(19)
(11)EP 2 529 086 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
08.06.2016 Bulletin 2016/23

(21)Application number: 10769077.8

(22)Date of filing:  28.09.2010
(51)International Patent Classification (IPC): 
F01K 9/02(2006.01)
F01K 23/08(2006.01)
F22D 1/00(2006.01)
F01K 13/00(2006.01)
F22B 3/06(2006.01)
(86)International application number:
PCT/JP2010/067314
(87)International publication number:
WO 2011/092895 (04.08.2011 Gazette  2011/31)

(54)

POWER GENERATING SYSTEM

ENERGIEERZEUGUNGSSYSTEM

SYSTÈME DE PRODUCTION ÉLECTRIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 28.01.2010 JP 2010016208

(43)Date of publication of application:
05.12.2012 Bulletin 2012/49

(73)Proprietor: Ebara Corporation
Ohta-ku, Tokyo 144-8510 (JP)

(72)Inventor:
  • OGATA, Hiroshi
    Tokyo 144-8510 (JP)

(74)Representative: Wagner, Karl H. 
Wagner & Geyer Gewürzmühlstrasse 5
80538 Munich
80538 Munich (DE)


(56)References cited: : 
DE-B- 1 047 209
JP-A- 56 047 606
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a power generating system, and more particularly to a power generating system which can recover exhaust heat from a working fluid of a fluid coupling and utilize the recovered exhaust heat to generate power.

    Background Art



    [0002] There has been known a fluid coupling in which an impeller is coupled to a drive shaft (input shaft) and a runner is coupled to a driven shaft (output shaft), and power is transmitted from a driving source to a driven source through a working oil which fills a casing. The fluid coupling is employed to drive a feed pump or a blower at a variable speed in a thermal power plant, a nuclear power plant or the like, and to drive a pump or a blower at a variable speed in an ironworks or the like. When the pump or the blower is driven by the fluid coupling at a variable speed, a rotational speed of a load side, i.e. a driven machine, can be varied continuously from a minimum rotational speed to a maximum rotational speed by using a scoop tube. However, slip which is a rotational speed difference between a prime mover and a driven machine causes a slip loss.

    [0003] When the rotational speed of the driven machine is low, the slip loss becomes large. Therefore, in some cases, a power loss of the fluid coupling reaches 14.8 % of rated power of the driven machine at the maximum, resulting in a large energy loss.

    [0004] A temperature of the working oil as a working fluid rises due to the slip loss of the fluid coupling. Therefore, the working oil discharged from the fluid coupling has been returned to the fluid coupling after being cooled down by an oil cooler. That is, heat caused by the slip loss in the fluid coupling is released outside through the oil cooler.

    [0005] DE 1,047,209 B discloses a steam turbine power generator with feed water preheating. This document was used as a basis for the preamble of the independent claims.

    [0006] With regard to the available prior art, attention is also drawn to JP 08-135907 A.

    Summary of Invention


    Technical Problem



    [0007] As described above, a temperature of the working oil as a working fluid rises due to the slip loss in the fluid coupling. However, the fluid coupling has an oil cooler as an auxiliary machine so that the heated working oil discharged from the fluid coupling is cooled by the oil cooler and then returned to the fluid coupling. Therefore, heat of the slip loss generated in the fluid coupling is released outside without being recovered.

    [0008] inventors of the present invention have studied, from the viewpoint of energy saving, an entire system including a fluid coupling and a driven machine driven by the fluid coupling, and found the subject that heat of the slip loss in the fluid coupling which has been released outside should be recovered to promote energy saving in the entire system.

    [0009] The present invention has been made in view of the above circumstances. It is therefore an object of the present invention to provide a power generating system which can recover heat of a slip loss in a fluid coupling by recovering exhaust heat from a working fluid discharged from the fluid coupling and utilize the recovered exhaust heat (heat of the slip loss) to generate power.

    Solution to Problem



    [0010] In order to achieve the above obj ect, according to a first aspect of the present invention, there is provided a power generating system as set forth in claim 1.

    [0011] According to the first aspect of the present invention, water is supplied to a steam generator by a feed pump driven through a fluid coupling by a driving machine to generate high-temperature steam in the steam generator, and a steam turbine is driven by using the high-temperature steam to generate power. The steam discharged from the steam turbine is supplied to a condenser where the steam is condensed, and the condensed water of the condenser is heated by a working fluid discharged from the fluid coupling. The heated condensed water is resupplied to the steam generator. In this manner, heat of a slip loss in the fluid coupling can be recovered by means of heating the condensed water by the working fluid discharged from the fluid coupling, and thus thermal efficiency of the entire steam turbine power generating system can be enhanced to improve power generation efficiency.

    [0012]  According to one aspect of the present invention, the power generating system further comprises a heat exchanger for performing heat exchange between the working fluid discharged from the fluid coupling and the condensed water supplied from the condenser to heat the condensed water.

    [0013] According to one aspect of the present invention, the power generating system further comprises a first heat exchanger for performing heat exchange between the working fluid discharged from the fluid coupling and a heat exchange medium; and a second heat exchanger for performing heat exchange between the heat exchange medium and the condensed water supplied from the condenser; wherein the heat exchange medium is heated by the heat exchange between the working fluid and the heat exchange medium in the first heat exchanger, and the condensed water is heated by the heat exchange between the heat exchange medium heated in the first heat exchanger and the condensed water in the second heat exchanger.

    [0014] According to this aspect of the present invention, because a circulation path of the working fluid and a circulation path of the condensed water are completely separated from each other, a risk of contamination of the condensed water by the working fluid can be reduced.

    [0015] According to one aspect of the present invention, the power generating system further comprises a heat pump cycle which comprises an evaporator, a compressor, a refrigerant condenser and an expansion valve; wherein the working fluid discharged from the fluid coupling is supplied to the evaporator to heat a refrigerant of said heat pump cycle, and the condensed water is supplied from the condenser to the refrigerant condenser to heat the condensed water.

    [0016] According to this aspect of the present invention, a refrigerant takes heat from the working fluid of the fluid coupling and evaporates in an evaporator to turn to a low-temperature and low-pressure gas, and then the low-temperature and low-pressure gas is compressed into a high-temperature and high-pressure gas by a compressor. Then, the high-temperature and high-pressure refrigerant gas releases heat by heat exchange with the condensed water in a refrigerant condenser to heat the condensed water. At this time, the refrigerant is condensed and liquefied under high pressure. The resulting high-pressure liquid expands through an expansion valve (pressure reducing valve) and is depressurized to return to its original low-temperature and low-pressure liquid. Then, the low-temperature and low-pressure liquid is resupplied to the evaporator. In this manner, a heat pump cycle which comprises a heat source of the working fluid discharged from the fluid coupling and a cooling source of the condensed water is constructed to heat the condensed water by the working fluid, thereby enabling heat of a slip loss of the fluid coupling to be recovered. Therefore, thermal efficiency of the entire steam turbine power generating system can be enhanced to improve power generation efficiency.

    [0017] According to one aspect of the present invention, the power generating system further comprises a heat pump cycle which comprises an evaporator, a compressor, a refrigerant condenser and an expansion valve; and a heat exchanger for performing heat exchange between the condensed water supplied from the condenser and a heat exchange medium; wherein the working fluid discharged from the fluid coupling is supplied to the evaporator to heat a refrigerant of said heat pump cycle, and the heat exchange medium is supplied to the refrigerant condenser to heat the heat exchange medium; and the condensed water is heated in the heat exchanger by heat exchange between the heat exchange medium heated in the refrigerant condenser and the condensed water supplied from the condenser.

    [0018] According to this aspect of the present invention, a refrigerant takes heat from the working fluid and evaporates in an evaporator to turn to a low-temperature and low-pressure gas, and then the low- temperature and low-pressure gas is compressed into a high- temperature and high-pressure gas by a compressor. Then, the high-temperature and high-pressure refrigerant gas releases heat by heat exchange with a heat exchange medium supplied from a heat exchanger in a refrigerant condenser to heat the heat exchange medium. At this time, the refrigerant gas is condensed and liquefied under high pressure. The resulting high-pressure liquid expands through an expansion valve (pressure reducing valve) and is depressurized to return to its original low-temperature and low-pressure liquid. Then, the low-temperature and low-pressure liquid is resupplied to the evaporator. The heat exchange medium heated in the refrigerant condenser returns to the heat exchanger where heat exchange is performed between the heat exchange medium and the condensed water supplied from the condenser to heat the condensed water. In this manner, a heat pump cycle which comprises a heat source of the working fluid discharged from the fluid coupling and a cooling source of the condensed water is constructed to heat the condensed water by the working fluid, thereby enabling heat of a slip loss of the fluid coupling to be recovered. Therefore, thermal efficiency of the entire steam turbine power generating system can be enhanced to improve power generation efficiency. Further, because a circulation path of the refrigerant in the heat pump cycle and a circulation path of the condensed water are completely separated from each other, a risk of contamination of the condensed water by the refrigerant can be reduced.

    [0019] According to a second aspect of the present invention, there is provided a power generating system as set forth in claim 6.

    [0020] According to the second aspect of the present invention, water is supplied to a steam generator by a feed pump driven through a fluid coupling by a driving machine to generate high-temperature steam in the steam generator, and a steam turbine is driven by using the high-temperature steam to generate power. The steam discharged from the steam turbine is supplied to a condenser where the steam is condensed. The working oil whose temperature has been raised is supplied to the evaporator in the heat pump cycle from the fluid coupling and part of the low-pressure steam discharged from the steam turbine is supplied to the condenser. A refrigerant takes heat from the working oil of the fluid coupling and evaporates in the evaporator to turn to a low-temperature and low-pressure gas, and then the low-temperature and low-pressure gas is compressed into a high-temperature and high-pressure gas by the compressor and supplied to the condenser. On the other hand, part of the low-pressure steam discharged from the steam turbine is compressed by a compressor and supplied to a cooling side (a side to be heated) of the condenser. The high-temperature and high-pressure refrigerant gas releases heat by heat exchange with the compressed low-pressure steam in the condenser to heat the low-pressure steam, i.e., superheat the low-pressure steam. At this time, the refrigerant is condensed and liquefied under high pressure. The resulting high-pressure liquid expands through the expansion valve (pressure reducing valve) and is depressurized to return to its original low-temperature and low-pressure liquid. Then, the low-temperature and low-pressure liquid is resupplied to the evaporator. On the other hand, the steam superheated in the condenser is introduced into a middle stage of the steam turbine and contributes to driving of the steam turbine.

    [0021] According to one aspect of the present invention, the steam which has been discharged from the steam turbine and heated in the condenser is introduced into a middle stage of the steam turbine.

    [0022] According to a third aspect of the present invention, there is provided a power generating system as set forth in claim 8.

    [0023] According to the third aspect of the present invention, a working fluid discharged from a fluid coupling is supplied to a vapor generator where a refrigerant is heated by heat exchange with the working fluid, and part of the refrigerant evaporates to turn to high-temperature refrigerant vapor. Then, the refrigerant vapor is introduced into a turbine and drives the turbine to generate power. The refrigerant vapor discharged from the turbine is introduced into a refrigerant condenser and cooled by a cooling medium, thus being condensed and liquefied. The liquefied refrigerant is resupplied to the vapor generator. In this manner, the refrigerant is evaporated by utilizing exhaust heat of the working fluid of the fluid coupling, and the turbine is driven by using the refrigerant vapor to generate power, thereby enabling heat of a slip loss of the fluid coupling to be recovered. Therefore, thermal efficiency of the entire system for pumping a fluid such as a liquid or a gas by driving the driven machine using the fluid coupling can be enhanced to improve energy saving.

    [0024] According to one aspect of the present invention, the refrigerant comprises dichlorotrifluoroethane (HCFC123) or trifluoroethanol (CF3CH2OH).

    Advantageous Effects of Invention



    [0025] According to the first aspect of the present invention, in the power generating system in which water is supplied to a steam generator by a feed pump to generate steam, a steam turbine is driven by using the generated steam to generate power, the steam discharged from the steam turbine is condensed in a condenser, and then the condensed water is resupplied to the steam generator by the feed pump, heat of a slip loss in the fluid coupling can be recovered by means of heating the condensed water by the working fluid discharged from the fluid coupling for driving the feed pump. Therefore, thermal efficiency of the entire power generating system can be enhanced to improve power generation efficiency. In some cases, a power loss of the fluid coupling reaches 14.8 % of rated power of the feed pump at the maximum. However, according to the present invention, most of the power loss can be recovered, and hence power generation efficiency of the entire power generating system can be enhanced tremendously.

    [0026] According to the second aspect of the present invention, in the power generating system in which water is supplied to a steam generator by a feed pump to generate steam, a steam turbine is driven by using the generated steam to generate power, the steam discharged from the steam turbine is condensed in a condenser, and then the condensed water is resupplied to the steam generator by the feed pump, a heat pump cycle which comprises a heat source of a working oil discharged from the fluid coupling for driving the feed pump and a cooling source of the low-pressure steam discharged from the steam turbine is constructed to heat the low-pressure steam discharged from the steam turbine by the working oil as a heat source, thereby recovering heat of a slip loss of the fluid coupling. Therefore, thermal efficiency of the entire steam turbine power generating system can be enhanced to improve power generation efficiency.

    [0027] According to the third aspect of the present invention, the refrigerant is evaporated by utilizing exhaust heat of the working fluid of the fluid coupling and the turbine is driven by using the refrigerant vapor to generate power, thereby enabling heat of a slip loss in the fluid coupling to be recovered. Therefore, thermal efficiency of the entire system for pumping a fluid such as a liquid or a gas by driving the driven machine using the fluid coupling can be enhanced to improve energy saving. In some cases, a power loss of the fluid coupling reaches 14.8 % of rated power of the driven machine at the maximum. However, according to the present invention, most of the power loss can be recovered as power in the exhaust heat power generating system, and thus thermal efficiency of the entire system can be enhanced remarkably using the fluid coupling.

    Brief Description of Drawings



    [0028] 

    [FIG. 1] FIG. 1 is a schematic view showing a steam turbine power generating system according to a first embodiment of a power generating system of the present invention.

    [FIG. 2] FIG. 2 is a schematic view showing a schematic structure of a fluid coupling.

    [FIG. 3] FIG. 3 is a schematic view showing a steam turbine power generating system according to a second embodiment of the present invention.

    [FIG. 4] FIG. 4 is a schematic view showing a steam turbine power generating system according to a third embodiment of the present invention.

    [FIG. 5] FIG. 5 is a schematic view showing a modified example of the steam turbine power generating system shown in FIG. 4.

    [FIG. 6] FIG. 6 is a schematic view showing another example of the power generating system according to the present invention.

    [FIG. 7] FIG. 7 is a schematic view showing still another example of the power generating system according to the present invention.


    Description of Embodiments



    [0029] A power generating system according to embodiments of the present invention will be described in detail with reference to FIGS. 1 through 7. The same or corresponding structural members or elements are denoted by the same reference numerals in FIGS. 1 through 7 and will not be described repetitively.

    [0030] FIG. 1 schematically shows a steam turbine power generating system according to a first embodiment of a power generating system of the present invention. In FIG. 1, a steam turbine power generating system provided in a thermal power plant is shown, and a boiler is used as a steam generator.

    [0031] As shown in FIG. 1, in a steam turbine power generating system, water is supplied by a boiler feed pump BP to a boiler 1 where high-temperature steam (high-pressure steam) is generated, and a steam turbine 2 is driven by using the high-temperature steam and power is generated by a power generator 3 coupled to the steam turbine 2. Then, the steam (low-pressure steam) discharged from the steam turbine 2 is supplied to a condenser 4 where the steam is condensed, and the condensed water in the condenser 4 is pumped up to a feed-water heater 5 by a condensate pump CP. Then, the condensed water heated in the feed-water heater 5 is resupplied to the boiler 1 by the boiler feed pump BP. The steam turbine 2 has multistage blades and the blades at each stage are configured to cope with variable steam pressure optimally from the high-pressure steam immediately after introduction to the steam turbine 2 to the low-pressure steam immediately before discharge from the steam turbine 2.

    [0032] As shown in FIG. 1, in the steam turbine power generating system of this embodiment, a fluid coupling 10 is provided between the boiler feed pump BP and a motor M for driving the boiler feed pump BP so that a torque of the motor M is transmitted to the boiler feed pump BP through a working oil (working fluid) of the fluid coupling 10.

    [0033] FIG. 2 is a schematic view showing a schematic structure of the fluid coupling 10. As shown in FIG. 2, the working oil which has flowed into an impeller chamber is transferred to an outer circumferential side due to a centrifugal force imparted by the impeller 11, and then flows into a runner 12 to rotate the runner 12. A cylindrical oil layer is formed due to the centrifugal force in a scoop tube chamber 13 and the working oil is scooped through a forward end of the scoop tube 14. A rotational speed ratio of the impeller 11 to the runner 12 can be varied by changing the position of the scoop tube 14 arbitrarily, thereby controlling the rotational speed of the driven machine continuously. In the fluid coupling 10, slip which is a rotational speed difference between the impeller 11 and the runner 12 becomes a slip loss which raises a temperature of the working oil.

    [0034] Therefore, according to the embodiment shown in FIG. 1, a heat exchanger 20 is provided to heat the condensed water by heat exchange between the working oil of the fluid coupling 10 and the condensed water supplied from the condenser 4. Specifically, the working oil discharged from the fluid coupling 10 through the scoop tube 14 is introduced via a working oil path 21 into the heat exchanger 20 and the condensed water in the condenser 4 is concurrently introduced into the heat exchanger 20 by the condensate pump CP. Then, the heat exchange is performed between the working oil and the condensed water to heat the condensed water in the heat exchanger 20. The working oil has a temperature of about 70°C to 90°C at an inlet side of the heat exchanger 20. The working oil is cooled down to a temperature of about 50°C by heat exchange in the heat exchanger 20, and is then returned to the fluid coupling 10. On the other hand, the condensed water has a temperature of about 30°C to 35°C at an inlet side of the heat exchanger 20. The condensed water is heated by heat exchange in the heat exchanger 20, and is then supplied to the feed-water heater 5. Further, the condensed water which has been heated in the feed-water heater 5 is resupplied to the boiler 1 by the boiler feed pump BP, as mentioned above.

    [0035] According to the steam turbine power generating system of this embodiment, heat of a slip loss of the fluid coupling 10 can be recovered by heating the condensed water by the working oil discharged from the fluid coupling 10, and thus thermal efficiency of the entire steam turbine power generating system can be enhanced to improve power generation efficiency. In some cases, a power loss of the fluid coupling reaches 14.8 % of rated power of the boiler feed pump BP at the maximum. However, according to the present invention, most of the power loss can be recovered in the heat exchanger 20, and hence power generation efficiency of the entire steam turbine power generating system can be remarkably enhanced.

    [0036] FIG. 3 is a schematic view showing a steam turbine power generating system according to a second embodiment of the present invention. In the embodiment shown in FIG. 3 , there are provided a first heat exchanger 30 which performs heat exchange between a working oil of a fluid coupling 10 and a heat exchange medium, and a second heat exchanger 40 which performs heat exchange between the above heat exchange medium and condensed water supplied from a condenser 4. Clean water is used as a heat exchange medium. Specifically, the working oil discharged from the fluid coupling 10 through the scoop tube 14 is introduced into the first heat exchanger 30 through a working oil path 21 and the heat exchange medium is introduced into the first heat exchanger 3 0 through a heat exchange medium path 31. Then, the heat exchange medium is heated by heat exchange between the working oil and the heat exchange medium. A circulating pump 32 is provided in the heat exchange medium path 31. The heat exchange medium which has been heated in the first heat exchanger 30 is introduced into the second heat exchanger 40 through the heat exchange medium path 31 and the condensed water in the condenser 4 is introduced into the second heat exchanger 40 by a condensate pump CP. Then, the condensed water is heated by heat exchange between the heat exchange medium and the condensed water.

    [0037] The working oil discharged from the fluid coupling 10 has a temperature of about 70°C to 90°C at an inlet side of the first heat exchanger 30. The working oil is cooled down to a temperature of about 50°C by heat exchange in the first heat exchanger 30, and is then returned to the fluid coupling 10. On the other hand, the heat exchange medium is heated to a temperature close to the temperature of the working oil by heat exchange in the first heat exchanger 30, and is then supplied to the second heat exchanger 40. Further, the condensed water has a temperature of about 30°C to 35°C at an inlet side of the second heat exchanger 40. The condensed water is heated by heat exchange in the second heat exchanger 40, and is then supplied to the feed-water heater 5. Then, the condensed water which has been heated in the feed-water heater 5 is resupplied to the boiler 1 by the boiler feed pump BP, in the same manner as the embodiment shown in FIG. 1.

    [0038]  According to a steam turbine power generating system of this embodiment, heat of a slip loss of the fluid coupling 10 can be recovered by heating the condensed water by the working oil discharged from the fluid coupling 10, and thus thermal efficiency of the entire steam turbine power generating system can be enhanced to improve power generation efficiency. In some cases, a power loss of the fluid coupling reaches 14. 8 % of rated power of the boiler feed pump BP at the maximum. However, according to this embodiment, most of the power loss can be recovered in the two heat exchangers 3 0 and 40, and hence power generation efficiency of the entire steam turbine power generating system can be remarkably enhanced.

    [0039] In the embodiment shown in FIG. 3, because a circulation path of the working oil and a circulation path of the condensed water are completely separated from each other, a risk of contamination of the condensed water by the working oil can be reduced. Even if the heat exchange medium path 31 is broken or damaged, the condensed water will not be contaminated because water which is as clean as the condensed water is used as a heat exchange medium which flows in the heat exchange medium path 31.

    [0040] FIG. 4 is a schematic view showing a steam turbine power generating system according to a third embodiment of the present invention. In the embodiment shown in FIG. 4, a heat pump cycle which comprises a heat source of a working oil of a fluid coupling 10 and a cooling source of condensed water is constructed to heat the condensed water by the working oil. Specifically, the heat pump cycle HP comprises an evaporator E, a compressor Comp, a condenser C serving as a refrigerant condenser, and an expansion valve (pressure reducing valve) V. In the heat pump cycle HP, the working oil whose temperature has been raised is supplied to the evaporator E from the fluid coupling 10 and the condensed water of the condenser 4 is supplied to the condenser C. Alternative for chlorofluorocarbon or the like is used as a refrigerant in the heat pump cycle HP.

    [0041] In the steam turbine power generating system having the heat pump cycle HP shown in FIG. 4, a refrigerant takes heat from the working oil of the fluid coupling 10 and evaporates in the evaporator E to turn to a low-temperature and low-pressure gas, and then the low-temperature and low-pressure gas is compressed into a high-temperature and high-pressure gas by a compressor Comp. Then, the high-temperature and high-pressure refrigerant gas releases heat by heat exchange with the condensed water in the condenser C to heat the condensed water. At this time, the refrigerant is condensed and liquefied under high pressure. The resulting high-pressure liquid expands through the expansion valve (pressure reducing valve) V and is depressurized to return to its original low-temperature and low-pressure liquid. Then, the low-temperature and low-pressure liquid is resupplied to the evaporator E.

    [0042] The working oil discharged from the fluid coupling 10 has a temperature of about 70°C to 90°C at an inlet side of the evaporator E. The working oil is cooled down to a temperature of about 50°C by removal of heat in the evaporator E, and is then returned to the fluid coupling 10. On the other hand, the condensed water has a temperature of about 30°C to 35°C at an inlet side of the condenser C. The condensed water is heated by heat exchange in the condenser C, and is then supplied to the feed-water heater 5. Further, the condensed water which has been heated in the feed-water heater 5 is resupplied to the boiler 1 by the boiler feed pump BP, in the same manner as the embodiment shown in FIG. 1.

    [0043] According to the steam turbine power generating system of this embodiment, a heat pump cycle HP which comprises a heat source of a working oil discharged from a fluid coupling 10 and a cooling source of condensed water is constructed to heat the condensed water by the working oil, and thus heat of a slip loss of the fluid coupling 10 can be recovered. Therefore, thermal efficiency of the entire steam turbine power generating system can be enhanced to improve power generation efficiency. In some cases, a power loss of the fluid coupling reaches 14. 8 % of rated power of the boiler feed pump BP at the maximum. However, according to the present invention, most of the power loss can be recovered by utilizing the heat pump cycle HP, and thus power generation efficiency of the entire steam turbine power generating system can be remarkably enhanced.

    [0044] FIG. 5 is a schematic view showing a modified example of a steam turbine power generating system shown in FIG. 4. In the embodiment shown in FIG. 4, the condensed water is directly heated in the condenser C in the heat pump cycle HP. However, in the embodiment shown in FIG. 5, a heat exchanger 50 is provided to perform heat exchange between condensed water supplied from a condenser 4 and a heat exchange medium, and the heat exchange medium supplied from the heat exchanger 50 is heated in a condenser C serving as a refrigerant condenser in a heat pump cycle HP. The heat exchange medium circulates between the condenser C and the heat exchanger 50 by a heat exchange medium path 51 and a circulating pump 52 provided in the heat exchange medium path 51. Clean water is used as a heat exchange medium. Specifically, a refrigerant takes heat from the working oil and evaporates in the evaporator E to turn to a low-temperature and low-pressure gas, and then the low-temperature and low-pressure gas is compressed into a high-temperature and high-pressure gas by a compressor Comp. Then, the high-temperature and high-pressure refrigerant gas releases heat by heat exchange with the heat exchange medium supplied from the heat exchanger 50 through the heat exchange medium path 51 in the condenser C to heat the heat exchange medium. At this time, the refrigerant is condensed and liquefied under high pressure. The resulting high-pressure liquid expands through the expansion valve (pressure reducing valve) V and is depressurized to return to its original low-temperature and low-pressure liquid. Then, the low-temperature and low-pressure liquid is resupplied to the evaporator E. The heat exchange medium which has been heated in the condenser C returns to the heat exchanger 50 where the heat exchange medium performs heat exchange with the condensed water supplied from the condenser 4 to heat the condensed water.

    [0045] In the embodiment shown in FIG. 5, because a circulation path of the refrigerant in the heat pump cycle HP and a circulation path of the condensed water are completely separated from each other, a risk of contamination of the condensed water by the refrigerant can be reduced. Even if the heat exchange medium path 51 is broken or damaged, the condensed water will not be contaminated because water which is as clean as the condensed water is used as a heat exchange medium which flows in the heat exchange medium path 51.

    [0046] The working oil discharged from the fluid coupling 10 has a temperature of about 70°C to 90°C at an inlet side of the evaporator E. The working oil is cooled down to a temperature of about 50°C by removal of heat in the evaporator E. On the other hand, the condensed water has a temperature of about 30°C to 35°C at an inlet side of the heat exchanger 50. The condensed water is heated by heat exchange in the heat exchanger 50, and is then supplied to the feed-water heater 5. Further, the condensed water which has been heated in the feed-water heater 5 is resupplied to the boiler 1 by the boiler feed pump BP, in the same manner as the embodiment shown in FIG. 1.

    [0047] According to the steam turbine power generating system of this embodiment, a heat pump cycle HP which comprises a heat source of a working oil discharged from a fluid coupling 10 and a cooling source of condensed water is constructed to heat the condensed water by the working oil, and thus heat of a slip loss of the fluid coupling 10 can be recovered. Therefore, thermal efficiency of the entire steam turbine power generating system can be enhanced to improve power generation efficiency.

    [0048] FIG. 6 is a schematic view showing another embodiment of a power generating system according to the present invention. While the steam turbine power generating system shown in FIGS. 1 through 5 is configured to recover heat of a slip loss of the fluid coupling 10 by heating the condensed water as a heat source of a working oil discharged from the fluid coupling 10, the power generating system according to the embodiment shown in FIG. 6 is different in that heat of a slip loss of the fluid coupling 10 is recovered by heating low-pressure steam discharged from the steam turbine 2 as a heat source of a working oil discharged from the fluid coupling 10 and by introducing the heated low-pressure steam into a low-pressure stage of the steam turbine 2. Further, in the embodiment shown in FIG. 6, in order to obtain high temperature which is enough to heat the low-pressure steam, a heat pump cycle is used in the same manner as the embodiment shown in FIG.4, and the heat pump cycle which comprises a heat source of a working oil discharged from the fluid coupling 10 and a cooling source of the low-pressure steam discharged from the steam turbine is constructed. Specifically, the heat pump cycle HP comprises an evaporator E, a compressor Comp, a condenser C, and an expansion valve (pressure reducing valve) V. In the heat pump cycle HP, the working oil whose temperature has been raised is supplied to the evaporator E from the fluid coupling 10 and part of the low-pressure steam discharged from the steam turbine 2 is supplied to the condenser C. Alternative for chlorofluorocarbon or the like is used as a refrigerant in the heat pump cycle HP.

    [0049] In the steam turbine power generating system having the heat pump cycle HP shown in FIG. 6, a refrigerant takes heat from the working oil of the fluid coupling 10 and evaporates in the evaporator E to turn to a low-temperature and low-pressure gas, and then the low-temperature and low-pressure gas is compressed into a high-temperature and high-pressure gas by the compressor Comp and supplied to the condenser C. On the other hand, part of the low-pressure steam discharged from the steam turbine 2 is compressed by a compressor Comp2 and supplied to a cooling side (a side to be heated) of the condenser C. The high-temperature and high-pressure refrigerant gas releases heat by heat exchange with the compressed low-pressure steam in the condenser C to heat the low-pressure steam, i.e., superheat the low-pressure steam. At this time, the refrigerant is condensed and liquefied under high pressure. The resulting high-pressure liquid expands through the expansion valve (pressure reducing valve) V and is depressurized to return to its original low-temperature and low-pressure liquid. Then, the low-temperature and low-pressure liquid is resupplied to the evaporator E. On the other hand, the steam superheated in the condenser C is introduced into a middle stage of the steam turbine 2 and contributes to driving of the steam turbine 2.

    [0050] The working oil discharged from the fluid coupling 10 has a temperature of about 70°C to 90°C at an inlet side of the evaporator E. The working oil is cooled down to a temperature of about 50°C by removal of heat in the evaporator E, and is then returned to the fluid coupling 10. On the other hand, the low-pressure steam is superheated by heat exchange in the condenser C, and is then supplied to the middle stage of the steam turbine 2. The low-pressure steam whose temperature has decreased.by driving the steam turbine 2 is partly compressed by the compressor Comp2 again and supplied to the condenser C, and the rest of the low-pressure steam is returned to the condenser 4 where the steam is condensed.

    [0051] The steam superheated in the condenser C may be introduced not into the middle stage of the steam turbine 2 but into a second steam turbine provided separately from the steam turbine 2, and the second steam turbine may be configured to recover power. Also in this case, the steam after recovery of power is returned to the condenser 4 where the steam is condensed.

    [0052] According to the steam turbine power generating system of this embodiment, a heat pump cycle HP which comprises a heat source of a working oil discharged from the fluid coupling 10 and a cooling source of the low-pressure steam discharged from the steam turbine 2 is constructed to heat the low-pressure steam discharged from the steam turbine 2 by the working oil as a heat source, thereby recovering heat of a slip loss of the fluid coupling 10. Therefore, thermal efficiency of the entire steam turbine power generating system can be enhanced to improve power generation efficiency. In some cases, a power loss of the fluid coupling reaches 14.8 % of rated power of the boiler feed pump BP at the maximum. However, according to the present invention, most of the power loss can be recovered by utilizing the heat pump cycle HP, and thus power generation efficiency of the entire steam turbine power generating system can be remarkably enhanced.

    [0053] In the steam turbine power generating system shown in FIGS. 1 through 6, the steam turbine power generating system provided in the thermal power plant has been explained. In the case of a nuclear power plant, although a boiler will be replaced with a steam generator, the structure to recover heat from the working oil of the fluid coupling is the same as that of the thermal power plant.

    [0054] FIG. 7 is a schematic view showing still another embodiment of a power generating system according to the present invention. In the embodiment shown in FIG. 7, the power generating system is an exhaust heat power generating system which comprises a heat source of a working oil of a fluid coupling 10 and a cooling source of cooling water to generate power. In the exhaust heat power generating system, a refrigerant is evaporated by exhaust heat from the working oil of the fluid coupling, and a turbine is driven by using refrigerant vapor to generate power. As a refrigerant, a low-boiling refrigerant whose boiling point is around 40°C, for example, dichlorotrifluoroethane (HCFC123) or trifluoroethanol (CF3CH2OH) is used.

    [0055] As shown in FIG. 7, a fluid coupling 10 is provided between a driving machine 60 and a driven machine 61. The driving machine 60 comprises a motor or an engine, and the driven machine 61 comprises an air blower or a pump. A fluid coupling 10 has the same structure as that shown in FIG. 2. A working oil discharged from the fluid coupling 10 is supplied to a vapor generator 63. A refrigerant in the vapor generator 63 is heated by heat exchange with the working oil. Therefore, part of the refrigerant evaporates to turn to high-temperature refrigerant vapor. Then, the refrigerant vapor is introduced into a turbine 64 and drives the turbine 64 to generate power by a power generator 65 coupled to the turbine 64. The refrigerant vapor discharged from the turbine 64 is introduced into a condenser 66 and cooled by cooling water, thus being condensed and liquefied. The liquefied refrigerant is resupplied to the vapor generator 63 by a refrigerant pump 67. The working oil discharged from the fluid coupling 10 has a temperature of about 70°C to 90°C at an inlet side of the vapor generator 63. The working oil is cooled down to a temperature of about 50°C by removal of heat in the vapor generator 63, and then returns to the fluid coupling 10.

    [0056] According to the exhaust heat power generating system shown in FIG. 7, heat of a slip loss of the fluid coupling 10 can be recovered by utilizing exhaust heat from the working oil of the fluid coupling 10 to evaporate the refrigerant and by using refrigerant vapor to drive the turbine 64, thereby generating power. Therefore, thermal efficiency of the entire system for pumping a fluid such as a liquid or a gas by driving the driven machine 61 using the fluid coupling 10 can be enhanced to achieve energy saving. In some cases, a power loss of the fluid coupling reaches 14.8 % of rated power of the driven machine 61 at the maximum. However, according to this embodiment, most of the power loss can be recovered as power in the exhaust heat power generating system, and hence thermal efficiency of the entire system can be remarkably enhanced.

    [0057] In the embodiment shown in FIG. 7, the air blower or the pump is used as the driven machine 61, however, a rotary machine such as a blower or a compressor may be used as the driven machine 61. According to this embodiment, thermal efficiency of the entire system having these rotary machines can be improved.

    [0058] Although preferred embodiments of the present invention have been shown and described in detail, it should be understood that various changes and modifications may be made therein without departing from the scope of the appended claims.

    [0059] For example, in the above embodiments, the temperature of the working oil whose heat is recovered is about 70°C to 90°C. However, the temperature of the working oil can be lower or higher than the temperature of about 70°C to 90°C by controlling the circulating flow rate of the working oil. The temperature of the working oil may be raised to 100°C or higher. The higher the temperature of the working oil is, the higher the efficiencies of heat exchange for the condensed water, the heat exchange medium and the refrigerant are.

    Industrial Applicability



    [0060] The present invention can be applied to a power generating system which can recover exhaust heat from a working fluid of a fluid coupling and utilize the recovered exhaust heat to generate power.


    Claims

    1. A power generating system, comprising:

    a feed pump (BP) for supplying water to a steam generator (1) to generate steam,

    a steam turbine (2) adapted to be driven by using the generated steam to generate power,

    a condenser (4) for condensing the steam discharged from the steam turbine (2),

    wherein the power generating system is further configured such that the condensed water is resupplied to the steam generator (1) by the feed pump (BP);

    a fluid coupling (10) provided between said feed pump (BP) and a driving machine (M) for driving said feed pump (BP) to transmit a torque from said driving machine (M) to said feed pump (BP) by a working fluid which fills an impeller chamber;

    characterized by

    means (20, 30, 40, 50; E, Comp, C, V, HP) for heating the condensed water supplied from said condenser (4) by the working fluid discharged from said fluid coupling (10).


     
    2. The power generating system according to claim 1, said heating means comprising a heat exchanger (20) for performing heat exchange between the working fluid discharged from said fluid coupling (10) and the condensed water supplied from said condenser (4) to heat the condensed water.
     
    3. The power generating system according to claim 1, said heating means comprising:

    a first heat exchanger (30) for performing heat exchange between the working fluid discharged from said fluid coupling (10) and a heat exchange medium; and

    a second heat exchanger (40) for performing heat exchange between the heat exchange medium and the condensed water supplied from said condenser (4);

    wherein the first heat exchanger (30) is adapted to heat the heat exchange medium by the heat exchange between the working fluid and the heat exchange medium, and the second heat exchanger (40) is adapted to heat the condensed water by the heat exchange between the heat exchange medium heated in said first heat exchanger (30) and the condensed water.


     
    4. The power generating system according to claim 1, said heating means comprising a heat pump cycle (HP) which comprises an evaporator (E), a compressor (Comp), a refrigerant condenser (C) and an expansion valve (V); wherein said heating means is configured such that the working fluid discharged from said fluid coupling (10) is supplied to said evaporator (E) to heat a refrigerant of said heat pump cycle (HP), and the condensed water is supplied from said condenser (4) to said refrigerant condenser (C) to heat the condensed water.
     
    5. The power generating system according to claim 1, said heating means comprising a heat pump cycle (HP) which comprises an evaporator (E), a compressor (Comp), a refrigerant condenser (C) and an expansion valve (V); and a heat exchanger (50) for performing heat exchange between the condensed water supplied from said condenser (4) and a heat exchange medium;
    wherein said heating means is configured to supply the working fluid discharged from said fluid coupling (10) to said evaporator (E) to heat a refrigerant of said heat pump cycle (HP), and to supply the heat exchange medium to said refrigerant condenser (C) to heat the heat exchange medium; and
    wherein said heat exchanger (50) is adapted to heat the condensed water by heat exchange between the heat exchange medium heated in said refrigerant condenser (C) and the condensed water supplied from said condenser (4).
     
    6. A power generating system, comprising:

    a feed pump (BP) for supplying water to a steam generator (1) to generate steam,

    a steam turbine (2) adapted to be driven by using the generated steam to generate power,

    a condenser (4) for condensing the steam discharged from the steam turbine (2), and

    wherein the power generating system is further configured such that the condensed water is resupplied to the steam generator (1) by the feed pump (BP); and

    a fluid coupling (10) provided between said feed pump (BP) and a driving machine (M) for driving said feed pump (BP) to transmit a torque from said driving machine (M) to said feed pump (BP) by a working fluid which fills an impeller chamber;

    characterized by

    a heat pump cycle (HP) which comprises an evaporator (E), a compressor (Comp), a refrigerant condenser (C) and an expansion valve (V);

    means for supplying the working fluid discharged from said fluid coupling (10) to said evaporator (E) to heat a refrigerant of said heat pump cycle (HP),

    means for supplying part of the steam discharged from said steam turbine (2) to said refrigerant condenser (C), and

    means for heating the steam discharged from said steam turbine (2) by the refrigerant which has been heated by the working fluid discharged from said fluid coupling (10).


     
    7. The power generating system according to claim 6, further comprising means for introducing the steam which has been discharged from said steam turbine (2) and heated in said refrigerant condenser (C) into a middle stage of said steam turbine (2).
     
    8. A power generating system comprising:

    a fluid coupling (10) provided between a driving machine (60) and a driven machine (61) for transmitting a torque from the driving machine (60) to the driven machine (61) by a working fluid which fills an impeller chamber;

    means for supplying the working fluid discharged from said fluid coupling (10) to a vapor generator (63), said vapor generator (63) being configured such that a refrigerant in said vapor generator (63) is heated by the working fluid and is evaporated,

    a turbine (64) adapted to be driven by using the generated refrigerant vapor to generate power,

    means for introducing the refrigerant vapor discharged from said turbine (64) into a refrigerant condenser (66), said refrigerant condenser (66) being configured such that the refrigerant vapor is cooled by a cooling medium and condensed, and

    means for resupplying the condensed refrigerant liquid to said vapor generator (63).


     
    9. The power generating system according to claim 8, wherein said refrigerant comprises dichlorotrifluoroethane (HCFC-123) or trifluoroethanol (CF3CH2OH).
     
    10. A method of operating a power generating system, wherein water is supplied to a steam generator (1) by a feed pump (BP) to generate steam, a steam turbine (2) is driven by using the generated steam to generate power, the steam discharged from the steam turbine (2) is condensed in a condenser (4), and then the condensed water is resupplied to the steam generator (1) by the feed pump (BP); the method comprising:

    driving said feed pump (BP) through a fluid coupling (10) provided between said feed pump (BP) and a driving machine (M) to transmit a torque from said driving machine (M) to said feed pump (BP) by a working fluid which fills an impeller chamber;

    characterized in that

    the condensed water supplied from said condenser (4) is heated by the working fluid discharged from said fluid coupling (10).


     
    11. The method according to claim 10, further comprising:

    performing heat exchange between the working fluid discharged from said fluid coupling (10) and the condensed water supplied from said condenser (4) by means of a heat exchanger (20) to heat the condensed water.


     
    12. The method according to claim 10, further comprising:

    performing heat exchange between the working fluid discharged from said fluid coupling (10) and a heat exchange medium by means of a first heat exchanger (30); and

    performing heat exchange between the heat exchange medium and the condensed water supplied from said condenser (4) by means of a second heat exchanger (40);

    wherein the heat exchange medium is heated by the heat exchange between the working fluid and the heat exchange medium in said first heat exchanger (30), and the condensed water is heated by the heat exchange between the heat exchange medium heated in said first heat exchanger (30) and the condensed water in said second heat exchanger (40).


     
    13. The method according to claim 10, said power generating system further comprising a heat pump cycle (HP) which comprises an evaporator (E), a compressor (Comp), a refrigerant condenser (C) and an expansion valve (V); wherein the working fluid discharged from said fluid coupling (10) is supplied to said evaporator (E) to heat a refrigerant of said heat pump cycle (HP), and the condensed water is supplied from said condenser (4) to said refrigerant condenser (C) to heat the condensed water.
     
    14. The method according to claim 10, said power generating system further comprising a heat pump cycle (HP) which comprises an evaporator (E), a compressor (Comp), a refrigerant condenser (C) and an expansion valve (V); and a heat exchanger (50) for performing heat exchange between the condensed water supplied from said condenser (4) and a heat exchange medium;
    wherein the working fluid discharged from said fluid coupling (10) is supplied to said evaporator (E) to heat a refrigerant of said heat pump cycle (HP), and the heat exchange medium is supplied to said refrigerant condenser (C) to heat the heat exchange medium; and
    the condensed water is heated in said heat exchanger (50) by heat exchange between the heat exchange medium heated in said refrigerant condenser (C) and the condensed water supplied from said condenser (4).
     
    15. A method of operating a power generating system, wherein water is supplied to a steam generator (1) by a feed pump (BP) to generate steam, a steam turbine (2) is driven by using the generated steam to generate power, the steam discharged from the steam turbine (2) is condensed in a condenser (4), and then the condensed water is resupplied to the steam generator (1) by the feed pump (BP); the method comprising:

    driving said feed pump (BP) by a fluid coupling (10) provided between said feed pump (BP) and a driving machine (M) to transmit a torque from said driving machine (M) to said feed pump (BP) by a working fluid which fills an impeller chamber;

    wherein the power generating system comprises a heat pump cycle (HP) which comprises an evaporator (E), a compressor (Comp), a refrigerant condenser (C) and an expansion valve (V);

    wherein the working fluid discharged from said fluid coupling (10) is supplied to said evaporator (E) to heat a refrigerant of said heat pump cycle (HP), part of the steam discharged from said steam turbine (2) is supplied to said refrigerant condenser (C), and the steam discharged from said steam turbine (2) is heated by the refrigerant which has been heated by the working fluid discharged from said fluid coupling (10).


     
    16. The method according to claim 15, wherein the steam which has been discharged from said steam turbine (2) and heated in said refrigerant condenser (C) is introduced into a middle stage of said steam turbine (2).
     
    17. A method of operating a power generating system comprising:

    transmitting, by a fluid coupling (10) provided between a driving machine (60) and a driven machine (61), a torque from the driving machine (60) to the driven machine (61) by a working fluid which fills an impeller chamber; wherein the working fluid discharged from said fluid coupling (10) is supplied to a vapor generator (63), a refrigerant in said vapor generator (63) is heated by the working fluid and is evaporated, a turbine (64) is driven by using the generated refrigerant vapor to generate power, the refrigerant vapor discharged from said turbine (64) is introduced into a refrigerant condenser (66) where the refrigerant vapor is cooled by a cooling medium and condensed, and the condensed refrigerant liquid is resupplied to said vapor generator (63).


     
    18. The method according to claim 17, wherein said refrigerant comprises dichlorotrifluoroethane (HCFC-123) or trifluoroethanol (CF3CH2OH).
     


    Ansprüche

    1. Stromerzeugungssystem, das Folgendes aufweist:

    eine Förderpumpe (BP) zum Liefern von Wasser an einen Dampferzeuger (1) zum Erzeugen von Dampf,

    eine Dampfturbine (2), die ausgelegt ist, um durch Verwenden des erzeugten Dampfes angetrieben zu werden, um Strom zu erzeugen,

    einen Kondensator (4) zum Kondensieren des Dampfes, der aus der Dampfturbine (2) ausgebracht wird,

    wobei das Stromerzeugungssystem ferner so konfiguriert ist, dass das kondensierte Wasser erneut an den Dampferzeuger (1) durch die Förderpumpe geliefert wird;

    eine Flüssigkeits-Kupplung (10), die zwischen der Förderpumpe (BP) und einer Antriebsmaschine (M) zum Antrieb der Förderpumpe (BP) vorgesehen ist, um ein Drehmoment von der Antriebsmaschine (M) an die Förderpumpe (BP) durch ein Arbeitsmedium zu übertragen, welches eine Impeller- bzw. Antriebsradkammer füllt,

    gekennzeichnet durch

    Mittel (20, 30, 40, 50; E, Comp, C, V, HP) zum Erwärmen des kondensierten Wassers, das von dem Kondensator (4) geliefert wird, durch das Arbeitsmedium, das von der Flüssigkeits-Kupplung (10) ausgebracht wird.


     
    2. Stromerzeugungssystem gemäß Anspruch 1, wobei das Erwärmungsmittel einen Wärmeübertrager (20) zum Ausführen einer Wärmeübertragung zwischen dem Arbeitsmedium, das aus der Flüssigkeits-Kupplung (10) ausgebracht wird, und dem kondensierten Wasser, das von dem Kondensator (4) geliefert wird, um das kondensierte Wasser zu erwärmen.
     
    3. Stromerzeugungssystem gemäß Anspruch 1, wobei das Erwärmungsmittel Folgendes aufweist:

    einen ersten Wärmeübertrager (30) zum Ausführen einer Wärmeübertragung zwischen dem Arbeitsmedium, das aus der Flüssigkeits-Kupplung (10) ausgebracht wird, und einem Wärmeübertragungsmedium; und

    einen zweiten Wärmeübertrager (40) zum Ausführen einer Wärmeübertragung zwischen Wämeübertragungsmedium und dem kondensierten Wasser, das von dem Kondensator (4) geliefert wird;

    wobei der erste Wärmeübertrager (30) ausgelegt ist, um das Wärmeübertragungsmedium durch die Wärmeübertragung zwischen dem Arbeitsmedium und dem Wärmeübertragungsmedium zu erwärmen, und der zweite Wärmeübertrager (40) ausgelegt ist, um das kondensierte Wasser durch den Wärmeaustausch zwischen dem Wärmeübertragungsmedium und dem ersten Wärmeübertrager (30) und dem kondensierten Wasser zu erwärmen.


     
    4. Stromerzeugungssystem gemäß Anspruch 1, wobei das Erwärmungsmittel einen Wärmepumpenzyklus (HP) aufweist, der einen Verdampfer (E), einen Kompressor (Comp), einen Kältemittelkondensator (C) und ein Entspannungsventil (V) aufweist; wobei das Erwärmungsmittel so konfiguriert ist, dass das Arbeitsmedium, das aus der Flüssigkeits-Kupplung (10) ausgebracht wird, an den Verdampfer (E) geliefert wird, um ein Kältemittel des Wärmepumpenzyklus (HP) zu erwärmen, und das kondensierte Wasser von dem Kondensator (4) zu dem Kältemittelkondensator (C) geliefert wird, um das kondensierte Wasser zu erwärmen.
     
    5. Stromerzeugungssystem gemäß Anspruch 1, wobei das Erwärmungsmittel einen Wärmepumpenzyklus (HP) aufweist, der einen Verdampfer (E), einen Kompressor (Comp), einen Kältemittelkondensator (C) und ein Entspannungsventil (V) aufweist; sowie einen Wärmeübertrager (50) zum Ausführen der Wärmeübertragung zwischen dem kondensierten Wasser, das von dem Kondensator (4) geliefert wird und einem Wärmeübertragungsmedium; wobei das Erwärmungsmittel so konfiguriert ist, dass es das Arbeitsmedium, das von der Flüssigkeits-Kupplung (10) ausgebracht wird, an den Verdampfer (E) liefert, um ein Kältemittel des Wärmepumpenzyklus (HP) zu erwärmen, und das Wärmeübertragungsmedium an den Kältemittelkondensator (C) liefert, um das Wärmeübertragungsmedium zu erwärmen; und wobei der Wärmeübertrager (50) ausgelegt ist, um das kondensierte Wasser durch den Wärmeaustausch zwischen dem Wärmeübertragungsmedium, das in dem Kältemittelkondensator (C) erwärmt wird, und dem kondensierten Wasser, das von dem Kondensator (4) geliefert wird, zu erwärmen.
     
    6. Stromerzeugungssystem, das Folgendes aufweist:

    eine Förderpumpe (BP) zum Liefern von Wasser an einen Dampferzeuger (1) zum Erzeugen von Dampf,

    eine Dampfturbine (2), die ausgelegt ist, um durch Verwenden des erzeugten Dampfes angetrieben zu werden, um Strom zu erzeugen,

    einen Kondensator (4) zum Kondensieren des Dampfes, der aus der Dampfturbine (2) ausgebracht wird,

    wobei das Stromerzeugungssystem ferner so konfiguriert ist, dass das kondensierte Wasser erneut an den Dampferzeuger (1) durch die Förderpumpe (BP) geliefert wird;

    eine Flüssigkeits-Kupplung (10), die zwischen der Förderpumpe (BP) und einer Antriebsmaschine (M) zum Antrieb der Förderpumpe (BP) vorgesehen ist, um ein Drehmoment von der Antriebsmaschine (M) auf die Förderpumpe (BP) durch ein Arbeitsmedium zu übertragen, welches eine Impeller- bzw. Antriebsradkammer füllt,

    gekennzeichnet durch

    einen Wärmepumpenzyklus (HP), der einen Verdampfer (E), einen Kompressor (Comp), einen Kältemittelkondensator (C) und ein Entspannungsventil (V) aufweist;

    Mittel zum Liefern des Arbeitsmittels, das aus der Flüssigkeits-Kupplung (10) ausgebracht wird, an den Verdampfer (E), um ein Kältemittel des Wärmepumpenzyklus (HP) zu erwärmen,

    Mittel zum Liefern eines Teils des Dampfes, der aus der Dampfturbine (2) ausgebracht wird, an den Kältemittelkondensator (C), und

    Mittel zum Erwärmen des Dampfes, der aus der Dampfturbine (2) ausgebracht wird, durch das Kältemittel, das durch das Arbeitsmedium erwärmt worden ist, das aus der Flüssigkeits-Kupplung (10) ausgebracht wurde.


     
    7. Stromerzeugungssystem gemäß Anspruch 6, das ferner Mittel zum Einführen von Dampf aufweist, der aus der Dampfturbine (2) ausgebracht wird und in dem Kältemittelkondensator (C) erwärmt wird, und zwar in eine mittlere Stufe der Dampfturbine (2).
     
    8. Stromerzeugungssystem, das Folgendes aufweist:

    eine Flüssigkeits-Kupplung (10), die zwischen einer Antriebsmaschine (60) und einer angetriebenen Maschine (61) vorgesehen ist, und zwar um ein Drehmoment von der Antriebsmaschine (60) an die angetriebene Maschine (61) durch ein Arbeitsmedium zu übertragen, das eine Impeller- bzw. Antriebsradkammer füllt;

    Mittel zum Liefern des Arbeitsmediums, das von der Flüssigkeits-Kupplung (10) ausgebracht wird, an einen Dampferzeuger (63), wobei der Dampferzeuger (63) so konfiguriert ist, dass ein Kältemittel in dem Dampferzeuger (63) durch das Arbeitsmedium erwärmt und verdampft wird,

    eine Turbine (64), die ausgelegt ist, um durch die Verwendung des erzeugten Kältemitteldampfes angetrieben zu werden, um Strom zu erzeugen,

    Mittel zum Einbringen des Kältemitteldampfes, der von der Turbine (64) ausgebracht wird, in einen Kältemittelkondensator (66), wobei der Kältemittelkondensator (66) so konfiguriert ist, dass der Kältemitteldampf durch ein Kühlmedium gekühlt und kondensiert wird, und

    Mittel zum erneuten Liefern der kondensierten Kältemittelflüssigkeit an den Dampferzeuger (63).


     
    9. Stromerzeugungssystem gemäß Anspruch 8, wobei das Kältemittel Dichlorotrifluoroethan (HCFC-123) oder Trifluoroethanol (CF3CH2OH) aufweist.
     
    10. Verfahren zum Betreiben eines Stromerzeugungssystems, wobei Wasser an einen Dampferzeuger (1) durch eine Förderpumpe (BP) geliefert wird, um Dampf zu erzeugen, eine Dampfturbine (2) durch Verwenden des erzeugten Dampfes angetrieben wird, um Strom zu erzeugen, der Dampf, der von der Dampfturbine (2) ausgebracht wird, in einem Kondensator (4) kondensiert wird, und dann das kondensierte Wasser erneut an den Dampferzeuger (1) durch die Förderpumpe (BP) geliefert wird; wobei das Verfahren Folgendes aufweist:

    Antreiben der Förderpumpe (BP) durch eine Flüssigkeits-Kupplung (10), die zwischen der Förderpumpe (BP) und einer Antriebsmaschine (M) vorgesehen ist, um ein Drehmoment von der Antriebsmaschine (M) auf die Förderpumpe (BP) durch ein Arbeitsmedium zu übertragen, das eine Impellerkammer füllt;

    dadurch gekennzeichnet, dass

    das kondensierte Wasser, das von dem Kondensator (4) geliefert wird, durch das Arbeitsmedium erwärmt wird, das aus der Flüssigkeits-Kupplung (10) ausgebracht wird.


     
    11. Verfahren gemäß Anspruch 10, das ferner Folgendes aufweist:

    Ausführen einer Wärmeübertragung zwischen dem Arbeitsmedium, das aus der Flüssigkeits-Kupplung (10) ausgebracht wird, und dem kondensierten Wasser, das von dem Kondensator (4) geliefert wird, und zwar mittels eines Wärmeübertragers (20), um das kondensierte Wasser aufzuwärmen.


     
    12. Verfahren gemäß Anspruch 10, das ferner Folgendes aufweist:

    Ausführen einer Wärmeübertragung zwischen dem Arbeitsmedium, das aus der Flüssigkeits-Kupplung (10) ausgebracht wird, und einem Wärmeübertragungsmedium mittels eines ersten Wärmeübertragers (30); und

    Ausführen einer Wärmeübertragung zwischen dem Wärmeübertragungsmedium und dem kondensierten Wasser, das von dem Kondensator (4) geliefert wird, mittels eines zweiten Wärmeübertragers (40);

    wobei das Wärmeübertragungsmedium durch die Wärmeübertragung zwischen dem Arbeitsmedium und dem Wärmeübertragungsmedium in dem ersten Wärmeübertrager (30) erwärmt wird, und das kondensierte Wasser durch die Wärmeübertragung zwischen dem Wärmeübertragungsmedium, das in dem ersten Wärmeübertrager (30) erwärmt wird, und dem kondensierten Wasser in dem zweiten Wärmeübertrager (40) erwärmt wird.


     
    13. Verfahren gemäß Anspruch 10, wobei das Stromerzeugungssystem ferner einen Wärmepumpenzyklus (HP), der einen Verdampfer (E), einen Kompressor (Comp), einen Kältemittelkondensator (C) und ein Entspannungsventil (V) aufweist; wobei das Arbeitsmedium, das aus der Flüssigkeits-Kupplung (10) ausgebracht wird, an den Verdampfer (E) geliefert wird, um ein Kältemittel des Wärmepumpenzyklus (HP) zu erwärmen, und das kondensierte Wasser von dem Kondensator (4) zu dem Kältemittelkondensator (C) geliefert wird, um das kondensierte Wasser zu erwärmen.
     
    14. Verfahren gemäß Anspruch 10, wobei das Stromerzeugungssystem ferner einen Wärmepumpenzyklus (HP) aufweist, der einen Verdampfer (E), einen Kompressor (Comp), einen Kältemittelkondensator (C) und ein Entspannungsventil (V) aufweist; sowie einen Wärmeübertrager (50) um die Wärmeübertragung zwischen dem kondensierten Wasser, das von dem Kondensator (4) geliefert wird, und einem Wärmeübertragungsmedium auszuführen; wobei das Arbeitsmedium, das aus der Flüssigkeits-Kupplung (10) ausgebracht wird, an den Verdampfer (E) geliefert wird, um ein Kältemittel des Wärmepumpenzyklus (HP) zu erwärmen, und das Wärmeübertragungsmedium an den Kältemittelkondensator (C) geliefert wird, um das Wärmeübertragungsmedium zu erwärmen; und
    das kondensierte Wasser in dem Wärmeübertrager (50) erwärmt wird, und zwar durch die Wärmeübertragung zwischen dem Wärmeübertragungsmedium, das in dem Kältemittelkondensator (C) erwärmt wird, und dem kondensierten Wasser, das von dem Kondensator (4) geliefert wird.
     
    15. Verfahren zum Betreiben eines Stromerzeugungssystems, wobei Wasser an den Dampferzeuger (1) durch eine Förderpumpe (BP) geliefert wird, um Dampf zu erzeugen, eine Dampfturbine (2) durch Verwenden des erzeugten Dampfes angetrieben wird, um Strom zu erzeugen, der Dampf, der aus der Dampfturbine (2) ausgebracht wird, in einem Kondensator (4) kondensiert wird, und dann das kondensierte Wasser erneut an den Dampferzeuger (1) durch die Förderpumpe (BP) geliefert wird, wobei das Verfahren Folgendes aufweist:

    Antreiben der Förderpumpe (BP) durch eine Flüssigkeits-Kupplung (10), die zwischen der Förderpumpe (BP) und einer Antriebsmaschine (M) vorgesehen ist, um ein Drehmoment von der Antriebsmaschine (M) auf die Förderpumpe (BP) durch ein Arbeitsmedium zu übertragen, das eine Impellerkammer füllt;

    wobei das Stromerzeugungssystem einen Wärmepumpenzyklus (HP) aufweist, der einen Verdampfer (E), einen Kompressor (Comp), einen Kältemittelkondensator (C) und ein Entspannungsventil (V) aufweist;

    wobei das Arbeitsmedium, das aus der Flüssigkeits-Kupplung (10) ausgebracht wird, an den Verdampfer (E) geliefert wird, um ein Kältemittel des Wärmepumpenzyklus (HP) zu erwärmen, wobei ein Teil des Dampfes, der aus der Dampfturbine (2) ausgebracht wird, an den Kältemittelkondensator (C) geliefert wird, und der Dampf, der aus der Dampfturbine (2) ausgebracht wird, durch das Kältemittel erwärmt wird, das durch das Arbeitsmedium erwärmt wurde, das aus der Flüssigkeits-Kupplung (10) ausgebracht wurde.


     
    16. Verfahren gemäß Anspruch 15, wobei der Dampf, der aus der Dampfturbine (2) ausgebracht wurde und in dem Kältemittelkondensator (C) erwärmt wurde, in eine mittlere Stufe der Dampfturbine (2) eingeführt wird.
     
    17. Verfahren zum Betreiben eines Stromerzeugungssystems, das Folgendes aufweist:

    Übertragen durch eine Flüssigkeits-Kupplung (10), die zwischen der Antriebsmaschine (60) und einer angetriebenen Maschine (61) vorgesehen ist, eines Drehmomentes von der Antriebsmaschine (60) auf die angetriebene Maschine (61), und zwar durch ein Arbeitsmedium, das eine Impellerkammer füllt;

    wobei das Arbeitsmedium, das aus der Flüssigkeits-Kupplung (10) ausgebracht wird, zu einem Dampferzeuger (63) geliefert wird, ein Kältemittel in dem Dampferzeuger (63) durch das Arbeitsmedium erwärmt und verdampft wird, eine Turbine (64) durch Verwenden des erzeugten Kältemitteldampfes angetrieben wird, um Strom zu erzeugen, der Kältemitteldampf, der aus der Turbine (64) ausgebracht wird, in einen Kältemittelverdampfer (66) eingebracht wird, wobei der Kältemitteldampf durch ein Kühlmedium gekühlt und kondensiert wird, und die kondensierte Kältemittelflüssigkeit erneut zu dem Dampferzeuger (63) geliefert wird.


     
    18. Verfahren gemäß Anspruch 17, wobei das Kältemittel Dichlorotrifluoroethan (HCFC-123) oder Trifluoroethanol (CF3CH2OH) aufweist.
     


    Revendications

    1. Système de production d'énergie, comprenant :

    une pompe d'alimentation (BP) pour fournir de l'eau à un générateur de vapeur (1) pour générer de la vapeur,

    une turbine à vapeur (2) adaptée à être entraînée en utilisant la vapeur générée pour produire de l'énergie,

    un condenseur (4) pour condenser la vapeur évacuée par la turbine à vapeur (2),

    dans lequel le système de production d'énergie est en outre agencé de telle sorte que l'eau condenséeest refournieau générateur de vapeur (1) par la pompe d'alimentation (BP) ;

    un coupleur hydraulique (10) prévu entre la pompe d'alimentation (BP) et une machine motrice (M) pour entraîner la pompe d'alimentation (BP) pour transmettre un couple à partir de la machine motrice (M) à la pompe d'alimentation (BP) par un fluide de travail qui remplit une chambre de roue à aubes ;

    caractérisé par

    des moyens (20, 30, 40, 50 ; E, Comp, C, V, HP) pour chauffer l'eau condensée fournie à partir du condenseur (4) par le fluide de travail évacué par le coupleur hydraulique (10).


     
    2. Système de production d'énergie selon la revendication 1, dans lequel les moyens de chauffage comprennent un échangeur de chaleur (20) pour réaliser un échange thermique entre le fluide de travail évacué par le coupleur hydraulique (10) et l'eau condensée fournie par le condenseur (4) pour chauffer l'eau condensée.
     
    3. Système de production d'énergie selon la revendication 1, dans lequel les moyens de chauffage comprennent :

    un premier échangeur de chaleur (30) pour réaliser un échange thermique entre le fluide de travail évacué par le coupleur hydraulique (10) et un milieu d'échange thermique ; et

    un deuxième échangeur de chaleur (40) pour réaliser un échange thermique entre le milieu d'échange thermique et l'eau condensée fournie par le condenseur (4) ;

    dans lequel le premier échangeur de chaleur (30) est adapté à chauffer le milieu d'échange thermique par l'échange thermique entre le fluide de travail et le milieu d'échange thermique, et le deuxième échangeur de chaleur (40) est adapté à chauffer l'eau condensée par l'échange thermique entre le milieu d'échange thermique chauffé dans le premier échangeur de chaleur (30) et l'eau condensée.


     
    4. Système de production d'énergie selon la revendication 1, dans lequel les moyens de chauffage comprennent un cycle de pompe à chaleur (HP) qui comprend un évaporateur (E), un compresseur (Comp), un condenseur de fluide frigorigène (C) et une soupape d'expansion (V) ; dans lequel les moyens de chauffage sont agencés de telle sorte que le fluide de travail évacué par le coupleur hydraulique (10) est fourni à l'évaporateur (E) pour chauffer un fluide frigorigène du cycle de pompe à chaleur (HP), et l'eau condensée est fournie à partir du condenseur (4) au condenseur de fluide frigorigène (C) pour chauffer l'eau condensée.
     
    5. Système de production d'énergie selon la revendication 1, dans lequel les moyens de chauffage comprennent un cycle de pompe à chaleur (HP) qui comprend un évaporateur (E), un compresseur (Comp), un condenseur de fluide frigorigène (C) et une soupape d'expansion (V) ; et un échangeur de chaleur (50) pour réaliser un échange thermique entre l'eau condensée fournie par le condenseur (4) et un milieu d'échange thermique ;
    dans lequel les moyens de chauffage sont agencés pour fournir le fluide de travail évacué par le coupleur hydraulique (10) à l'évaporateur (E) pour chauffer un fluide frigorigène du cycle de pompe à chaleur (HP), et pour fournir le milieu d'échange thermique au condenseur de fluide frigorigène (C) pour chauffer le milieu d'échange thermique ; et
    dans lequel l'échangeur de chaleur (50) est adapté à chauffer l'eau condensée par un échange thermique entre le milieu d'échange thermique chauffé dans le condenseur de fluide frigorigène (C) et l'eau condensée fournie par le condenseur (4).
     
    6. Système de production d'énergie, comprenant :

    une pompe d'alimentation (BP) pour fournir de l'eau à un générateur de vapeur (1) pour générer de la vapeur,

    une turbine à vapeur (2) adaptée à être entraînée en utilisant la vapeur générée pour produire de l'énergie,

    un condenseur (4) pour condenser la vapeur évacuée par la turbine à vapeur (2),

    dans lequel le système de production d'énergie est en outre agencé de telle sorte que l'eau condensée est refournie au générateur de vapeur (1) par la pompe d'alimentation (BP) ; et

    un coupleur hydraulique (10) prévu entre la pompe d'alimentation (BP) et une machine motrice (M) pour entraîner la pompe d'alimentation (BP) pour transmettre un couple à partir de la machine motrice (M) à la pompe d'alimentation (BP) par un fluide de travail qui remplit une chambre de roue à aubes;

    caractérisé par

    un cycle de pompe à chaleur (HP) qui comprend un évaporateur(E), un compresseur (Comp), un condenseur de fluide frigorigène (C) et une soupape d'expansion (V) ;

    des moyens pour fournir le fluide de travail évacué par le coupleur hydraulique (10) à l'évaporateur (E) pour chauffer un fluide frigorigène du cycle de pompe à chaleur (HP),

    des moyens pour fournir une partie de la vapeur évacuée par la turbine à vapeur (2) au condenseur de fluide frigorigène (C), et

    des moyens pour chauffer la vapeur évacuée à partir de la turbine à vapeur (2) par le fluide frigorigène qui a été chauffé par le fluide de travail évacué par le coupleur hydraulique (10).


     
    7. Système de production d'énergie selon la revendication 6, comprenant en outre des moyens pour introduire la vapeur qui a été évacuée par la turbine à vapeur (2) et chauffée dans le condenseur de fluide frigorigène (C) dans un étage intermédiaire de la turbine à vapeur (2).
     
    8. Système de production d'énergie comprenant :

    un coupleur hydraulique (10) prévu entre unemachine motrice (60) et une machine entraînée (61) pour transmettre un couple à partir de la machine motrice (60) à la machine entraînée (61) par un fluide de travail qui remplit une chambre de roue à aubes ;

    des moyens pour fournir le fluide de travail évacué par le coupleurhydraulique (10) à un générateur de vapeur (63), le générateur de vapeur 63) étant agencé de telle sorte qu'un fluide frigorigènese trouvant dans le générateur de vapeur (63) est chauffé par le fluide de travail et est évaporé,

    une turbine (64) adaptée à être entraînée en utilisant la vapeur de fluide frigorigène générée pour produire de l'énergie,

    des moyens pour introduire la vapeur de fluide frigorigène évacuée par la turbine (64) dans un condenseur de fluide frigorigène (66), le condenseur de fluide frigorigène (66) étant agencé de telle sorte que la vapeur de fluide frigorigène est refroidie par un milieu de refroidissement et est condensée, et

    des moyens pour refournir le liquidede fluide frigorigène condensé au générateur de vapeur (63).


     
    9. Système de production d'énergie selon la revendication 8, dans lequel le fluide frigorigène comprend du dichlorotrifluoroéthane (HCFC-123) ou du trifluoroéthanol (CF3CH2OH).
     
    10. Procédé pour actionner un système de production d'énergie, dans lequel de l'eau est fournie à un générateur de vapeur (1) par une pompe d'alimentation (BP) pour générer de la vapeur, une turbine à vapeur (2) est entraînée en utilisant la vapeur générée pour générer de l'énergie, la vapeur évacuée par la turbine à vapeur (2) est condensée dans un condenseur (4), puis l'eau condensée est refournie au générateur de vapeur (1) par la pompe d'alimentation (BP) ; le procédé comprenant :

    entraîner la pompe d'alimentation (BP) par l'intermédiaire d'un coupleur hydraulique (10) prévu entre la pompe d'alimentation (BP) et une machine motrice (M) pour transmettre un couple à partir de la machine motrice (M) à la pompe d'alimentation (BP) par un fluide de travail qui remplit une chambre de roue à aubes ;

    caractérisé en ce que

    l'eau condensée fournie par le condenseur (4) est chauffée par le fluide de travail évacué par le coupleur hydraulique (10).


     
    11. Procédé selon la revendication 10, comprenant en outre :

    réaliser un échange thermique entre le fluide de travail évacué par le coupleur hydraulique (10) et l'eau condensée fournie par le condenseur (4) au moyen d'un échangeur de chaleur (20) pour chauffer l'eau condensée.


     
    12. Procédé selon la revendication 10, comprenant en outre :

    réaliser un échange thermique entre le fluide de travail évacué par le coupleur hydraulique (10) et un milieu d'échange thermique au moyen d'un premier échangeur de chaleur (30) ; et

    réaliser un échange thermique entre le milieu d'échange thermique et l'eau condensée fournie par le condenseur (4) au moyen d'un deuxième échangeur de chaleur (40) ;

    dans lequel le milieu d'échange thermique est chauffé par l'échange thermique entre le fluide de travail et le milieu d'échange thermique dans le premier échangeur de chaleur (30), et l'eau condensée est chauffée par l'échange thermique entre le milieu d'échange thermique chauffé dans le premier échangeur de chaleur (30) et l'eau condensée dans le deuxième échangeur de chaleur (40).


     
    13. Procédé selon la revendication 10, le système de production d'énergie comprenant en outre un cycle de pompe à chaleur (HP) qui comprend un évaporateur (E), un compresseur (Comp), un condenseur de fluide frigorigène (C) et une soupape d'expansion (V) ; dans lequel le fluide de travail évacué par le coupleur hydraulique (10) est fourni à l'évaporateur (E) pour chauffer un fluide frigorigène du cycle de pompe à chaleur (HP), et l'eau condensée est fournie à partir du condenseur (4) au condenseur de fluide frigorigène (C) pour chauffer l'eau condensée.
     
    14. Procédé selon la revendication 10, le système de production d'énergie comprenant en outre un cycle de pompe à chaleur (HP) qui comprend un évaporateur (E), un compresseur (Comp), un condenseur de fluide frigorigène (C) et une soupape d'expansion (V) ; et un échangeur de chaleur (50) pour réaliser un échange thermique entre l'eau condensée fournie par le condenseur (4) et un milieu d'échange thermique ;
    dans lequel le fluide de travail évacué par le coupleur hydraulique (10) est fourni à l'évaporateur (E) pour chauffer un fluide frigorigène du cycle de pompe à chaleur (HP), et le milieu d'échange thermique est fourni au condenseur de fluide frigorigène (C) pour chauffer le milieu d'échange thermique ; et
    l'eau condensée est chauffée dans l'échangeur de chaleur (50) par un échange thermique entre le milieu d'échange thermique chauffé dans le condenseur de fluide frigorigène (C) et l'eau condensée fournie par le condenseur (4).
     
    15. Procédé pour actionner un système de production d'énergie, dans lequel de l'eau est fournie à un générateur de vapeur (1) par une pompe d'alimentation (BP) pour générer de la vapeur, une turbine à vapeur (2) est entraînée en utilisant la vapeur générée pour générer de l'énergie, la vapeur évacuée par la turbine à vapeur (2) est condensée dans un condenseur (4), puis l'eau condensée est refournie au générateur de vapeur (1) par la pompe d'alimentation (BP) ; le procédé comprenant :

    entraîner la pompe d'alimentation (BP) par un coupleur hydraulique (10) prévu entre la pompe d'alimentation (BP) et une machine motrice (M) pour transmettre un couple à partir de la machine motrice (M) à la pompe d'alimentation (BP) par un fluide de travail qui remplit une chambre de roue à aubes ;

    dans lequel le système de production d'énergie comprend un cycle de pompe à chaleur (HP) qui comprend un évaporateur (E) un compresseur (Comp), un condenseur de fluide frigorigène (C) et une soupape d'expansion (V) ;

    dans lequel le fluide de travail évacué par le coupleur hydraulique (10) est fourni à l'évaporateur (E) pour chauffer un fluide frigorigène du cycle de pompe à chaleur (HP), une partie de la vapeur évacuée par la turbine à vapeur (2) est fournie au condenseur de fluide frigorigène (C), et la vapeur évacuée par la turbine à vapeur (2) est chauffée par le fluide frigorigène qui a été chauffé par le fluide de travail évacué par le coupleur hydraulique (10).


     
    16. Procédé selon la revendication 15, dans lequel la vapeur qui a été évacuée par la turbine à vapeur (2) et chauffée dans le condenseur de fluide frigorigène (C) est introduite dans un étage intermédiaire de la turbine à vapeur (2).
     
    17. Procédé pour actionner un système de production d'énergie comprenant :

    transmettre, par un coupleur hydraulique (10) prévu entre une machine motrice (60) et une machine entraînée (61), un couple à partir de la machine motrice (60) à la machine entraînée (61) par un fluide de travail qui remplit une chambre de roue à aubes ;

    dans lequel le fluide de travail évacué par le coupleurhydraulique (10) est fourni à un générateur de vapeur (63), un fluide frigorigènese trouvant dans le générateur de vapeur (63) est chauffé par le fluide de travail et est évaporé, une turbine (64) est entraînée en utilisant la vapeur de fluide frigorigène générée pour produire de l'énergie, la vapeur de fluide frigorigène évacuée par la turbine (64) est introduite dans un condenseur de fluide frigorigène (66) où la vapeur de fluide frigorigène est refroidie par un milieu de refroidissement et est condensée, et le liquidede fluide frigorigène condensé est refourni au générateur de vapeur (63).


     
    18. Procédé selon la revendication 17, dans lequel le fluide frigorigène comprend du dichlorotrifluoroéthane (HCFC-123) ou du trifluoroéthanol (CF3CH2OH).
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description