(19)
(11)EP 2 538 440 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 12173294.5

(22)Date of filing:  22.06.2012
(51)Int. Cl.: 
H01L 23/473  (2006.01)

(54)

Cooling device for a power module, and a related method thereof

Kühlelement für ein Leistungsmodule und Herstellungsmethode

Refroidisseur pour un module de puissance et procédé de production


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.06.2011 US 201113168030

(43)Date of publication of application:
26.12.2012 Bulletin 2012/52

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • Beaupre, Richard Alfred
    Niskayuna, New York 12309 (US)
  • Smolenski, Joseph Lucian
    Niskayuna, New York 12309 (US)
  • Gerstler, William Dwight
    Niskayuna, New York 12309 (US)
  • Shen, Xiaochun
    Niskayuna, New York 12309 (US)

(74)Representative: Openshaw & Co. 
8 Castle Street
Farnham, Surrey GU9 7HR
Farnham, Surrey GU9 7HR (GB)


(56)References cited: : 
US-A- 5 099 311
US-A1- 2010 302 734
US-A1- 2006 108 098
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The invention relates generally to a power module comprising a cooling device, and more particularly, a cooling device having integrated millichannels.

    [0002] Power electronics refers to the application of solid-state electronics related to the control and conversion of electrical power. This conversion is typically performed by silicon, silicon carbide, and gallium nitride devices that are packaged into power modules. One of the factors associated with the power modules is the generation of heat. While the heat generated by the power modules is due to many factors, it generally relates to the fact that the power module efficiency is always less than 100 percent, and the efficiency loss is typically generated as heat. Unfortunately, the power module performance tends to erode with increased temperatures.

    [0003] An additional factor for thermal management relates to the packaging of a number of devices in small footprints. The power density, at which the devices, and thus the module can operate, therefore depends on the ability to remove this generated heat. The common form of thermal management of power electronics is through heat sinks. Heat sinks operate by transferring the heat away from the heat source of the power module, thereby maintaining the heat source at a lower relative temperature. There are various types of heat sinks known in the thermal management field including air-cooled and liquid-cooled devices.

    [0004] One example of the thermal management of a power module includes the attachment of a heat sink with embedded tubes to provide liquid cooling of the power module. The heat sink is typically a metallic structure, such as aluminum or copper. A cooling medium such as water is passed through the tubes to cool the power module. The heat sink is typically coupled to the power module base with a thermal interface material (TIM) dispersed there between. The thermal interface material may comprise thermal greases, compliant thermal pads, or the like. The conventional cooling devices have large thermal gradients and high-pressure drops across the devices. Also, the conventional cooling devices have large thermal resistance, which limits operation levels of the power module.

    [0005] US 2006/108098 A1 and US 2010/302734 A1 each describe a power module comprising electronic power devices disposed on a base plate via a substrate. The base plate is configured as a heat sink plate and comprises a heat sink surface having at least one cooling segment disposed therein. The at least one cooling segment comprises an inlet plenum for entry of a cooling medium, a plurality of inlet manifold channels coupled orthogonally to the inlet plenum for receiving the cooling medium from the inlet plenum, a plurality of outlet manifold channels disposed parallel to the inlet manifold channels, and an outlet plenum coupled orthogonally to the plurality of outlet manifold channels for exhaust of the cooling medium. The substrate comprises an electrically isolating layer.

    [0006] In US 2006/108098 A1 the electrically isolating layer is arranged between an outer layer which is coupled to electronic power devices of the power module and an inner layer which is coupled to the heat sink surface of the base plate. A plurality of micro- and/or millichannels is disposed in the inner layer and/or in the electrically isolating layer of the substrate orthogonally to the inlet and the outlet manifold channels. The plurality of micro- and/or millichannels direct the cooling medium from the plurality of inlet manifold channels to the plurality of outlet manifold channels. Thus, heat generated in the electronic power devices is exchanged between the substrate resp. the electronic power devices and the base plate. The inner layer usually is formed of copper and generally comprises a thickness of about 0,3 mm. Since the thickness of the channels which extend through the inner layer is equal to the thickness of the inner layer these channels are configured as microchannels which only enable a limited flow of the cooling medium. Channels with larger dimensions may extend through the electrically isolating layer of the substrate and thus may reduce the mechanical and electrical properties of the power module.

    [0007] In US 2010/302734 A1 the cooling medium circulates through a plurality of microchannels which are integrated in the electrically isolating layer and the base plate resp. the heat sink plate is directly coupled to the electrically isolating layer of the substrate. These channels may reduce the mechanical and electrical properties of the power module.

    [0008] There is a need for an improved power module.

    BRIEF DESCRIPTION OF THE INVENTION



    [0009] The independent claims 1 and 5 define the subject matter for which protection is sought.

    DRAWINGS



    [0010] These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:

    FIG. 1 is a cross-sectional view of a power module in accordance with an exemplary embodiment of the present invention;

    FIG. 2 is a disassembled perspective view of a power module having a cooling device in accordance with an exemplary embodiment of the present invention;

    FIG. 3 is a diagrammatical representation of a cooling device of a power module in accordance with an exemplary embodiment of the present invention; and

    FIG. 4 is a perspective view of a cooling device in accordance with an exemplary embodiment of the present invention.


    DETAILED DESCRIPTION



    [0011] As discussed in accordance with the embodiments discussed herein, a cooling device for a power module is disclosed. In certain embodiments, the cooling device includes a heat sink plate having at least one cooling segment. The cooling segment includes an inlet plenum for entry of a cooling medium. A plurality of inlet manifold channels are coupled orthogonally to the inlet plenum for receiving the cooling medium from the inlet plenum. A plurality of outlet manifold channels are disposed parallel to the inlet manifold channels. An outlet plenum is coupled orthogonally to the plurality of outlet manifold channels for exhaust of the cooling medium. A plurality of millichannels are disposed in the base plate of the power module orthogonally to the inlet and the outlet manifold channels. The plurality of millichannels direct the cooling medium from the plurality of inlet manifold channels to the plurality of outlet manifold channels. It should be noted herein aspects of the present invention relate generally to heat sinks, stacks, and apparatuses using the heat sinks, and more particularly to millichannel heat sinks. It should be noted herein, that a "millichannel" has a width and a height on the order of millimeters in each dimension.

    [0012] Referring to FIG. 1, a power module 10 includes an electronic module 12 that generate heat during operation, a base plate 14, a substrate 15, and a heat sink plate 16. The electronic module 12 is disposed on the base plate 14 via the substrate 15. The base plate 14 is provided on the heat sink plate 16. In one embodiment, the electronic module 12 is standardized such as a commercial off the shelf (COTS) part so that the shape, holes, and features of the electronic module 12 are matched to the base plate 14. Additionally, the heat sink plate 16 also may be standardized so that the shape, holes and features of heat sink plate 16 are matched to the base plate 14. Non-limiting examples of the electronic module 12 may include insulated gate bipolar Transistors (IGBT), metal oxide semiconductor field effect transistors (MOSFET), diodes, metal semiconductor field effect transistors (MESFET), and high electron mobility transistors (HEMT) used for applications not limited to automotive applications, oil and gas applications, or the like. According to embodiments of the present invention, the electronic device may be manufactured from a variety of semiconductors, non-limiting examples of which include silicon, silicon carbide, gallium nitride, and gallium arsenide.

    [0013] The substrate 15 is provided to avoid electrical short circuits and to perform heat exchange between the base plate 14 and the electronic module 12. In one embodiment, the substrate 15 is an electrically isolating and thermally conductive layer, such as a ceramic layer. Non-limiting examples of the ceramic layer may include aluminum oxide, aluminum nitride, beryllium oxide, and silicon nitride. In a specific embodiment, the ceramic layer 15 may be bonded to the base plate 14 and the electronic module 12 via top and bottom conductive layers (for example, copper layers), i.e. substrate 15 may have either a direct bonded copper (DBC), or an active metal braze (AMB) structure. In other words, a top conductive layer may be disposed between the electronic module 12 and the ceramic layer 15 and a bottom conductive layer may be disposed between the ceramic layer 15 and the base plate. In a particular embodiment, an aluminum layer, a gold layer, a silver layer, or an alloy layer may be preferred instead of the copper layer. In another embodiment, the base plate 14 may be directly bonded to the substrate 15. The substrate 15 may be coupled to the base plate 14 and the electronic module 12 using a number of techniques, including but not limited to, brazing, bonding, diffusion bonding, soldering, or pressure contact such as clamping to provide a simple assembly process. It should be noted herein that the exemplary arrangement in FIG. 1 is illustrative, and the invention is by no means limited by this arrangement.

    [0014] Referring to FIG. 2, a disassembled view of the power module 10 is illustrated. As discussed previously, the base plate 14 is provided on the heat sink plate 16. The heat sink plate 16 has a heat sink surface 18 disposed to face a plate surface 20 of the base plate 14. The heat sink surface 18 has a plurality of holes 22 and the plate surface 20 has a plurality of corresponding holes 24 formed therein. Fasteners may be coupled to the holes 22, 24 to detachably couple the heat sink surface 18 to the plate surface 20.

    [0015] In the illustrated embodiment, the heat sink plate 16 includes a plurality of cooling segments 26 disposed in the heat sink surface 18. In one embodiment, the plurality of cooling segments 26 are recessed in the heat sink surface 18 of the heat sink plate 16. The base plate 14 includes sets of millichannels 28 disposed in the plate surface 20. Each set of millichannels 28 is positioned to overlap the corresponding cooling segment 26. In embodiments of the invention, each of the millichannels 28 are recessed into the plate surface 20 of the base plate 14 to form trenches in the plate surface 20. In the illustrated embodiment, the heat sink plate 16 has a rectangular shape. It should be noted that the exemplary heat sink plate 16 in FIG. 2 is illustrative, and the heat sink plate 16 may also have other shapes, such as circular, triangular or polygonal shapes. The cooling segments 26 and the set of millichannels 28 together form a cooling device for the power module 10. In embodiments of the invention, the cooling device is configured to cool the electronic module 12. The cooling device is illustrated and described in more detail in Fig. 4.

    [0016] The heat sink plate 16 may include at least one thermally conductive material, non-limiting examples of which may include copper, aluminum, nickel, molybdenum, titanium, and alloys thereof. In some embodiments, the heat sink plate 16 may include metal matrix composites such as aluminum silicon, aluminum silicon carbide, aluminum graphite, and copper graphite. In other embodiments, the heat sink plate 16 may include ceramics such as aluminum oxide and silicon nitride ceramic. Alternatively, the heat sink plate 16 may include at least one thermoplastic material.

    [0017] For the exemplary arrangement in FIG. 2, each cooling segment 26 is coupled to the corresponding set of millichannels 28. The coupling between the cooling segment 26 and the set of millichannels 28 are explained in more detail with reference to FIGS. 3 and 4. Each cooling segment 26 is surrounded by a seal 31 to prevent the coolant in the corresponding cooling segment 26 from leakage and provide a liquid tight seal. The seal 31 may include a gasket, an O-ring, or any other type of seal, such as metallurgical bonding with a similar function. A cooling medium is circulated through the cooling segment 26 and the set of millichannnels 28 to enable heat exchange between the base plate 14 and the heat sink plate 16. In certain embodiments, similar to the heat sink plate 16, the base plate 14 may also include at least one thermally conductive material, non-limiting examples of which may include thermo pyrolytic graphite (TPG), copper, aluminum, nickel, molybdenum, titanium, and alloys of copper, aluminum, nickel, molybdenum, titanium. In some embodiments, the base plate 14 may also include metal matrix composites such as aluminum silicon carbide, aluminum graphite, and copper graphite. In another embodiment, the base plate 14 may include ceramics such as aluminum oxide and silicon nitride ceramic. In a particular embodiment, the base plate 14 may also include at least one thermoplastic material.

    [0018] Referring to FIG.3, a portion of the cooling segment 26 and a millichannel 28 is illustrated. In the illustrated embodiment, the portion of the cooling segment 26 includes an inlet plenum 32 having a first end 31 and a second end 33, and an inlet manifold channel 34 coupled orthogonally to the second end 33 of the inlet plenum 32. Although only a single inlet manifold channel 34 is shown, cooling segment 26 will typically have multiple such inlet manifold channels. Two outlet manifold channels 36 are disposed parallel to the inlet manifold channel 34. In one embodiment, the inlet manifold channel 34 and the outlet manifold channels 36 have the same dimensions. Each outlet manifold channel 36 includes an end 35 and another end 37. An outlet plenum 38 is coupled orthogonally to the end 37 of the outlet manifold channels 36. The outlet plenum 38 may have the same dimensions as that of the inlet plenum 32. As discussed previously, the base plate 14 includes sets of millichannels 28 disposed in the plate surface. In the illustrated embodiment, one millichannel 28 is shown. The millichannnels 28 are disposed orthogonally to the inlet and outlet manifold channels 34, 36. In some embodiments, the millichannnels 28 are coupled directly to the inlet and outlet manifold channels 34, 36. In certain other embodiments, the millichannels 28 are coupled via connecting paths (not shown) to the inlet and outlet manifold channels 34, 36. In a specific embodiment, the millichannel has a width of 1mm and a depth of 3mm. It should be noted herein that the inlet manifold channel 34 has a tapering cross-section from the second end 33 of the inlet plenum 32 towards the millichannels 28. Also, the outlet manifold channel 36 has a tapering cross section from the end 37 towards the millichannels 28.

    [0019] In certain embodiments of the invention, the millichannels 28 may have a rectangular or square cross-section. Non-limiting examples of the cross sections of the millichannels 28 may further include circular, triangular, trapezoidal, and u-shaped cross-sections. The millichannels 28 may be cast, machined, or etched, and may be smooth or rough in the base plate. The rough millichannels may have relatively larger surface area to enhance turbulence of a cooling medium 40 so as to augment thermal transfer therein. In non-limiting examples, the millichannels 28 may employ features such as dimples, bumps, or the like therein to increase the roughness thereof. Similarly to the millichannels 28, the manifold channels 34, 36 may also have a variety of cross-sectional shapes, including but not limited to, round, circular, triangular, trapezoidal, and square/rectangular cross-sections. The geometry of the plenums 32, 38, the manifold channels 34, 36, and the millichannels 28 may be designed based on the application, type of cooling medium used, and also the ambient temperature. The number of manifold channels 34, 36, and millichannels 28 may vary depending on the application.

    [0020] In an exemplary operation, the cooling medium 40 enters the inlet manifold channels 34 via the inlet plenum 32. A supply source (not shown) is used to pump the cooling medium 40 into the inlet plenum 32. The cooling medium 40 is then directed from the inlet manifold channels 34 to the outlet manifold channels 36 via the millichannels 28 of the base plate. Thereafter, the cooling medium 40 is exhausted from the outlet manifold channels via the outlet plenum 38. It should be noted herein that entry of the cooling medium 40 into the inlet plenum 32 and exhaust of the cooling medium 40 from the outlet plenum 38 are along a same direction 42. In one embodiment, the cooling medium 40 includes a mixture of propylene glycol and water. In a specific embodiment, the cooling medium 40 may include 60 percent by weight of propylene glycol and 40 percent by weight of water. The cooling medium 40 may also include other electrically conductive or non-electrically conductive liquids. In another embodiment, the cooling medium 40 may include a gaseous medium. Accordingly, when the electronic module 12 and the base plate 14 are disposed on the heat sink plate 16, the cooling medium 40 flowing through the heat sink plate and the millichannels 28 of the base plate enable cooling of the electronic module.

    [0021] The configuration of the cooling segment 26 discussed herein, specifically relating to parallel arrangement of the inlet manifold channels 34, and outlet manifold channels 36, tapered cross-sections of the channels (34, 36), orthogonal arrangement of the plenums (32, 38), and the millichannnels 28 provide a relatively large flow area resulting in constant flow velocity and low pressure drop across the segment 26. The thermal gradient across the segment 26 is minimized. The thermal resistance and thermal resistivity of the power module is minimal enabling the power module to be operated at higher power levels. As noted below:



    [0022] Thus, the power level of the module is increased with lower thermal resistance and higher changes in temperature.

    [0023] Referring to FIG. 4, the cooling device 30 is illustrated in accordance with an exemplary embodiment of the present invention. In the illustrated embodiment, the cooling device 30 includes the cooling segment 26 of FIG. 3 having the inlet plenum 32, and a plurality of inlet manifold channels 34 coupled orthogonally to the inlet plenum 32. The device 30 also includes a plurality of outlet manifold channels 36 disposed parallel to the plurality of inlet manifold channels 34. The outlet plenum 38 is coupled orthogonally to the plurality of outlet manifold channels 36. As discussed previously, the base plate includes sets of millichannels 28 disposed in the plate surface 20. In the illustrated embodiment, one set of millichannels 28 is shown. The set of millichannnels 28 are disposed orthogonally to the plurality of inlet and outlet manifold channels 34, 36. As discussed earlier, the plurality of inlet manifold channels 34 have a tapering cross-section from the inlet plenum 32 towards the set of millichannels 28. Also, the plurality of outlet manifold channels 36 have a tapering cross section from the outlet plenum 38 towards the set of millichannels 28.

    [0024] Accordingly, for the exemplary arrangement, when the heat sink plate is coupled to the base plate, and the cooling medium 40 is directed sequentially through the inlet plenum 32, the plurality of inlet manifold channels 34, the set of millichannels 28, the plurality of outlet manifold channels 36, and the outlet plenum 38, heat exchange between the base plate and the heat sink plate results so as to cool the electronic module. The seal provides a liquid tight seal about the cooling segment of the heat sink plate.

    [0025] Referring to FIGS. 1-4, in some embodiments the base plate 14 having sets of millichannels 28, and the heat sink plate 16 having the plurality of cooling segments 26 prefabricated. In certain other embodiments, the cooling device 30 may be cast, machined, or etched into an existing power module. For example, with reference to FIGS. 1 and 2, the base plate 14 is detachable from the substrate 15. An existing heat sink plate (not shown) may then be detached from the base plate 14. A plurality of millichannels 28 is formed in the plate surface 20 of the base plate 14. The existing heat sink plate is then replaced by the heat sink plate 16 having a plurality of cooling segments 26 formed in the heat sink surface 18. The heat sink plate 16 then is coupled to the base plate 14 so that the plate surface 20 overlaps the heat sink surface 18. The base plate 14 then is coupled to the substrate 15. It should be noted herein that in such an embodiment, the sequence of events in the manufacturing may vary depending on the requirement. The power module having the exemplary cooling arrangement described herein has lower thermal resistance and resistivity, and larger thermal capacitance than previously known power modules.


    Claims

    1. A power module (10) comprising a base plate (14), an electronic module (12) disposed on the base plate (14) via a substrate (15) and a cooling device (30); the cooling device (30) comprising:

    a heat sink surface (18) having at least one cooling segment (26) disposed therein comprising:

    an inlet plenum (32) for entry of a cooling medium (40);

    a plurality of inlet manifold channels (34) coupled orthogonally to the inlet plenum (32) for receiving the cooling medium (40) from the inlet plenum (32);

    a plurality of outlet manifold channels (36) disposed parallel to the inlet manifold channels (34); and

    an outlet plenum (38) coupled orthogonally to the plurality of outlet manifold channels (36) for exhaust of the cooling medium (40); and

    a plurality of millichannels (28) disposed in a plate surface (20) orthogonally to the inlet (34) and the outlet manifold channels (36); wherein the plurality of millichannels (28) direct the cooling medium (40) from the plurality of inlet manifold channels (34) to the plurality of outlet manifold channels (36);

    the plurality of millichannels (28) is formed in the base plate (14), the millichannels (28) each have a width and a height on the order of millimeters in each dimensions,

    characterized in that

    a prefabricated heat sink plate (16) comprising the at least one cooling segment (26) disposed in the heat sink surface (18) is detachably coupled to the base plate (14) such that the plate surface (20) of the base plate (14) overlaps the heat sink surface (18), wherein the heat sink plate (16) includes a seal (31) disposed surrounding the at least one cooling segment (26); and

    the inlet plenum (32) is disposed parallel to the outlet plenum (38), and the entry of the cooling medium (40) into the inlet plenum (32) and the exhaust of the cooling medium (40) from the outlet plenum (38) are along a same direction.


     
    2. The power module of claim 1, wherein each inlet manifold channel (34) among the plurality of inlet manifold channels (34) have a cross-section tapering from the inlet plenum (32) towards the outlet plenum (38).
     
    3. The power module cooling device of any of claims 1 to 2, wherein each outlet manifold channel (36) among the plurality of outlet manifold channels (36) have a cross-section tapering from the outlet plenum (38) towards the inlet plenum (34).
     
    4. The power module of any of claims 1 to 3, wherein the cooling medium (40) comprises a mixture of propylene glycol and water.
     
    5. A method for manufacturing a power module (10) according to any of claims 1 to 4, characterized in method steps as follows:

    detaching a base plate (14) from a substrate (15) of an existing power module comprising a heat sink plate;

    detaching the heat sink plate from the base plate (14);

    forming the plurality of millichannels (28) in a plate surface (20) of the base plate (14), wherein the millichannels (28) each have a width and a height on the order of millimeters in each dimension;

    replacing the detached heat sink plate by a prefabricated heat sink plate (16) having the at least one cooling segment (26) disposed in the heat sink surface (18) and a seal (31) disposed surrounding the at least one cooling segment (26);

    detachably coupling the prefabricated heat sink plate (16) to the base plate (14) such that the plate surface (20) overlaps the heat sink surface (18) and that the millichannels (28) are disposed orthogonally to the inlet (34) and outlet manifold channels (36); and

    coupling the base plate (14) to the substrate (15).


     


    Ansprüche

    1. Leistungsmodul (10) umfassend eine Bodenplatte (14), ein auf der Bodenplatte (14) über ein Substrat (15) angeordnetes elektronisches Modul (12) und eine Kühlvorrichtung (30);
    wobei die Kühlvorrichtung (30) umfasst:

    eine Kühlkörperfläche (18) mit mindestens einem darin angeordneten Kühlsegment (26), umfassend:

    eine Einlasskammer (32) zum Eintritt eines Kühlmediums (40);

    mehrere Einlasssammelkanäle (34), die orthogonal mit der Einlasskammer (32) gekoppelt sind, um das Kühlmedium (40) von der Einlasskammer (32) aufzunehmen;

    mehrere Auslasssammelkanäle (36), die parallel zu den Einlasssammelkanälen (34) angeordnet sind; und

    eine Auslasskammer (38), die orthogonal mit den mehreren Auslasssammelkanälen (36) zum Austritt des Kühlmediums (40) gekoppelt ist; und

    mehrere Minikanäle (28), die in einer Plattenfläche (20) orthogonal zu den Einlass- (34) und den Auslasssammelkanälen (36) angeordnet sind;

    wobei die mehreren Minikanäle (28) das Kühlmedium (40) von den mehreren Einlasssammelkanälen (34) zu den mehreren Auslasssammelkanälen (36) leiten;

    die mehreren Minikanälen (28) in der Bodenplatte (14) ausgebildet sind, wobei die Minikanäle (28) jeweils eine Breite und Höhe in der Größenordnung von Millimetern in jeder Dimension aufweisen, dadurch gekennzeichnet, dass eine vorgefertigte Kühlkörperplatte (16) umfassend das mindestens eine Kühlsegment (26), das in der Kühlkörperfläche (18) angeordnet ist, abnehmbar mit der Bodenplatte (14) gekoppelt ist, so dass die Plattenfläche (20) der Bodenplatte (14) sich mit der Kühlkörperfläche (18) überlappt, wobei die Kühlkörperplatte (16) eine Dichtung (31) umfasst, die das mindestens eine Kühlsegment (26) umgebend angeordnet ist; und

    die Einlasskammer (32) parallel zur Auslasskammer (38) angeordnet ist und der Eintritt des Kühlmediums (40) in die Einlasskammer (32) und der Austritt des Kühlmediums (40) aus der Auslasskammer (38) entlang einer gleichen Richtung erfolgen.


     
    2. Leistungsmodul nach Anspruch 1, wobei jeder Einlasssammelkanal (34) von den mehreren Einlasssammelkanälen (34) einen Querschnitt aufweist, der sich von der Einlasskammer (32) in Richtung der Auslasskammer (38) verjüngt.
     
    3. Leistungsmodul-Kühlvorrichtung nach einem der Ansprüche 1 bis 2, wobei jeder Auslasssammelkanal (36) von den mehreren Auslasssammelkanälen (36) einen Querschnitt aufweist, der sich von der Auslasskammer (38) in Richtung der Einlasskammer (34) verjüngt.
     
    4. Leistungsmodul nach einem der Ansprüche 1 bis 3, wobei das Kühlmedium (40) eine Mischung aus Propylenglykol und Wasser umfasst.
     
    5. Verfahren zum Herstellen eines Leistungsmoduls (10) nach einem der Ansprüche 1 bis 4, gekennzeichnet durch Verfahrensschritte wie folgt:

    Abnehmen einer Bodenplatte (14) von einem Substrat (15) eines vorhandenen Leistungsmoduls umfassend eine Kühlkörperplatte;

    Abnehmen der Kühlkörperplatte von der Bodenplatte (14);

    Bilden der mehreren Minikanäle (28) in einer Plattenfläche (20) der Bodenplatte (14), wobei die Minikanäle (28) jeweils eine Breite und Höhe in der Größenordnung von Millimetern in jeder Dimension aufweisen;

    Ersetzen der abgenommenen Kühlkörperplatte durch eine vorgefertigte Kühlkörperplatte (16) mit dem mindestens einen Kühlsegment (26), das in der Kühlkörperfläche (18) angeordnet ist, und einer Dichtung (31), die das mindestens eine Kühlsegment (26) umgebend angeordnet ist;

    abnehmbares Koppeln der vorgefertigten Kühlkörperplatte (16) mit der Bodenplatte (14), so dass sich die Plattenfläche (20) mit der Kühlkörperfläche (18) überlappt und die Minikanäle (28) orthogonal zu den Einlass- (34) und den Auslasssammelkanälen (36) angeordnet sind; und

    Koppeln der Bodenplatte (14) mit dem Substrat (15).


     


    Revendications

    1. Module d'énergie (10) comprenant une plaque de base (14), un module électronique (12) disposé sur la plaque de base (14) par le biais d'un substrat (15) et un dispositif de refroidissement (30) ; le dispositif de refroidissement (30) comprenant :

    une surface de dissipateur de chaleur (18) ayant au moins un segment de refroidissement (26) disposé à l'intérieur de celle-ci, comprenant :

    un plénum d'entrée (32) pour l'entrée d'un agent de refroidissement (40) ;

    une pluralité de canaux de collecteur d'entrée (34) couplés orthogonalement au plénum d'entrée (32) pour recevoir l'agent de refroidissement (40) du plénum d'entrée (32) ;

    une pluralité de canaux de collecteur de sortie (36) disposés parallèlement aux canaux de collecteur d'entrée (34) ; et

    un plénum de sortie (38) couplé orthogonalement à la pluralité de canaux de collecteur de sortie (36) pour l'échappement de l'agent de refroidissement (40) ; et

    une pluralité de millicanaux (28) disposés dans une surface de plaque (20) orthogonalement aux canaux de collecteur d'entrée (34) et de sortie (36) ;

    dans lequel la pluralité de millicanaux (28) dirigent l'agent de refroidissement (40) de la pluralité de canaux de collecteur d'entrée (34) vers la pluralité de canaux de collecteur de sortie (36) ;

    la pluralité de millicanaux (28) sont formés dans la plaque de base (14), les millicanaux (28) ont chacun une largeur et une hauteur de l'ordre du millimètre dans chaque dimension, caractérisé en ce que

    une plaque préfabriquée de dissipateur de chaleur (16) comprenant l'au moins un segment de refroidissement (26) disposé dans la surface du dissipateur de chaleur (18) est couplé de manière amovible à la plaque de base (14) de sorte que la surface de la plaque (20) de la plaque de base (14) chevauche la surface du dissipateur de chaleur (18), dans lequel la plaque de dissipateur de chaleur (16) comprend un joint d'étanchéité (31) disposé autour de l'au moins un segment de refroidissement (26) ; et

    le plénum d'entrée (32) est disposé parallèlement au plénum de sortie (38), et l'entrée de l'agent de refroidissement (40) dans le plénum d'entrée (32) et l'échappement de l'agent de refroidissement (40) du plénum de sortie (38) sont le long d'une même direction.


     
    2. Module d'énergie selon la revendication 1, dans lequel chaque canal de collecteur d'entrée (34) parmi la pluralité de canaux de collecteur d'entrée (34) a une section transversale s'effilant du plénum d'entrée (32) vers le plénum de sortie (38).
     
    3. Dispositif de refroidissement de module d'énergie selon l'une quelconque des revendications 1 à 2, dans lequel chaque canal de collecteur de sortie (36) parmi la pluralité de canaux de collecteur de sortie (36) a une section transversale s'effilant du plénum de sortie (38) vers le plénum d'entrée (34).
     
    4. Module d'énergie selon l'une quelconque des revendications 1 à 3, dans lequel l'agent de refroidissement (40) comprend un mélange de propylène glycol et d'eau.
     
    5. Procédé de fabrication d'un module d'énergie (10) selon l'une quelconque des revendications 1 à 4, caractérisé en étapes de procédé comme suit :

    le détachement d'une plaque de base (14) d'un substrat (15) d'un module d'énergie existant comprenant une plaque de dissipateur de chaleur ;

    le détachement de la plaque de dissipateur de chaleur de la plaque de base (14) ;

    la formation de la pluralité de millicanaux (28) dans une surface de plaque (20) de la plaque de base (14), dans lequel les millicanaux (28) ont chacun une largeur et une hauteur de l'ordre du millimètre dans chaque dimension ;

    le remplacement de la plaque de dissipateur de chaleur détachée par une plaque de dissipateur de chaleur préfabriquée (16) ayant l'au moins un segment de refroidissement (26) disposé dans la surface du dissipateur de chaleur (18) et un joint d'étanchéité (31) disposé autour de l'au moins un segment de refroidissement (26) ;

    le couplage de façon amovible de la plaque de dissipateur de chaleur préfabriquée (16) à la plaque de base (14) de sorte que la surface de la plaque (20) chevauche la surface de dissipateur de chaleur (18) et que les millicanaux (28) soient disposés orthogonalement aux canaux de collecteur d'entrée (34) et de sortie (36) ; et

    le couplage de la plaque de base (14) au substrat (15).


     




    Drawing









    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description