physical activity of the patient is measured using an activity monitor 202 (as shown in and described with reference to FIG. 2). In one aspect, the physical activity is measured in arbitrary acceleration units (AAU). In one aspect, the respiration rate of the patient is measured using a respiration rate sensor 204 (as shown in and described with reference to FIG. 2). In the claimed invention, the amount of oxygen carried by red blood cell (or amount of oxygen attached to the hemoglobin cell in the circulatory system) of the patient is measured using a SpO2 sensor 206 (as shown in and described with reference to FIG. 2). In one aspect, the heart rate of the patient is measured using a heart rate monitor 208 (as shown in and described with reference to FIG. 2). In one aspect, the temperature of the patient is measured using a temperature sensor 210 (as shown in and described with reference to FIG. 2). In one aspect, the volume of air inspired and expired by the lungs of the patient is measured using an airway obstruction measuring device 212 (as shown in and described with reference to FIG. 2).

    [0026] In system 200 shown in FIG. 2, separate sensors are used to measure each physiological parameter. However, it is contemplated, that a single sensor may be used to measure two or more physiological parameters as explained below.

    [0027] For example, in one aspect, a single sensor may be used to measure the physical activity, the heart rate and the respiration rate of the patient. Alternatively, in another aspect, the physical activity, the heart rate and the respiration rate of the patient may be measured using separate sensors as described in system 200 (as shown in FIG. 2).

    [0028] For example, in one aspect, a single sensor may be used to measure the heart rate and the amount of oxygen carried by red blood cell (or amount of oxygen attached to the hemoglobin cell in the circulatory system) of the patient. Alternatively, in another aspect, the amount of oxygen carried by red blood cell (or amount of oxygen attached to the hemoglobin cell in the circulatory system) of the patient, and the heart rate may be measured using separate sensors as described in system 200 (as shown in FIG. 2).

    [0029] For example, in one aspect, a single sensor may be used to measure the temperature of the patient, the respiration rate of the patient, and the physical activity of the patient. In such an aspect, the temperature sensor may include a microphone to measure the respiration rate of the patient, and/or a one-axis, a two-axis, or a three-axis accelerometer to measure both the respiration rate and the physical activity of the patient. Alternatively, in another aspect, the temperature of the patient, the respiration rate of the patient, and the physical activity of the patient is measured using separate sensors as described in system 200 (as shown in FIG. 2).

    [0030] At procedure 108, processor 214 (as shown in and described with reference to FIG. 2) is configured to execute one or more computer program modules to devise an exercise training plan for the patient based on the health information data and the physiological data.

    [0031] At procedure 110, processor 214 (as shown in and described with reference to FIG. 2) is configured to monitor the physiological data, during the exercise training plan of the patient, to determine if the physiological data is within a predetermined range.

    [0032] In one aspect, the predetermined range is patient dependent. In one aspect, as the predetermined range is patient dependent, the predetermined range is a percentage change (e.g., at least 10%) relative to the last exercise training session.

    [0033] At procedure 112, processor 214 (as shown in and described with reference to FIG. 2) is configured to execute one or more computer program modules to modify the exercise training plan for the patient if the physiological data are outside the predetermined range. As noted above, in one aspect, the processor 214 can comprise either one or a plurality of processors therein.

    [0034] In one aspect, the exercise training plan for the patient is modified by increasing or decreasing the intensity of the exercise training. In another aspect, the exercise training plan for the patient is modified by increasing or decreasing the duration of the exercise training. In yet another aspect, the exercise training plan of the patient is modified by increasing or decreasing the intensity of the exercise training, and increasing or decreasing the duration of the exercise training.

    [0035] At procedure 114, processor 214 (as shown in and described with reference to FIG. 2) is configured to determine whether the (devised) exercise training plan of the patient is complete.

    [0036] In one aspect, an exercise device or equipment 220 may be directly connected to processor 214. In such an aspect, exercise device or equipment 220 may be configured to send a signal to the processor 214 that the (devised) exercise training plan of the patient is complete. Also, in such an aspect, the exercise device or equipment 220 may be connected to processor 214 over a wired or wireless network, for example.

    [0037] In another aspect, the patient or healthcare personnel may manually input information that the (devised) exercise training plan of the patient is complete into processor 214 using user interface 218.

    [0038] If the (devised) exercise training plan of the patient is complete, then method 100 proceeds to procedure 116. Otherwise, method 100 returns to procedure 110 where the physiological parameters of the patient, during the exercise training plan of the patient, are monitored to determine if the physiological data is within a predetermined range.

    [0039] At procedure 116, processor 214 (as shown in and described with reference to FIG. 2) is configured to measure the physiological data, after the exercise training plan of the patient is complete, to determine if the physiological data is within the predetermined range. At procedure 118, processor 214 (as shown in and described with reference to FIG. 2) is configured to execute one or more computer program modules to modify the exercise training plan for the patient if the physiological data are outside the predetermined range.

    [0040] Processor 214 may generate a signal that provides information on the exercise training plan. The processor may be connected to a printer, a graphical user interface or other output device that can communicate the information to the patient or health care provider. The printer or the graphical user interface may be a separate device or integrated into user interface 218. As noted above, in one aspect, the exercise training plan for the patient is modified by increasing or decreasing the intensity of the exercise training. In another aspect, the exercise training plan for the patient is modified by increasing or decreasing the duration of the exercise training. In yet another aspect, the exercise training plan of the patient is modified by increasing or decreasing the intensity of the exercise training, and increasing or decreasing the duration of the exercise training. Method 100 ends at procedure 120.

    [0041] In one aspect, procedures 102-120 can be performed by one or more computer program modules that can be executed by one or more processors 214.

    [0042] System 200 for providing an exercise training plan for a patient in accordance with an aspect of the present disclosure is shown in FIG. 2. The system may include activity monitor 202, respiration rate sensor 204, SpO2 sensor 206, heart rate monitor 208, temperature sensor 210, airway obstruction measuring device 212, processor 214, data storage device 216, and user interface 218. In one aspect, system 200 may include exercise equipment/device 220. In one aspect, processor 214 can comprise either one or a plurality of processors therein. In one aspect, processor 214 can be a part of or forming a computer system.

    [0043] Activity monitor 202 is configured to detect body movements of the patient such that a signal from the activity monitor is correlated to the level of a patient's physical activity. In one aspect, activity monitor 202 may include an accelerometer. In one aspect, the accelerometer may be a three-axis accelerometer. Such an accelerometer may include a sensing element that is configured to determine acceleration data in at least three axes. For example, in one aspect, the three-axis accelerometer may be a three-axis accelerometer (i.e., manufacturer part number: LIS3L02AQ) available from STMicroelectronics.

    [0044] In another aspect, activity monitor 202 may be a piezoelectric sensor. The piezoelectric sensor may include a piezoelectric element that is sensitive to body movements of the patients. In one aspect, the activity monitor 202 may be positioned, for example, at the thorax of the patient or at the abdomen of the patient.

    [0045] In one aspect activity monitor 202 may be directly connected to processor 214. In such an aspect, the activity monitor may be connected to the processor over a wired or wireless network, for example. It is also contemplated that activity monitor 202 may be connected to processor 214 via data storage device 216.

    [0046] In one aspect, respiration rate sensor 204, which is configured to measure the respiration pattern of the patient, may include an accelerometer or a microphone. In one aspect, the accelerometer may be a three-axis accelerometer. For example, in one aspect, the three-axis accelerometer may be a three-axis accelerometer (i.e., manufacturer part number: LIS3L02AQ) available from STMicroelectronics.

    [0047] In one aspect, a microphone is constructed and arranged to receive sound of inspiration of the patient in order to determine the respiration rate of the patient. In one aspect, respiration rate sensor 204 may be a Respiband™ available from Ambulatory Monitoring, Inc. of Ardsley, NY. In one aspect, the respiration rate sensor 204 may include a chest band and a microphone as described in U.S. Patent No. 6,159,147, hereby incorporated by reference. In such an aspect, the chest band may be placed around a patient's chest to measure the patient's respiration rate, for example.

    [0048] In one aspect respiration rate sensor 204 may be directly connected to processor 214. In such an aspect, the respiration rate sensor maybe connected to the processor over a wired or wireless network, for example. It is also contemplated that respiration rate sensor 204 maybe connected to processor 214 via data storage device 216.

    [0049] In the claimed invention, the amount of oxygen carried by the red blood cells (or amount of oxygen attached to the hemoglobin cell in the circulatory system) of the patient is measured using a SpO2 sensor 206. In one aspect, SpO2 sensor 206 may be configured to measure the amount of oxygen carried by the red blood cells, and heart rate of the patient. In one aspect, the SpO2 sensor is electronic and electronically inputs the SpO2 data into processor 214. It is also contemplated that the SpO2 sensor may be connected to the processor via data storage device 216.

    [0050] In one aspect, SpO2 sensor 206 is a portable SpO2 sensor. For example, in one aspect, the portable SpO2 sensor may be a CheckMate™ portable finger pulse oximeter available from SPO Medical.

    [0051] Such a pulse oximeter is generally configured to indirectly (or non-invasively) measure the oxygen saturation of the patient's blood. In other words, the pulse oximeter is configured to monitor the percentage of hemoglobin (Hb) which is saturated with oxygen. In one aspect, the pulse oximeter may include a probe attached to patient's finger or patient's ear lobe.

    [0052] Heart rate monitor 208 is configured to detect heart beat of the patient such that a signal from the heart rate monitor is correlated to the patient's heart rate. In one aspect, heart rate monitor 208 is electronic and electronically inputs the heart rate data into processor 214.

    [0053] In one aspect, heart rate monitor 208 may include a wearable heart rate monitor (e.g., Polar F7 heart rate monitor watch) available from Polar. In one aspect, the heart rate monitor may include a built in microprocessor that analyzes an EKG signal to determine the heart rate of the patient. In one aspect, the heart rate monitor may include a transmitter located at the position where the patient's heart is located so as to detect the patient's heartbeat and a receiver located, for example, on patient's wrist.

    [0054] In one aspect, heart rate monitor 208 may be directly connected to the processor 214. In such an aspect, the heart rate monitor 208 may be connected to the processor 214 over a wired or wireless network, for example. It is also contemplated that the heart rate monitor 208 may be connected to processor 214 via the data storage device 216.

    [0055] In the claimed invention, the volume of air inspired by or exhaled by the lungs is measured using airway obstruction measuring device 212. In one aspect, the airway obstruction measuring device may include a spirometer. In one aspect, the spirometer is a handheld spirometer. For example, in one aspect, the handheld spirometer may be a MicroGP spirometer available from Micro Direct, Inc. In one aspect, the spirometer may include an analog spirometer or a digital spirometer.

    [0056] In one aspect, the airway obstruction is assessed using a spirometry test. During the spirometry test, patient breathes into a mouth piece that is connected to a spirometer. The spirometer is configured to record the amount and the rate of air that patient breathes in and out over a period of time. In one aspect, during the spirometry test, the patient takes the deepest breath they can and exhales as hard as possible for as long as they are able to. In one aspect, the spirometry test is normally repeated three times to ensure reproducibility.

    [0057] The spirometer measures Forced Expiratory Volume measured over one second (FEV1) (i.e., volume expired in the first second of maximal expiration after a maximal inspiration). FEV1 is a measure of how quickly the lungs can be emptied. A lower FEV1 value generally indicates a greater degree of airway obstruction.

    [0058] The spirometer is also configured to measure Forced Vital Capacity (FVC) (i.e., maximum volume of air that can be exhaled during a forced maneuver), and Peak Expiratory Flow (PEF). The spirometer is also configured to measure FEV1/FVC (i.e., FEV1 expressed as a percentage of the FVC). FEV1/FVC provides a clinically useful index of airflow limitation. For example, a value of FEV1/FVC less than 70% indicates airflow limitation and the possibility of COPD.

    [0059] The airway obstruction grading is illustrated in the TABLE. 2. TABLE. 2 shows the FEV1 as a percentage of a predicted value. The predicted value is determined based on patient's age, patient's sex, patient's height, patient's weight, and/or patient's race.



    [0060] If the measured FEV1 value is greater than 80% of the predicted value, then the patient may have a mild airway obstruction. If the measured FEV1 value is between 50% of a predicted value and 80% of a predicted value, then the patient may have a moderate airway obstruction. If the measured FEV1 value is between 30% of a predicted value and 50% of a predicted value, then the patient may have a severe airway obstruction. If the measured FEV1 value is less than 30% of a predicted value, then the patient may have a very severe airway obstruction.

    [0061] In another aspect, airway obstruction device 212 may include a peak flow meter. The peak flow meter is configured to measure the patient's maximum speed of expiration, or peak expiratory flow (PEFR or PEF). The peak flow readings are higher when patient's airways are not constricted, and lower when the patient's airways are constricted.

    [0062] The spirometer and the peak flow meter described above are just two examples for measuring the airway obstruction data, however, it is contemplated that other airway obstruction measuring devices known in the art may be used to measure the airway obstruction data of the patient. In a further aspect, the spirometer is not worn by the patient during the exercise training.

    [0063] In one aspect airway obstruction device 212 may be directly connected to processor 214. In such an aspect, the airway obstruction device may be connected to the processor over a wired or wireless network, for example. It is also contemplated that airway obstruction device 212 maybe connected to processor 214 via data storage device 216.

    [0064] In one aspect, temperature sensor 210 is used to monitor the body temperature of the patient. In one aspect, the temperature sensor may be in the form of a patch that is attached to the patient's body. In one aspect, for improved accuracy (e.g., for accuracy of 0.3°C or more), temperature sensor 210 may generally be placed in the forehead region of the patient. In an alternative aspect, the temperature sensor may generally be placed in chest/abdominal region of the patient. In such an aspect, temperature sensor 210 is constructed and arranged to have a larger surface area.

    [0065] In one aspect, the core body temperature sensor may be in the form of a sensor described in these European Patent Nos.: 06126697.9; 06125479.3; 08156802.4; 09157392.3; and 09155065.7; and U.S. Patent Application Nos.: 60/894915 60/894916; 60/894917; 61/032084 and 61/145605.

    [0066] In one aspect, exercise equipment 220 may include a weight training device and/or cardiovascular exercise device. In one aspect, the cardiovascular exercise device may include a treadmill, an elliptical trainer, a rowing machine, a stationary bicycle, a stair climber, a stepper, a pilates machine, an aerobic rider or flyer, and/or any other suitable cardiovascular exercise device. In one aspect, exercise equipment/device 220 may be directly connected to processor 214. In such an aspect, the exercise equipment/device may be connected to the processor over a wired or wireless network, for example.

    [0067] As noted above, in one aspect, exercise equipment/device 220 may be configured to send the signal to processor 214 that the (devised) exercise training plan of the patient is complete. In one aspect, the processor may be configured to send signals to the exercise equipment/device to modify the exercise training plan for the patient.

    [0068] In one aspect, system 200 may include user interface 218, which is in communication with processor 214 and/or data storage device 216. The user interface is configured to accept input from the patient (or caregiver), and optionally to transmit (and display) output of system 200.

    [0069] In one aspect, user interface 218 may include a keypad that allows the patient or caregiver to the health information data into processor 214. Such the health information data may include, for example, patient's information (i.e., patient's gender, patient's age, patient's weight, patient's smoking history, and patient's height), and/or patient's symptoms (i.e., dyspnea (or shortness of breath), cough, wheezing, mucus or sputum production, chest tightness, and fatigue). In one aspect, the patient or the caregiver may input the volume of air inspired by or exhaled by the lungs (obtained from spirometer 212) into processor 214 using user interface 218.

    [0070] In one aspect, user interface 218 may include a display screen that provides a visual data output (e.g., the assessed health status of the patient) to the patient. In one aspect, the user interface may be a graphical user interface. It may also include a printer or be connected to a printer so as to be able to print information from processor 214.

    [0071] In one aspect, user interface 218 may be provided integral with the sensor set (i.e., the activity monitor, the respiration rate sensor, the SpO2 sensor, heart rate monitor, and/or temperature sensor). In another aspect, the user interface may be provided remote from or proximal to the sensor set.

    [0072] In one aspect, system 200 may include the data storage unit or memory 216, which is in communication with processor 214 and/or user interface 218. In system 200 shown in FIG. 2, data storage unit or memory 216 is a standalone device. However, it is contemplated that data storage unit or memory 216 may be part of processor 214. In one aspect, the data storage unit or memory is configured to receive data from all the sensors (i.e., the activity monitor, the respiration rate sensor, the SpO2 sensor, heart rate monitor, and/or temperature sensor) that are monitoring the physiological parameters of the patient.

    [0073] In one aspect, data storage unit or memory 216 is constructed and arranged to receive (via user interface 218) and store the health information data input by the patient (or caregiver). As noted above, such health information data may include, for example, patient's information (i.e., patient's gender, patient's age, patient's weight, patient's smoking history, and patient's height), and/or patient's symptoms (i.e., dyspnea (or shortness of breath), cough, wheezing, mucus or sputum production, chest tightness, and fatigue). In one aspect, the volume of air inspired by or exhaled by the lungs is input by the patient (or caregiver) into data storage unit or memory 216.

    [0074] In one aspect, processor 214 is configured to receive the health information data, and the volume of air inspired by or exhaled by the lungs stored in data storage device (or memory) 216. As noted above, this health information data, and the volume of air inspired by or exhaled by the lungs along with the physiological data from the sensors (i.e., the activity monitor, the respiration rate sensor, the SpO2 sensor, heart rate monitor, and/or temperature sensor) are used to device the exercise training plan for the patient.

    [0075] In one aspect, the stored data in data storage unit or memory 216 may also be used for further processing, for example, for trending, and/or display.

    [0076] In one aspect, method 100 and system 200 maybe configured to use the physiological data for guiding the education component and the nutritional component of the pulmonary rehabilitation. For example, in one aspect, if the patient has problems with dyspnea, method 100 and system 200 maybe configured to educate the patient on breathing exercises. In one aspect, if the patient is underweight, method 100 and system 200 may be configured to educate the patient on nutrition. In one aspect, based on the type of the exercise training (e.g., aerobics, muscle strength training) provided to the patient, method 100 and system 200 may be configured to educate the patient on nutrition.

    [0077] In one aspect, method 100 and system 200 may be used in a rehabilitation center (e.g., for COPD patients, stroke patients, or heart failure patients). In one aspect, method 100 and system 200 may also be applied for home rehabilitation to enable patient assessment, training guidance and intervention to be provided remotely.

    [0078] In one aspect, the physiological data may offer a continuous feedback for a rehabilitation team to modify/adjust the exercise training session based on an improvement or worsening of the patient's physiological data. The continuous feedback may include a comparison of the patient's current physiological data to the patient's physiological data measured during the previous exercise training sessions. In one aspect, a comparison of previous data with current data (e.g., using % changes) will provide information on patient progress, which may lead to a modification in the exercise training program (i.e., either an increase or a decrease in program intensity, duration, type of exercises, etc.).

    [0079] In one aspect, system 200 may each include a single processor configured to provide an exercise training plan for a patient. In another aspect, the system may include multiple processors, where each processor is configured to perform a specific function or operation. In such an aspect, the multiple processors may be configured to provide an exercise training plan for a patient.

    [0080] Aspects of the disclosure, such as the processor, for example, may be made in hardware, firmware, software, or various combinations thereof. The disclosure may also be implemented as instructions stored on a machine-readable medium, which may be read and executed using one or more processors. In one aspect, the machine-readable medium may include various mechanisms for storing and/or transmitting information in a form that can be read by a machine (e.g., a computing device). For example, a machine-readable storage medium may include read only memory, random access memory, magnetic disk storage media, optical storage media, flash memory devices, and other media for storing information, and a machine-readable transmission media may include forms of propagated signals, including carrier waves, infrared signals, digital signals, and other media for transmitting information. While firmware, software, routines, or instructions may be described in the above disclosure in terms of specific exemplary aspects and embodiments performing certain actions, it will be apparent that such descriptions are merely for the sake of convenience and that such actions in fact result from computing devices, processing devices, processors, controllers, or other devices or machines executing the firmware, software, routines, or instructions.


    Claims

    1. A system (200) for providing an exercise training plan for a patient, the system comprising:

    a sensor (202, 204, 206, 208, 210, 212) configured to measure a physiological parameter of the patient to gather physiological data, wherein the sensor is configured to measure an amount of oxygen carried by red blood cells of the patient to gather SpO2 data; and

    a computer processor (214) operatively connected to the sensor and configured to:

    a) receive health information data from the patient, the health information data representative of patient information and patient symptoms, wherein the patient symptoms are selected from the group consisting of dyspnea (or shortness of breath), cough, wheezing, mucus or sputum production, chest tightness, and fatigue, wherein the health information data further include the volume of air inspired by or exhaled by the lungs as measured by an airway measuring device,

    b) receive the physiological data from the sensor,

    c) devise an exercise training plan for the patient based on the health information data and the physiological data,

    d) monitor the physiological data, during the exercise training of the patient, to determine if the physiological data is within a predetermined range, and

    e) modify the exercise training plan for the patient if the physiological data is outside the predetermined range.


     
    2. The system of claim 1, wherein the computer processor is further configured to measure the physiological data after the exercise training of the patient and to determine if the physiological data after the exercise training is within the predetermined range.
     
    3. The system of claim 2, wherein the computer processor is further configured to modify the exercise training plan for the patient if the physiological data is outside the predetermined range.
     
    4. The system of claim 1, wherein the patient information is selected from the group consisting of patient's gender, patient's age, patient's weight, patient's smoking history, and patient's height.
     
    5. The system of claim 1, wherein the sensor is further configured to measure physical activity of the patient as a further physiological parameter to gather physical activity data as further physiological data.
     
    6. The system of claim 5, wherein the activity monitor is an accelerometer or a piezoelectric sensor.
     
    7. The system of claim 1, wherein the sensor is further configured to measure respiration rate of the patient as a further physiological parameter to gather respiration rate data as further physiological data.
     
    8. The system of claim 8, wherein the respiration rate sensor is an accelerometer or a microphone.
     
    9. The system of claim 1, wherein the sensor is further configured to measure:

    (a) a heart rate of the patient to gather heart rate data;

    (b) a temperature of the patient to gather temperature data.

    (c) a volume of air inspired and expired by the lungs of the patient to gather airway obstruction data, or

    (d) any combination of (a)-(c).


     
    10. A computer implemented method for providing an exercise training plan for a patient, wherein the method is implemented in a computer system comprising a computer processor configured to execute a computer programs module, the method comprising:

    receiving in the computer processor health information data from the patient, the health information data representative of patient information and patient symptoms, wherein the patient symptoms are selected from the group consisting of dyspnea (or shortness of breath), cough, wheezing, mucus or sputum production, chest tightness, and fatigue, wherein the health information data further include the volume of air inspired by or exhaled by the lungs as measured by an airway measuring device;

    measuring a physiological parameter of the patient with a sensor to gather physiological data wherein the sensor is configured to measure an amount of oxygen carried by red blood cells of the patient to gather SpO2 data;

    executing, on the computer processor of the computer system, a computer program module configured to devise the exercise training plan for the patient based on the health information data and the physiological data;

    monitoring the physiological data during exercise training of the patient, to determine if the physiological data are within a predetermined range; and

    executing, on the computer processor of the computer system, a computer program module configured to modify the exercise training plan for the patient if the physiological data are outside the predetermined range.


     
    11. A method of claim 10, further comprising measuring the physiological data after the exercise training of the patient, to determine if the physiological data is within the predetermined range.
     
    12. A method of claim 11, wherein modifying the exercise training plan for the patient if the physiological data is outside the predetermined range.
     
    13. A method of claim 10, wherein the patient information is selected from the group consisting of patient's gender, patient's age, patient's weight, patient's smoking history, and patient's height.
     
    14. A method of claim 10, wherein the patient symptoms are selected from the group consisting of dyspnea (or shortness of breath), cough, wheezing, mucus or sputum production, chest tightness, and fatigue.
     
    15. A method of claim 10, wherein further physiological parameters are selected from the group consisting of physical activity, respiration rate, heart rate, temperature, and volume of air inspired and expired by the lungs.
     


    Ansprüche

    1. System (200) zum Bereitstellen eines Übungstrainingsplans für einen Patienten, wobei das System Folgendes umfasst:

    einen Sensor (202, 204, 206, 208, 210, 212), der konfiguriert ist, um einen physiologischen Parameter des Patienten zu messen, um physiologische Daten zu erfassen, wobei der Sensor konfiguriert ist, um eine durch rote Blutkörperchen des Patienten transportierte Sauerstoffmenge zu messen, um SpO2-Daten zu erfassen; und

    einen Computerprozessor (214), der betriebsfähig mit dem Sensor verbunden ist und konfiguriert ist zum:

    a) Empfangen von Gesundheitsinformationsdaten von dem Patienten, wobei die Gesundheitsinformationsdaten Patienteninformationen und Patientensymptome darstellen, wobei die Patientensymptome ausgewählt werden aus der Gruppe bestehend aus Dyspnoe (oder Atemnot), Husten, Keuchen, Mukus- oder Sputumproduktion, Engegefühl in der Brust und Müdigkeit, wobei die Gesundheitsinformationsdaten ferner das durch die Lungen eingeatmete oder durch die Lungen ausgeatmete Luftvolumen einschließen, wie es durch eine Atemwegmessvorrichtung gemessen wird,

    b) Empfangen der physiologischen Daten von dem Sensor,

    c) Ausarbeiten einen Übungstrainingsplan für den Patienten basierend auf den Gesundheitsinformationsdaten und den physiologischen Daten,

    d) Überwachen der physiologischen Daten während des Übungstrainings des Patienten, um zu ermitteln, ob die physiologischen Daten innerhalb eines vorgegebenen Bereichs liegen, und

    e) Modifizieren des Übungstrainingsplans für den Patienten, wenn die physiologischen Daten außerhalb des vorgegebenen Bereichs liegen.


     
    2. System nach Anspruch 1, wobei der Computerprozessor ferner konfiguriert ist, um die physiologischen Daten nach dem Übungstraining des Patienten zu messen und um zu ermitteln, ob die physiologischen Daten nach dem Übungstraining innerhalb des vorgegebenen Bereichs liegen.
     
    3. System nach Anspruch 2, wobei der Computerprozessor ferner konfiguriert ist, um den Übungstrainingsplan für den Patienten zu modifizieren, wenn die physiologischen Daten außerhalb des vorgegebenen Bereichs liegen.
     
    4. System nach Anspruch 1, wobei die Patienteninformationen aus der Gruppe bestehend aus Geschlecht des Patienten, Alter des Patienten, Gewicht des Patienten, Rauchervergangenheit des Patienten und Größe des Patienten ausgewählt werden.
     
    5. System nach Anspruch 1, wobei der Sensor ferner konfiguriert ist, um körperliche Aktivität des Patienten als einen weiteren physiologischen Parameter zu messen, um Daten über die körperliche Aktivität als weitere physiologische Daten zu erfassen.
     
    6. System nach Anspruch 5, wobei der Aktivitätsmonitor ein Beschleunigungsmesser oder ein piezoelektrischer Sensor ist.
     
    7. System nach Anspruch 1, wobei der Sensor ferner konfiguriert ist, um die Atemfrequenz des Patienten als einen weiteren physiologischen Parameter zu messen, um Daten über die Atemfrequenz als weitere physiologische Daten zu erfassen.
     
    8. System nach Anspruch 8, wobei der Atemfrequenzsensor ein Beschleunigungsmesser oder ein Mikrofon ist.
     
    9. System nach Anspruch 1, wobei der Sensor ferner konfiguriert ist zum Messen:

    (a) einer Herzfrequenz des Patienten, um Herzfrequenzdaten zu erfassen,

    (b) einer Temperatur des Patienten, um Temperaturdaten zu erfassen,

    (c) eines durch die Lungen des Patienten eingeatmeten und ausgeatmeten Luftvolumens, um Daten über die Atemwegsobstruktion zu erfassen, oder

    (d) einer beliebigen Kombination von (a) bis (c).


     
    10. Computerimplementiertes Verfahren zum Bereitstellen eines Übungstrainingsplans für einen Patienten, wobei das Verfahren in einem Computersystem umfassend einen Computerprozessor implementiert ist, der konfiguriert ist, um ein Computerprogrammmodul auszuführen, wobei das Verfahren Folgendes umfasst:

    Empfangen, in dem Computerprozessor, von Gesundheitsinformationsdaten von dem Patienten, wobei die Gesundheitsinformationsdaten Patienteninformationen und Patientensymptome darstellen, wobei die Patientensymptome ausgewählt werden aus der Gruppe bestehend aus Dyspnoe (oder Atemnot), Husten, Keuchen, Mukus- oder Sputumproduktion, Engegefühl in der Brust und Müdigkeit, wobei die Gesundheitsinformationsdaten ferner das durch die Lungen eingeatmete oder durch die Lungen ausgeatmete Luftvolumen einschließen, wie es durch eine Atemwegmessvorrichtung gemessen wird;

    Messen eines physiologischen Parameters des Patienten mit einem Sensor, um physiologische Daten zu erfassen, wobei der Sensor konfiguriert ist, um eine durch rote Blutkörperchen des Patienten transportierte Sauerstoffmenge zu messen, um SpO2-Daten zu erfassen;

    Ausführen, auf dem Computerprozessor des Computersystems, eines Computerprogrammmoduls, das konfiguriert ist, um den Übungstrainingsplan für den Patienten basierend auf den Gesundheitsinformationsdaten und den physiologischen Daten auszuarbeiten;

    Überwachen der physiologischen Daten während des Übungstrainings des Patienten, um zu ermitteln, ob die physiologischen Daten innerhalb eines vorgegebenen Bereichs liegen; und

    Ausführen, auf dem Computerprozessor des Computersystems, eines Computerprogrammmoduls, das konfiguriert ist, um den Übungstrainingsplan für den Patienten zu modifizieren, wenn die physiologischen Daten außerhalb des vorgegebenen Bereichs liegen.


     
    11. Verfahren nach Anspruch 10, ferner umfassend das Messen der physiologischen Daten nach dem Übungstraining des Patienten, um zu ermitteln, ob die physiologischen Daten nach dem Übungstraining innerhalb des vorgegebenen Bereichs liegen.
     
    12. Verfahren nach Anspruch 11, wobei der Übungstrainingsplan für den Patienten modifiziert wird, wenn die physiologischen Daten außerhalb des vorgegebenen Bereichs liegen.
     
    13. Verfahren nach Anspruch 10, wobei die Patienteninformationen aus der Gruppe bestehend aus Geschlecht des Patienten, Alter des Patienten, Gewicht des Patienten, Rauchervergangenheit des Patienten und Größe des Patienten ausgewählt werden.
     
    14. Verfahren nach Anspruch 10, wobei die Patientensymptome ausgewählt werden aus der Gruppe bestehend aus Dyspnoe (oder Atemnot), Husten, Keuchen, Mukus- oder Sputumproduktion, Engegefühl in der Brust und Müdigkeit.
     
    15. Verfahren nach Anspruch 10, wobei weitere physiologische Parameter ausgewählt werden aus der Gruppe bestehend aus körperlicher Aktivität, Atemfrequenz, Herzfrequenz, Temperatur und durch die Lungen eingeatmetes und ausgeatmetes Luftvolumen.
     


    Revendications

    1. Système (200) destiné à fournir un programme d'exercices d'entraînement pour un patient, le système comprenant :

    un capteur (202, 204, 206, 208, 210, 212) configuré pour mesurer un paramètre physiologique du patient pour rassembler des données physiologiques, dans lequel le capteur est configuré pour mesurer une quantité d'oxygène transportée par les globules rouges du patient pour rassembler des données SpO2 ; et

    un processeur informatique (214) connecté de manière opérationnelle au capteur et configuré pour :

    a) recevoir des données d'informations sanitaires du patient, les données d'informations sanitaires étant représentatives d'informations relatives au patient et de symptômes du patient, les symptômes du patient étant sélectionnés dans le groupe constitué de dyspnée (ou essoufflement), toux, respiration sifflante, production de mucus ou de crachats, oppression thoracique et fatigue, les données d'informations sanitaires comprenant en outre le volume d'air inspiré ou exhalé par les poumons tel que mesuré par un dispositif de mesure des voies respiratoires,

    b) recevoir les données physiologiques en provenance du capteur,

    c) concevoir le programme d'exercices d'entraînement pour le patient sur la base des données d'informations sanitaires et des données physiologiques,

    d) contrôler les données physiologiques pendant les exercices d'entraînement du patient pour déterminer si les données physiologiques sont dans une plage préétablie, et

    e) modifier le programme d'exercices d'entraînement pour le patient si les données physiologiques sont en dehors de la plage préétablie.


     
    2. Système selon la revendication 1, dans lequel le processeur informatique est en outre configuré pour mesurer les données physiologiques après les exercices d'entraînement du patient et pour déterminer si les données physiologiques après les exercices d'entraînement sont dans la plage préétablie.
     
    3. Système selon la revendication 2, dans lequel le processeur informatique est en outre configuré pour modifier le programme d'exercices d'entraînement pour le patient si les données physiologiques sont en dehors de la plage préétablie.
     
    4. Système selon la revendication 1, dans lequel les informations relatives au patient sont sélectionnées dans le groupe constitué du sexe du patient, de l'âge du patient, du poids du patient, des antécédents de tabagisme du patient et de la taille du patient.
     
    5. Système selon la revendication 1, dans lequel le capteur est en outre configuré pour mesurer l'activité physique du patient en tant qu'autre paramètre physiologique pour rassembler des données d'activité physique en tant qu'autres données physiologiques.
     
    6. Système selon la revendication 5, dans lequel le contrôleur d'activité est un accéléromètre ou un capteur piézoélectrique.
     
    7. Système selon la revendication 1, dans lequel le capteur est en outre configuré pour mesurer le rythme respiratoire du patient en tant qu'autre paramètre physiologique pour rassembler des données de rythme respiratoire en tant qu'autres données physiologiques.
     
    8. Système selon la revendication 8, dans lequel le capteur de rythme respiratoire est un accéléromètre ou un microphone.
     
    9. Système selon la revendication 1, dans lequel le capteur est en outre configuré pour mesurer :

    (a) une fréquence cardiaque du patient pour rassembler des données de fréquence cardiaque ;

    (b) une température du patient pour rassembler des données de température ;

    (c) un volume d'air inspiré et expiré par les poumons du patient pour rassembler des données d'obstruction des voies respiratoires, ou

    (d) toute combinaison de (a)-(c).


     
    10. Procédé mis en oeuvre par ordinateur destiné à fournir un programme d'exercices d'entraînement pour un patient, dans lequel le procédé est mis en oeuvre dans un système informatique comprenant un processeur informatique configuré pour exécuter un module de programmes informatiques, le procédé comprenant :

    la réception dans le processeur informatique de données d'informations sanitaires du patient, les données d'informations sanitaires étant représentatives d'informations relatives au patient et de symptômes du patient, les symptômes du patient étant sélectionnés dans le groupe constitué de dyspnée (ou essoufflement), toux, respiration sifflante, production de mucus ou de crachats, oppression thoracique et fatigue, les données d'informations sanitaires comprenant en outre le volume d'air inspiré ou exhalé par les poumons tel que mesuré par un dispositif de mesure des voies respiratoires ;

    la mesure d'un paramètre physiologique du patient avec un capteur pour rassembler des données physiologiques, le capteur étant configuré pour mesurer une quantité d'oxygène transportée par les globules rouges du patient pour rassembler des données SpO2 ;

    l'exécution, sur le processeur informatique du système informatique, d'un module de programmes informatiques configuré pour concevoir le programme d'exercices d'entraînement pour le patient sur la base des données d'informations sanitaires et des données physiologiques ;

    la surveillance des données physiologiques pendant les exercices d'entraînement du patient, pour déterminer si les données physiologiques sont dans une plage préétablie ; et

    l'exécution, sur le processeur informatique du système informatique, d'un module de programmes informatiques configuré pour modifier le programme d'exercices d'entraînement du patient si les données physiologiques sont en dehors de la plage préétablie.


     
    11. Procédé selon la revendication 10, comprenant en outre la mesure des données physiologiques après les exercices d'entraînement du patient, pour déterminer si les données physiologiques sont dans la plage préétablie.
     
    12. Procédé selon la revendication 11, dans lequel le programme d'exercices d'entraînement pour le patient est modifié si les données physiologiques sont en dehors de la plage préétablie.
     
    13. Procédé selon la revendication 10, dans lequel les informations relatives au patient sont sélectionnées dans le groupe constitué du sexe du patient, de l'âge du patient, du poids du patient, des antécédents de tabagisme du patient et de la taille du patient.
     
    14. Procédé selon la revendication 10, dans lequel les symptômes du patient sont sélectionnés dans le groupe constitué de dyspnée (ou essoufflement), toux, respiration sifflante, production de mucus ou de crachats, oppression thoracique et fatigue, les données d'informations sanitaires comprenant en outre le volume d'air inspiré ou exhalé par les poumons tel que mesuré par un dispositif de mesure des voies respiratoires.
     
    15. Procédé selon la revendication 10, dans lequel d'autres paramètres physiologiques sont sélectionnés dans le groupe constitué de l'activité physique, du rythme respiratoire, de la fréquence cardiaque, de la température et du volume d'air inspiré et expiré par les poumons.
     




    Drawing












    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description