(19)
(11)EP 2 534 340 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
31.05.2017 Bulletin 2017/22

(21)Application number: 11711875.2

(22)Date of filing:  30.03.2011
(51)International Patent Classification (IPC): 
B23P 15/04(2006.01)
F01D 9/06(2006.01)
F01D 5/18(2006.01)
F01D 11/00(2006.01)
F01D 9/02(2006.01)
F01D 25/12(2006.01)
F01D 9/04(2006.01)
(86)International application number:
PCT/EP2011/054931
(87)International publication number:
WO 2011/134731 (03.11.2011 Gazette  2011/44)

(54)

TURBINE VANE HOLLOW INNER RAIL

Hohle Innenführung einer Turbinenschaufel

Rail interne creux d'aube de turbine


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.04.2010 EP 10161435

(43)Date of publication of application:
19.12.2012 Bulletin 2012/51

(73)Proprietor: Siemens Aktiengesellschaft
80333 München (DE)

(72)Inventors:
  • JONES, Richard
    Gainsborough Lincolnshire DN21 4TS (GB)
  • PACEY, Andy
    Metheringham Lincolnshire LN4 3HU (GB)

(74)Representative: Maier, Daniel Oliver et al
Siemens AG Postfach 22 16 34
80506 München
80506 München (DE)


(56)References cited: : 
EP-A2- 1 045 114
US-A- 4 930 980
US-A1- 2006 013 685
GB-A- 938 247
US-A- 5 114 159
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of invention



    [0001] The present invention relates to a guide vane device for a turbine and to a method of producing a guide vane device for a turbine.

    Art Background



    [0002] Conventional turbine nozzle guide vanes have to withstand high levels of stress in the aerofoil and in particular in the trailing edge fillets. This stress is mostly caused by different heating and cooling rates within the components during transient operations conditions of the turbine. Aerofoils of the guide vanes are formed on an inner platform that extends in a circumferential direction of the turbine shaft. From the inner platform, the aerofoils extend radially outwardly. From the inner platform in radial direction to the center of the turbine shaft an inner rail is attached. The inner rail is used to mount a diaphragm between the surface of the turbine shaft and the inner platform. The inner rail is in general thicker and broader than the inner platform to which the inner rail is attached, so that the inner rail reacts slower in response to temperature changes in the turbine with respect to the inner platform. This may result in thermally induced stress and reduces the lifetime of the conventional nozzle guide vane devices.

    [0003] In conventional turbine nozzle guide vanes, the stresses may be reduced by keeping the depth and width of the inner rail to a minimum required. This may also lead to a reduction of the lifetime of the inner rail respectively to the turbine nozzle guide vane and reduces the quality of fixation of the diaphragms.

    [0004] US 4,126,405 describes a segment of a turbo machine nozzle that is held tangentially in position by a pair of lugs extending radially from outer and inner bands. Each lug acts as an end cap to prevent leakage of air from one end of the vane.

    [0005] EP 1 793 088 A2 discloses a turbine nozzle for a gas turbine engine. The turbine nozzle comprises an outer band and an inner band. Between the inner band and the outer band vanes are formed. To the inner band a flange and a forward inner flange is formed, wherein the flanges extend radially inwardly from the inner band.

    [0006] US 3,829,233 discloses a seal arrangement for a bladed diaphragm of an axial flow fluid machine, such as a gas turbine. The turbine comprises an inner shroud from which the vanes extend radially outwardly with respect to the turbine shaft and from which flanges and ribs extend radially inwardly. To the flanges and ribs a seal housing ring or a diaphragm is attached, so that the inner shroud is sealed from the turbine shaft. The inner shroud comprises an orifice for cooling fluid, wherein the orifice is spatially located from the flanges and ribs.

    [0007] EP 1045114 A2 discloses a cooling supply system for an airfoil. A conduit is attached within the vane. At a radially inner end of the vane, a diaphragm is attached to which a flexible coupling and a spoolie device are fixed.

    [0008] US 4,930,980 A discloses a cooled turbine vane. The vane comprises a multipath channel. At a radial end of the vane an inner shroud is formed. The inner shroud comprises an outlet which is covered by a closure plate. The closure plate has one or more holes for providing a fluid flow for the coolant. In another embodiment of that document, a minor portion of coolant fluid flows from an interior of an airfoil body through an outlet in another inner shroud into a cavity. From the cavity, the coolant leaks into a seal housing by a passageway.

    [0009] GB 938247 A discloses a gas turbine engine having a cooled turbine blading. A tube for cooling fluid is installed into a vane. The vane comprises a platform to which a member is attached. The member comprises a tube which is connected to the tube.

    Summary of the Invention



    [0010] There may be a need for designing a guide vane device with a proper lifetime and adequate maintenance properties.

    [0011] This need may be met by a guide vane device for a turbine and a method of producing a guide vane device according to the independent claims.

    [0012] According to a first aspect of the invention, a guide vane device for a turbine is provided. The guide vane device comprises an inner platform, a hollow aerofoil and a rail. The inner platform comprises a through hole forming a fluid channel for a cooling fluid. The inner platform extends in circumferential direction around a shaft of the turbine. The hollow aerofoil comprises a cooling opening for exchanging the cooling fluid passing the through hole into or from the hollow aerofoil. The hollow aerofoil is fixed to a first surface of the inner platform. The rail comprises a recess with a cooling fluid passage, wherein the cooling fluid passage forms a passage for the cooling fluid to the through hole. The rail is fixed to a second surface of the inner platform and the rail extends along the second surface in the circumferential direction around the shaft. The cooling fluid passage comprises in the circumferential direction at least the dimension of the through hole.

    [0013] According to a further aspect of the invention, a method for producing a guide vane device for a turbine is provided. According to the method, an inner platform with the through hole for forming a fluid channel for a cooling fluid is provided. The inner platform extends thereby in a circumferential direction around the shaft of the turbine. Next, a hollow aerofoil is fixed to a first surface (e.g. which is aligned radially outwardly to the turbine axis) of the inner platform, wherein the hollow aerofoil comprises a cooling opening for exchanging the cooling fluid passing the through hole into or from the hollow aerofoil. A rail is fixed to a second surface (e.g. which is aligned radially inwardly to the turbine axis) of the inner platform and the rail extends along the second surface in the circumferential direction around the shaft. The rail comprises a recess with the cooling fluid passage for forming a passage for the cooling fluid. The cooling fluid passage comprises in the circumferential direction at least a dimension of the through hole.

    [0014] The inner platform extends around the circumferential direction along the turbine shaft. The inner platform may comprise an internal cooling channel extending as well in circumferential direction through which cooling fluid may be transported. At desired locations, in particular at a location, where the cooling fluid is fed into an aerofoil, the through hole is formed. With the through hole, the cooling fluid is exchanged into or from the hollow aerofoil. Moreover, the through hole forms a cooling fluid connection to the rail, so that also cooling fluid is exchangeable in a direction to or from the direction to the turbine shaft.

    [0015] The rail extends along the second surface of the inner platform in the circumferential direction around the turbine shaft. Moreover, the rail extends radially inwardly to the turbine shaft starting from the second surface. The rail provides a defined rigidity in order to fix a sealing element, such as a diaphragm, between the second surface of the rail and a surface of the turbine shaft.

    [0016] Moreover, the rail comprises a recess with a cooling fluid passage. The cooling fluid passage forms a channel (that extends radial to the turbine shaft) between the through hole of the inner platform and the space between the inner platform and the turbine shaft. When cooling fluid passes the cooling fluid passage, the rail is cooled by the cooling fluid. Hence, the cooling fluid cools both, the rail and the inner platform.

    [0017] The cooling fluid passage may be free of further conduit elements or tubes. In other words, the cooling fluid streaming through the cooling fluid passage is in direct contact with the surface of the rail which forms the cooling fluid passage. Furthermore, the through hole of the inner platform may be free of further conduit elements or tubes. The cooling fluid streaming through the through hole may be in direct contact with the surface of the inner platform which forms the through hole. Hence, the opening sizes of the cooling fluid passage and the through hole directly may determine a respective flow cross-section for the cooling fluid.

    [0018] The smallest opening or diameter restricts the fluid velocity and thus the cooling efficiency. In particular, if the cooling fluid passage of the rail is equal or larger than the through hole of the inner platform, the cooling fluid cools with the same cooling efficiency the rail and the inner platform.

    [0019] The dimension of the through hole denotes in particular the size of the cooling fluid passage and the through hole along the circumferential direction. If the through hole and/or the cooling fluid passage are circular, the dimension denotes for instance the diameter. If the shape of the through hole or the cooling fluid passage is elliptical, the dimension may define the major axis or the transverse diameter, for example. If the shape of the cooling fluid passage and/or the through hole is rectangular, the dimension may denote the length along the circumferential direction. Additionally or alternatively, the term "dimension" denotes the cross-sectional area of the overlapping cross-sections of the cooling fluid passage with the through hole. In other words, the cross-sectional area of the cooling fluid passage is larger than the cross-sectional area of the through hole in the section, where the cooling fluid passage overlaps the cross-section of the through hole.

    [0020] The aerofoil comprises a wing profile comprising a trailing edge and a leading edge. The working medium flows against the leading edge and is guided by the surface (profile) of the aerofoil to the trailing edge, where the working medium leaves the aerofoil with a predetermined and desired flow direction. The leading edge and the trailing edge are connected by an imaginary straight line called the cord. The cord of the aerofoil comprises an angle between 0° and 90° degrees to the (circumferential) extending direction. The rail is formed in general along the circumferential direction. Thus, the overlapping cross-section areas of the cooling opening of the aerofoil, the through hole as well as the cooling fluid passage overlap and form an overlapping cross-section. The cooling fluid flows through the overlapping cross-section. The cooling fluid passage is formed larger than the through hole in the overlapping cross-section, so that the maximum mass flow of the cooling fluid is not restricted by the dimension of the cooling fluid passage of the rail. In other words, the cooling fluid passage does not form the smallest passage of the cooling fluid in comparison to the through hole of the inner platform and the aerofoil.

    [0021] For this reason, because the cooling fluid cools the inner rail and the inner platform with the same cooling efficiency, the temperature difference of the inner platform and the rail is reduced. In particular, a larger cooling fluid passage of the rail with respect to the through hole may allow the rail to follow the temperature change rate of the bulk temperature of the rest of the guide vane device elements, such as the inner platform and the hollow aerofoil. This results in less thermal stress during transient and fast changing temperature conditions.

    [0022] Hence, when reducing the thermal stress of the rail by adapting the dimension of the cooling fluid passage, the thermal stress of the rail is reduced and damages, such as cracking due to thermal differences, may be reduced.

    [0023] According to an exemplary embodiment the recess is larger than the through hole of the inner platform. The recess may be formed like a slotted hole wherein the length of the slotted hole extends in the circumferential direction with respect to the shaft. Thus, the rail comprises less weight because more material can be removed from the rail. According to a further exemplary embodiment, the rail is integrally formed within a platform. In particular, the rail and the inner platform may form a monolithic structure and may be casted in one workstep.

    [0024] According to a further exemplary embodiment, the guide vane device comprises a further hollow aerofoil. The inner platform comprises a further through hole forming a further fluid channel for the cooling fluid. The further hollow aerofoil comprises a further cooling opening for receiving the cooling fluid passing the further through hole into the further hollow aerofoil, wherein the further hollow aerofoil is fixed to the first surface of the inner platform. The rail comprises a further recess with a further cooling fluid passage forming a further passage for the cooling fluid to the through hole. The further cooling fluid passage comprises in circumferential direction at least the dimension of the further through hole. The guide vane device may form a segment of a circumferential stator stage of a turbine. The segment may comprise only one or a plurality of aerofoils that are attached to the first surface of the inner platform. Each segment may be connected to an adjacent guide vane segment in circumferential direction. Each guide vane device may be attached to a further guide vane device by a detachable connection. However, the segment may comprise e.g. 3, 4, 5 or more aerofoils. The guide vane device (segment) may also form a full (360 degree) section with a plurality of aerofoils. Thus, damaged guide vane devices (guide vane segments) may be exchanged. Hence, the maintenance costs are reduced.

    [0025] According to a further exemplary embodiment, the guide vane device further comprises a diaphragm for sealing the guide vane device with respect to the shaft. The rail comprises a mounting section to which the diaphragm is mounted. The rail fixes the diaphragm in such a way, that the diaphragm is kept in a desired position in which the diaphragm seals an inner space between the inner platform and the turbine axis. Due to the proper cooling of the rail by the larger dimension of the through hole, the thermal deformation of the rail is reduced, so that gaps between the diaphragm and the rotating turbine shaft caused by the thermal deformation are smaller. The mounting section is formed e.g. for providing a clamping fixation, a screw connection and /or a welded connection. Moreover, the diaphragm forms a sliding connection with the shaft, so that the shaft is rotatable with respect to the diaphragm. The sliding connection provides a sealing between the shaft and the diaphragm as well.

    [0026] According to a further exemplary embodiment, the guide vane device further comprises an outer platform to which the hollow aerofoil is attached with an outer end of the hollow aerofoil with respect to an inner end of the hollow aerofoil that is attached to the inner platform. The outer platform, the aerofoil and the inner platform may be formed monolithic (integrally), e.g. by casting.

    [0027] It has to be noted that embodiments of the invention have been described with reference to different subject matters. In particular, some embodiments have been described with reference to apparatus type claims whereas other embodiments have been described with reference to method type claims. However, a person skilled in the art will gather from the above and the following description that, unless other notified, in addition to any combination of features belonging to one type of subject matter also any combination between features relating to different subject matters, in particular between features of the apparatus type claims and features of the method type claims is considered as to be disclosed with this application.

    Brief Description of the Drawings



    [0028] The aspects defined above and further aspects of the present invention are apparent from the examples of embodiment to be described hereinafter and are explained with reference to the examples of embodiment. The invention will be described in more detail hereinafter with reference to examples of embodiment but to which the invention is not limited.

    Fig. 1 illustrates a perspective view of the guide vane device according to an exemplary embodiment of the present invention;

    Fig. 2 illustrates a further perspective view of the guide vane device according to an exemplary embodiment of the invention;

    Fig. 3 illustrates a sectional view of the guide vane device according to an exemplary embodiment of the invention; and

    Fig. 4 illustrates a schematic drawing of a side view of the guide vane device according to an exemplary embodiment of the invention.


    Detailed Description



    [0029] The illustrations in the drawings are schematical. It is noted that in different figures, similar or identical elements are provided with the same reference signs.

    [0030] Fig. 1 illustrates a guide vane device 100 for a turbine. The guide vane device 100 comprises an inner platform 101, a hollow aerofoil 102 and a rail 103. The inner platform 101 comprises a through hole 301 (see Fig. 3, not shown in Fig. 1) forming a fluid channel for a cooling fluid. The inner platform 101 extends in circumferential direction 109 around a shaft 304 (see Fig. 3) of the turbine. The hollow aerofoil 102 comprises a cooling opening for exchanging the cooling fluid passing the through hole 301 into or from the hollow aerofoil 102. The hollow aerofoil 102 is fixed to a first surface 201 (see Fig. 2) of the inner platform 101. The rail 103 comprises a recess 104 with a cooling fluid passage 105 forming a passage for the cooling fluid to the through hole 301. The rail 103 is fixed to a second surface 106 of the inner platform 101 and the rail 103 extends along the second surface 106 in the circumferential direction 109 around the shaft 304. The cooling fluid passage 105 comprises in the circumferential direction 109 at least the dimension of the through hole 301.

    [0031] As can be taken from Fig. 1, the recess 104 with the cooling fluid passage 105 of the rail 103 comprises equal or larger dimensions as the through hole 301 in particular in the circumferential direction 109. Thus, the rail bulk temperature changes in the same way as the inner platform 101 and the hollow aerofoil 102, so that less thermal stress, in particular during varying condition, is generated.

    [0032] Moreover, Fig. 1 illustrates the cooling fluid passage 105 that is formed in the recess 104 of the rail 103. The recess 104 is a slotted hole or a through hole that extends in circumferential direction 109. Because material is milled off from the rail 103 when forming the recess 104, the rail 103 comprises less weight. Moreover, because the rail 103 comprises less material, the rail 103 is faster adaptable to varying temperatures and is faster adaptable to the temperature of the inner platform 101 by the cooling fluid. Moreover, the cooling fluid flows through the cooling fluid passage 105 and as well through or into the recess 104. The recess 104 forms a large contact surface with the cooling fluid, so that the cooling fluid cools the rail 103 more efficiently.

    [0033] The guiding vane device 100 according to the exemplary embodiment of Fig. 1 comprises two aerofoils 102, e.g. turbine vanes within a gas turbine engine. Each aerofoil 102 is formed between the inner platform 101 and an outer platform 108. The outer platform 108 is fixable to the casing of the turbine, for example.

    [0034] The rail 103 shown in Fig. 1 further comprises a mounting section 107. The mounting section 107 comprises fixing means that are adapted for fixing a sealing element, in particular a diaphragm 303 (see Fig. 3). The circumferential position of the mounting section 107 may be between the two cooling fluid passages 105 for the two aerofoils 102. Particularly the circumferential position of the mounting section 107 may be such that it will allow the largest possible cross section for both of the two cooling fluid passages 105. Advantageously the fluid flow through the two cooling fluid passages 105 may not be additionally restricted by the mounting section 107.

    [0035] Fig. 2 illustrates the exemplary embodiment shown in Fig. 1. The vanes 102 are formed between the first platform 101 and the second platform 108. The aerofoils 102 comprise hollow profiles through which the cooling fluid flows. The cooling fluid may be fed for instance from the outer environment of the outer platform 108 into the hollow aerofoils 102. As can be taken from Fig. 2, the aerofoils 102 comprise wing-like aerodynamic profiles. In the area of the fixing sections of the first platform 101 and the second platform 108, the aerofoils 102 comprise fillets 202 that are formed during the casting process. The inner platform 101 and the outer platform 108 proceed along the circumferential direction 109, wherein the circumferential direction 109 is defined by a direction around the rotating shaft 304 of the turbine. To the mounting section 107 of the rail 103 the sealing element, i.e. the diaphragm 303, is attached in order to provide a sealing between the guiding vane device 100 and the rotating shaft 304.

    [0036] Fig. 3 shows a sectional view of the guide vane device 100. The hollow aerofoil 102 is formed between the outer platform 108 and the inner platform 101. The inner platform 101 comprises the through hole 301 that connects the hollow profile 302 of the hollow aerofoil 102 with the cooling fluid passage 105 of the rail 103. As can be taken from the Fig. 3, the cooling fluid passage 105 comprises a larger cross-sectional area, i.e. is broader and/or longer along the center axis of the rotating shaft 304, than the through hole 301. The cooling effectively of the cooling fluid is limited by the smallest passage of the cooling fluid, namely the through hole 301. For this reason, the temperature changes of the inner platform 101 as well as of the rail 103 is kept roughly equal, so that temperature stress due to temperature differences and resulting thermal deformations are reduced. Moreover, the reduction of the temperature stress of the rail 103 and the inner platform 101 may also reduce the stress in particular at the location of the fillets 202, so that cracking in these regions may be reduced.

    [0037] Moreover, Fig. 3 shows the diaphragm 303 that is fixed to the mounting section 107 of the rail 103. The diaphragm 303 is in slidable contact with the surface of the rotating shaft 304. Due to the proper cooling of the rail 103 caused by the proper dimension of the cooling fluid passage 105, the thermal deformation of the rail 103 is reduced and thus the sealing characteristics of the diaphragm 303 with respect to the surface of the shaft 304 are improved.

    [0038] Fig. 4 illustrates a schematical view of the guide vane device 100 as shown in Fig. 3, wherein the diaphragm 303 is shown in more detail. The diaphragm 303 comprises a bracket-like shape and is clamped to the mounting section 107 of the rail 103. In the contact area of the diaphragm 303 with the shaft 304 the diaphragm 303 comprises a sealing lip for sealing purposes. Moreover, Fig. 4 illustrates the aerofoil 102 that is formed between the outer platform 108 and the inner platform 101.

    [0039] It should be noted that the term "comprising" does not exclude other elements or steps and "a" or "an" does not exclude a plurality. Also elements described in association with different embodiments may be combined. It should also be noted that reference signs in the claims should not be construed as limiting the scope of the claims.

    List of reference signs:



    [0040] 
    100
    guide vane device
    101
    inner platform
    102
    hollow aerofoil
    103
    rail
    104
    recess
    105
    cooling fluid passage
    106
    second surface
    107
    mounting section
    108
    outer platform
    109
    circumferential direction
    201
    first surface
    202
    fillet
    301
    through hole
    302
    hollow profile of hollow aerofoil
    303
    diaphragm
    304
    shaft



    Claims

    1. Guide vane device (100) for a turbine, the guide vane device (100) comprising:

    an inner platform (101) with a through hole (301) forming a fluid channel for a cooling fluid, wherein the inner platform (101) extends in a circumferential direction (109) around a shaft (304) of the turbine,

    a hollow aerofoil (102) with a cooling opening for exchanging the cooling fluid passing the through hole (301) into or from the hollow aerofoil (102), wherein the hollow aerofoil (102) is fixed to a first surface (201) of the inner platform (101), and

    a rail (103) comprising a recess (104) with a cooling fluid passage (105) forming a passage for the cooling fluid to the through hole (301), wherein the rail (103) is fixed to a second surface (106) of the inner platform (101) and the rail (103) extends along the second surface (106) in the circumferential direction (109) around the shaft (304), characterized in that the cooling fluid passage (105) comprises in the circumferential direction (109) at least the dimension of the through hole (301) and that the cooling fluid passage (105) is free of further conduit elements such that the cooling fluid streaming through the cooling fluid passage (105) is in direct contact with a surface of the rail (103).


     
    2. Guide vane device (100) of claim 1,
    wherein the recess (104) is larger than the through hole (301).
     
    3. Guide vane device (100) of claim 1 or 2,
    wherein the rail (103) is integrally formed with the inner platform (101).
     
    4. Guide vane device (100) of one of the claims 1 to 3,
    wherein the hollow aerofoil (102) is integrally formed with the inner platform (101).
     
    5. Guide vane device (100) of one of the claims 1 to 4, further comprising,
    a further hollow aerofoil (102),
    wherein the inner platform (101) comprises a further through hole (301) forming a further fluid channel for the cooling fluid,
    wherein the further hollow aerofoil (102) comprises a further cooling opening for receiving the cooling fluid passing the further through hole (301) into the further hollow aerofoil (102), wherein the further hollow aerofoil (102) is fixed to the first surface (201) of the inner platform (101),
    wherein the rail (103) comprises a further recess (104) with a further cooling fluid passage (105) forming a further passage for the cooling fluid to the through hole (301), and
    wherein the further cooling fluid passage (105) comprises in circumferential direction (109) at least the dimension of the further through hole (301).
     
    6. Guide vane device (100) of one of the claims 1 to 5, further comprising
    a diaphragm (303) for sealing the guide vane device (100) with respect to the shaft (304),
    wherein the rail (103) comprises a mounting section (107) to which the diaphragm (303) is mounted.
     
    7. Guide vane device (100) of one of the claims 1 to 6, further comprising
    an outer platform (108) to which the hollow aerofoil (102) is attached with an outer end of the hollow aerofoil (102) with respect to an inner end of the hollow aerofoil (102) that is attached to the inner platform (101).
     
    8. Method of producing a guide vane device (100) for a turbine, the method comprising
    forming an inner platform (101) with a through hole (301) for forming a fluid channel for a cooling fluid,
    wherein the inner platform (101) extends in a circumferential direction (109) around a shaft (304) of the turbine,
    fixing a hollow aerofoil (102) to a first surface (201) of the inner platform (101), wherein the hollow aerofoil (102) comprises a cooling opening for exchanging the cooling fluid passing the through hole (301) into or from the hollow aerofoil (102), and
    fixing a rail (103) to a second surface (106) of the inner platform (101) and extending the rail (103) along the second surface (106) in the circumferential direction (109) around the shaft (304), wherein the rail (103) comprises a recess (104) with a cooling fluid passage (105) for forming a passage for the cooling fluid,
    wherein the cooling fluid passage (105) comprises in the circumferential direction (109) at least the dimension of the through hole (301),
    wherein the cooling fluid passage (105) is free of further conduit elements such that the cooling fluid streaming through the cooling fluid passage (105) is in direct contact with a surface of the rail (103).
     


    Ansprüche

    1. Leitschaufelvorrichtung (100) für eine Turbine, wobei die Leitschaufelvorrichtung (100) Folgendes umfasst:

    eine Innenplattform (101) mit einem Durchgangsloch (301), das einen Fluidkanal für ein Kühlfluid bildet, wobei die Innenplattform (101) in Umfangsrichtung (109) um eine Welle (304) der Turbine herum verläuft,

    ein hohles Schaufelprofil (102) mit einer Kühlöffnung zum Austauschen des durch das Durchgangsloch (301) in das oder aus dem hohlen Schaufelprofil (102) strömenden Kühlfluids, wobei das hohle Schaufelprofil (102) an einer ersten Fläche (201) der Innenplattform (101) befestigt ist, und

    eine Führung (103), die eine Ausnehmung (104) mit einem Kühlfluiddurchlass (105) umfasst, der einen Durchlass für das Kühlfluid zum Durchgangsloch (301) bildet, wobei die Führung (103) an einer zweiten Fläche (106) der Innenplattform (101) befestigt ist und in Umfangsrichtung (109) um die Welle (304) herum an der zweiten Fläche (106) entlang verläuft,

    dadurch gekennzeichnet, dass der Kühlfluiddurchlass (105) in Umfangsrichtung (109) zumindest die Abmessung des Durchgangslochs (301) aufweist

    und dass der Kühlfluiddurchlass (105) keine weiteren Leitungselemente aufweist, so dass das durch den Kühlfluiddurchlass (105) strömende Kühlfluid eine Fläche der Führung (103) direkt berührt.


     
    2. Leitschaufelvorrichtung (100) nach Anspruch 1,
    wobei die Ausnehmung (104) größer ist als das Durchgangsloch (301).
     
    3. Leitschaufelvorrichtung (100) nach Anspruch 1 oder 2, wobei die Führung (103) einstückig mit der Innenplattform (101) ausgebildet ist.
     
    4. Leitschaufelvorrichtung (100) nach einem der Ansprüche 1 bis 3,
    wobei das hohle Schaufelprofil (102) einstückig mit der Innenplattform (101) ausgebildet ist.
     
    5. Leitschaufelvorrichtung (100) nach einem der Ansprüche 1 bis 4, die ferner Folgendes umfasst:

    ein weiteres hohles Schaufelprofil (102),

    wobei die Innenplattform (101) ein weiteres Durchgangsloch (301) umfasst, das einen weiteren Fluidkanal für das Kühlfluid bildet,

    wobei das weitere hohle Schaufelprofil (102) eine weitere Kühlöffnung zum Aufnehmen des durch das weitere Durchgangsloch (301) in das weitere hohle Schaufelprofil (102) strömenden Kühlfluids umfasst, wobei das weitere hohle Schaufelprofil (102) an der ersten Fläche (201) der Innenplattform (101) befestigt ist,

    wobei die Führung (103) eine weitere Ausnehmung (104) mit einem weiteren Kühlfluiddurchlass (105) umfasst, der einen weiteren Durchlass für das Kühlfluid zu dem Durchgangsloch (301) bildet, und

    wobei der weitere Kühlfluiddurchlass (105) in Umfangsrichtung (109) zumindest die Abmessung des weiteren Durchgangslochs (301) aufweist.


     
    6. Leitschaufelvorrichtung (100) nach einem der Ansprüche 1 bis 5, die ferner Folgendes umfasst:

    eine Membran (303) zum Abdichten der Leitschaufelvorrichtung (100) in Bezug auf die Welle (304),

    wobei die Führung (103) einen Anbringabschnitt (107) umfasst, an dem die Membran (303) angebracht ist.


     
    7. Leitschaufelvorrichtung (100) nach einem der Ansprüche 1 bis 6, die ferner Folgendes umfasst:

    eine Außenplattform (108), an der das hohle Schaufelprofil (102) in Bezug auf sein inneres Ende, das an der Innenplattform (101) angebracht ist, mit seinem äußeren Ende angebracht ist.


     
    8. Verfahren zum Herstellen einer Leitschaufelvorrichtung (100) für eine Turbine, das Folgendes umfasst:

    Ausbilden einer Innenplattform (101) mit einem Durchgangsloch (301) zum Ausbilden eines Fluidkanals für ein Kühlfluid,

    wobei die Innenplattform (101) in Umfangsrichtung (109) um eine Welle (304) der Turbine herum verläuft,

    Befestigen eines hohlen Schaufelprofils (102) an einer ersten Fläche (201) der Innenplattform (101), wobei das hohle Schaufelprofil (102) eine Kühlöffnung zum Austauschen des durch das Durchgangsloch (301) in das oder aus dem hohlen Schaufelprofil (102) strömenden Kühlfluids umfasst, und

    Befestigen einer Führung (103) an einer zweiten Fläche (106) der Innenplattform (101) und Führen der Führung (103) in Umfangsrichtung (109) an der zweiten Fläche (106) entlang um die Welle (304) herum, wobei die Führung (103) eine Ausnehmung (104) mit einem Kühlfluiddurchlass (105) zum Ausbilden eines Durchlasses für das Kühlfluid umfasst,

    wobei der Kühlfluiddurchlass (105) in Umfangsrichtung (109) zumindest die Abmessung des Durchgangslochs (301) aufweist,

    wobei der Kühlfluiddurchlass (105) keine weiteren Leitungselemente aufweist, so dass das durch den Kühlfluiddurchlass (105) strömende Kühlfluid eine Fläche der Führung (103) direkt berührt.


     


    Revendications

    1. Dispositif formant aube directrice (100) pour turbine, le dispositif formant aube directrice (100) comprenant :

    une plate-forme interne (101) comportant un trou traversant (301) formant un canal à fluide pour un fluide de refroidissement, étant entendu que la plate-forme (101) s'étend dans une direction circonférentielle (109) autour d'un arbre (304) de la turbine ;

    un profil aérodynamique creux (102) comportant une ouverture de refroidissement en vue de l'échange du fluide de refroidissement passant dans le trou traversant (301) en direction ou en provenance du profil aérodynamique creux (102), étant entendu que le profil aérodynamique creux (102) est fixé sur une première surface (201) de la plate-forme interne (101), et

    un rail (103) comprenant un évidement (104) présentant un passage (105) pour fluide de refroidissement formant un passage pour le fluide de refroidissement jusqu'au trou traversant (301), étant entendu que le rail (103) est fixé sur une seconde surface (106) de la plate-forme interne (101) et que le rail (103) se déploie le long de la seconde surface (106) dans la direction circonférentielle (109) autour de l'arbre (304),

    caractérisé en ce que le passage (105) pour fluide de refroidissement présente dans la direction circonférentielle (109) au moins la dimension du trou traversant (301), et

    en ce que le passage (105) pour fluide de refroidissement est dépourvu d'autres éléments de canalisation de telle sorte que le fluide de refroidissement s'écoulant dans le passage (105) pour fluide de refroidissement est en contact direct avec une surface du rail (103).


     
    2. Dispositif formant aube directrice (100) selon la revendication 1,
    étant entendu que l'évidement (104) est plus grand que le trou traversant (301).
     
    3. Dispositif formant aube directrice (100) selon la revendication 1 ou 2,
    étant entendu que le rail (103) est moulé d'un seul tenant avec la plate-forme interne (101).
     
    4. Dispositif formant aube directrice (100) selon l'une des revendications 1 à 3,
    étant entendu que le profil aérodynamique creux (102) est moulé d'un seul tenant avec la plate-forme interne (101).
     
    5. Dispositif formant aube directrice (100) selon l'une des revendications 1 à 4, comprenant par ailleurs
    un autre profil aérodynamique creux (102),
    étant entendu que la plate-forme interne (101) comprend un autre trou traversant (301) formant un autre canal à fluide pour le fluide de refroidissement ;
    étant entendu que l'autre profil aérodynamique creux (102) comprend une autre ouverture de refroidissement en vue de recevoir le fluide de refroidissement passant dans l'autre trou traversant (301) pour entrer dans l'autre profil aérodynamique creux (102), l'autre profil aérodynamique creux (102) étant fixé sur la première surface (201) de la plate-forme interne (101) ;
    étant entendu que le rail (103) comprend un autre évidement (104) comportant un autre passage (105) pour fluide de refroidissement formant un autre passage pour le fluide de refroidissement jusqu'au trou traversant (301), et
    étant entendu que l'autre passage (105) pour fluide de refroidissement présente dans la direction circonférentielle (109) au moins la dimension de l'autre trou traversant (301).
     
    6. Dispositif formant aube directrice (100) selon l'une des revendications 1 à 5, comprenant par ailleurs :

    une membrane (303) servant à obturer le dispositif formant aube directrice (100) par rapport à l'arbre (304),

    étant entendu que le rail (103) comprend une section de montage (107) sur laquelle la membrane (303) est montée.


     
    7. Dispositif formant aube directrice (100) selon l'une des revendications 1 à 6, comprenant par ailleurs :

    une plate-forme externe (108) à laquelle le profil aérodynamique creux (102) est attaché par une extrémité externe du profil aérodynamique creux (102) par rapport à une extrémité interne du profil aérodynamique creux (102) qui est attachée à la plate-forme interne (101).


     
    8. Procédé de production d'un dispositif formant aube directrice (100) pour turbine, le procédé consistant :

    à façonner une plate-forme interne (101) comportant un trou traversant (301) en vue de façonner un canal à fluide pour un fluide de refroidissement,

    étant entendu que la plate-forme interne (101) s'étend dans une direction circonférentielle (109) autour d'un arbre (304) de la turbine ;

    à fixer un profil aérodynamique creux (102) sur une première surface (201) de la plate-forme interne (101), étant entendu que le profil aérodynamique creux (102) comporte une ouverture de refroidissement en vue de l'échange du fluide de refroidissement passant dans le trou traversant (301) en direction ou en provenance du profil aérodynamique creux (102), et

    à fixer un rail (103) sur une seconde surface (106) de la plate-forme interne (101) et à déployer le rail (103) le long de la seconde surface (106) dans la direction circonférentielle (109) autour de l'arbre (304), étant entendu que le rail (103) comprend un évidement (104) présentant un passage (105) pour fluide de refroidissement formant un passage pour le fluide de refroidissement,

    étant entendu que le passage (105) pour fluide de refroidissement présente dans la direction circonférentielle (109) au moins la dimension du trou traversant (301), et

    étant entendu que le passage (105) pour fluide de refroidissement est dépourvu d'autres éléments de canalisation de telle sorte que le fluide de refroidissement s'écoulant dans le passage (105) pour fluide de refroidissement est en contact direct avec une surface du rail (103).


     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description