(19)
(11)EP 2 539 747 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.10.2019 Bulletin 2019/41

(21)Application number: 11748051.7

(22)Date of filing:  24.02.2011
(51)International Patent Classification (IPC): 
G01V 5/10(2006.01)
G01V 5/04(2006.01)
(86)International application number:
PCT/US2011/026052
(87)International publication number:
WO 2011/106508 (01.09.2011 Gazette  2011/35)

(54)

METHOD FOR HYDROCARBON SATURATION AND HYDRAULIC FRAC PLACEMENT

VERFAHREN FÜR KOHLENWASSERSTOFFSÄTTIGUNG UND HYDRAULISCHE FRAC-PLATZIERUNG

PROCÉDÉ POUR SATURATION D'HYDROCARBURE ET POSITIONNEMENT DE FRACTURATION HYDRAULIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 25.02.2010 US 307924 P

(43)Date of publication of application:
02.01.2013 Bulletin 2013/01

(73)Proprietor: Baker Hughes, a GE company, LLC
Houston, TX 77073 (US)

(72)Inventors:
  • CHACE, David, M.
    Houston TX 77007 (US)
  • ANSARI, Rafay, Z.
    Spring Texas 77386 (US)
  • FROST, Elton, Jr.
    Spring TX 77382 (US)
  • INANC, Feyzi
    Spring TX 77389 (US)
  • GILCHRIST, W., Allen, Jr.
    Fort Davies TX 79734 (US)
  • EVANS, Randy, L.
    Sugar Land TX 77498 (US)

(74)Representative: BRP Renaud & Partner mbB Rechtsanwälte Patentanwälte Steuerberater 
Königstraße 28
70173 Stuttgart
70173 Stuttgart (DE)


(56)References cited: : 
WO-A1-96/08733
US-A- 4 950 892
US-A1- 2008 251 710
US-B2- 7 554 081
US-A- 4 379 228
US-A- 5 528 030
US-A1- 2009 254 283
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Field of the Invention



    [0001] The present invention relates to production of hydrocarbons and, in particular, to estimating properties of formations related to production of the hydrocarbons.

    2. Description of the Related Art



    [0002] Production of hydrocarbons from within the earth generally requires providing a pathway from an earth formation containing the hydrocarbons to a borehole drilled in the earth formation. From the borehole, the hydrocarbons are extracted to the surface of the earth.

    [0003] One process used to create the pathway is referred to as "fracturing." The fracturing process fractures or cracks rock in the earth formation that may contain reservoirs of the hydrocarbons. The fractures are used to connect hydrocarbon-containing pores in the rock and, thus, can increase the production of hydrocarbons.

    [0004] In one example of fracturing, hydraulic pressure is exerted in an interval of a reservoir rock. When the hydraulic pressure meets or exceeds the formation fracture pressure, the rock will fracture. The resulting fracture will increase the fluid conductivity between the pores of the rock.

    [0005] Boreholes through earth formations can be very deep traversing different types of litho logical facies. Some of the facies are more conducive to fracture with the potential for large hydrocarbon production while others are not. Hence, it can be challenging trying to determine the best places in an earth formation to fracture rock while not wasting resources on places with little potential for hydrocarbon production.

    [0006] Therefore, what are needed are techniques for determining where to fracture a formation for the production of hydrocarbons. The document US 2009/254283 A1 provides a method for estimating where to fracture an earth formation comprising seven stages and involving acoustic data and geomechanical software processing.

    BRIEF SUMMARY OF THE INVENTION



    [0007] The present invention provides a method as claimed in claim 1.

    [0008] The present invention also provides an apparatus as claimed in claim 9.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings, wherein like elements are numbered alike, in which:

    FIG. 1 illustrates an exemplary embodiment of a logging tool disposed in a borehole penetrating an earth formation;

    FIG. 2 depicts aspects of the logging tool; and

    FIG. 3 presents one example of a method for estimating a location in earth formation.


    DETAILED DESCRIPTION OF THE INVENTION



    [0010] Disclosed are exemplary embodiments of techniques for efficiently estimating where to fracture an earth formation for the production of hydrocarbons. In particular, the techniques estimate the more desirable locations that have potential for increased
    hydrocarbon production. Efficiency of data gathering is increased by using a logging tool that can log the necessary data in one logging pass through a cased borehole penetrating the earth formation.

    [0011] The techniques, which include method and apparatus, call for using a pulsed neutron logging instrument to acquire during the same logging pass saturation measurements of oil, water, and/or gas, measurements of a selected element through neutron activation, and/or prediction of openhole log data response using an emulation technique (e.g., neural net, multidimensional histogram analysis, etc.). By determining a location of the earth formation having a relatively high hydrocarbon saturation and an element indicative of being able to efficiently extract the hydrocarbon, resources can be dedicated to fracturing that location to extract the hydrocarbons with an increased probability of success. Using gas shale plays as an example, the pulsed neutron logging tool can measure accumulated gas saturation along the borehole in addition to measuring silicon or silica content. Activation of silicon by a neutron pulse produces count rates of gamma rays that are linearly proportional to the weight fraction of the silicon, and therefore can be used to identify zones of highest silica content. Shale play intervals with higher concentrations of silica are generally more conducive to hydraulic fracturing (in terms of effective fracture length). Thus, by comparing the gas saturation measurements with the elemental activation measurements, formation zones more desirable for fracturing can be determined. For example, in one embodiment, the more desirable reservoirs interval or layers for fracturing are those intervals with high gas saturation and high silica content.

    [0012] In one embodiment, the location can be identified where minimum threshold levels of hydrocarbon saturation and yield of the selected element are exceeded. In another embodiment, the location can be identified by determining where relative maxima of hydrocarbon saturation and the selected element occur.

    [0013] Apparatus for implementing the techniques disclosed herein is now discussed. Reference may now be had to FIG. 1. FIG. 1 illustrates an exemplary embodiment of a well logging instrument 10 (also referred to as a "tool") for wireline logging shown disposed in a wellbore 1 (also referred to as a borehole). The wellbore 1 generally traverses a formation 3 that can include various intervals or layers shown as 3A, 3B and 3C. One skilled in the art will recognize that the various geological features as may be encountered in a subsurface environment may be referred to as "formations." As used herein the term "formation" also includes the subsurface materials that makeup the formation. For example, the formation can include a rock matrix of pores filled with one or more fluids such as water, oil or gas and the like. As a matter of convention, a depth of the wellbore 1 is described along a Z-axis, while a cross-section is provided on a plane described by an X-axis and a Y-axis. Prior to well logging with the logging instrument 10, the wellbore 1 is drilled into the Earth 2 using a drilling rig.

    [0014] The logging instrument 10 is lowered into the wellbore 1 using a wireline 8 deployed by a derrick 6 or similar equipment. Generally, the wireline 8 includes suspension apparatus, such as a load bearing cable, as well as other apparatus. The other apparatus may include a power supply, a communications link (such as wired or optical) and other such equipment. Generally, the wireline 8 is conveyed from a service truck 9 or other similar apparatus (such as a service station, a base station, etc...). Often, the wireline 8 is coupled to topside equipment 7. The topside equipment 7 may provide power to the logging instrument 10, as well as provide computing and processing capabilities for at least one of control of operations and analysis of data.

    [0015] The wellbore 1 as shown in FIG. 1 is lined with a casing 4 to preserve the integrity of the wellbore 1. Non-limiting embodiments of materials for the casing 4 include metals such as steel, concrete, cement, or any combination thereof. In completing the well, it is advantageous to install the casing 4 quickly after the wellbore 1 is drilled before damage can occur. Thus, time may not be available to perform open well logging (i.e., without a casing). Therefore, the logging tool 10 includes pulse-neutron logging components 15 for logging through the casing 4. The pulse-neutron logging components 15 may communicate with downhole electronics 13 and/or the topside equipment 7.

    [0016] Reference may now be had to FIG. 2., which illustrates an exemplary embodiment of the pulse-neutron logging components 15 in the logging tool 10. The components 15 include a neutron generator 20 configured to irradiate the formation 3 with neutrons. The neutron generator 20 is located about mid-tool illustrative purposes. Disposed above the neutron generator 20 are one or more first radiation detectors 21, each spaced a specific distance from the neutron generator 20. The first radiation detectors 21 are configured to detect (i.e., measure) first signals 22 due to the irradiation of the formation 3 by the neutrons. In general, the first signals 22 include gamma rays emitted from the formation 3 by processes that include inelastic scattering and thermal neutron capture.

    [0017] The first signals 22 provide enough information from which a saturation of a fluid in the formation 3 can be estimated. For example, in one embodiment, saturation can be derived from a ratio of carbon to oxygen. The amount of carbon and oxygen (or the elemental yields of C and O) can be determined from a spectrum analysis of the first signals 22 knowing how carbon and oxygen uniquely respond to neutron radiation. Higher ratios of C to O can indicate oil-bearing formations while lower ratios can indicate water-bearing formations. Alternatively or in addition to the C to O ratio, the thermal neutron capture cross-section (sigma) may be used to estimate saturation. Sigma is a measure of the rate at which thermal neutrons are captured. Predominately, the thermal neutrons are captured by chlorine. Thus, sigma provides a measure of the chlorine content or salinity of the formation. A high value of sigma indicates saline water while a low value of sigma indicates fresh water and/or hydrocarbons. Alternatively, or in addition to the aforementioned saturation measurement techniques, gas saturation can be determined based on the ratio of inelastic-scattering gamma ray count rates measured at detectors placed at different distances from the neutron generator 20. Gas saturation can also be determined based on the ratio of thermal neutron capture gamma ray count rates measured at detectors placed at different distances from the neutron generator 20. The thermal neutron capture gamma ray count rate ratio can also be used in some cases to determine oil saturation.

    [0018] Still referring to FIG. 2, a second radiation detector 23 is disposed below the neutron generator 20 a distance D. The second radiation detector 23 is configured to detect (i.e., measure) second signals 24 due to the irradiation of the formation 3 by the neutrons. As with the first signals 22, the second signals 24 include gamma rays emitted from the formation 3 by processes that include inelastic scattering and thermal neutron capture. The gamma rays in the second signals 24 provide a spectrum of energies that can be related to the elemental yields of various elements in the formation 3.

    [0019] The logging tool 10 in FIG. 2 is configured for logging while being conveyed from a downhole location towards the surface of the earth (i.e., uphole). With this configuration, the neutron generator 20 can irradiate a portion of the formation 3 as the neutron generator 20 passes by. Due to the distance D, it will take a time T before the second detector arrives at the irradiated portion and receives the second signal 24 where T = D/S, S being the speed of conveyance of the logging tool 10 through the borehole 1. Depending on the half-life of the elements activated by the neutron radiation, the second signals 24 may be emitted by some of the activated elements either before or after the second radiation detector 23 passes the irradiated portion of the formation 3. Hence, with the appropriate selection of distance D and speed S, certain elements can be limited or excluded from detection. For example, the half-lives of activated oxygen (in water), silicon (Si), and iron (Fe) are approximately 7 seconds, 2.3 minutes, and on the order of hours, respectively. If the distance D is approximately ten feet and the logging speed is ten feet per minute, then the second radiation detector 23 will pass the irradiated portion of the formation 3 in about one minute and will thus be able to detect the second signals 24 emitted by silicon. The second radiation detector 23 will not detect the second signals 24 emitted from oxygen because over six half-lives will have expired and effectively all of the activated oxygen will have decayed in the one minute it takes for the logging tool 10 to traverse the distance D. Because of the long half-life of iron, will emit relatively little gamma radiation.

    [0020] While the logging tool 10 shown in FIG. 2 is configured for logging in an uphole direction, the tool 10 can have an opposite configuration for logging in the downhole direction. The logging tool 10 can also be configured with two sets of first detectors 21 and second detector 23 for logging in either direction.

    [0021] Reference may now be had to FIG. 3 illustrating one example of a method 30 for estimating a location in an earth formation. The method 30 calls for (step 31) conveying the logging tool 10 through the borehole 1 penetrating the earth formation 3. The borehole 1 may be lined with the casing 4. Further, the method 30 calls for (step 32) irradiating the formation 3 with neutrons generated by the neutron generator 20 disposed at the logging tool 10. Further, the method 30 calls for (step 33) detecting the first signal 22 from the formation 3 due to the irradiating using a first radiation detector 21, the first signal 22 being related to a saturation of a fluid in the formation 3. Further, the method 30 calls for (step 34) detecting the second signal 24 from a selected element in the formation 3 due to the irradiating using the second radiation detector 23. Further, the method 30 calls for (step 35) estimating the location using the first signal and the second signal.

    [0022] Once the first signals 22 and the second signals 24 are obtained, measured parameters associated with these signals can be displayed or plotted together in an overlay or a cross-plot. For example, comparison of sigma obtained from the first signals 22 and silicon elemental yield can be accomplished using the overlay or the cross-plot to determine the lithology of the formation 3 through the casing 4.

    [0023] The logging tool 10 and associated method provide advantages over prior art logging tools. One advantage is that logging tool 10 can be used in a cased borehole 1 and, thus, the borehole 1 can be cased quickly before damage can occur to it. Another advantage is that the data obtained with the logging tool 10 from the cased borehole 1 can be used to emulate data that would be obtained from an open or uncased borehole 1. Hence, there is little need to delay completion of the borehole 1 in order to perform open-hole logging. Still another advantage is the ability to gather the data required to estimate the location in one pass through the borehole 1. Still another advantage is the ability to exclude or limit receiving unwanted second signals 24 by selecting an appropriate distance D and logging speed S.

    [0024] In support of the teachings herein, various analysis components may be used, including a digital and/or analog system. For example, the topside equipment 7 or the downhole electronics 13 can include the digital and/or analog system. The system may have components such as a processor, storage media, memory, input, output, communications link (wired, wireless, pulsed mud, optical or other), user interfaces, software programs, signal processors (digital or analog) and other such components (such as resistors, capacitors, inductors and others) to provide for operation and analyses of the apparatus and methods disclosed herein in any of several manners well-appreciated in the art. It is considered that these teachings may be, but need not be, implemented in conjunction with a set of computer executable instructions stored on a computer readable medium, including memory (ROMs, RAMs), optical (CD-ROMs), or magnetic (disks, hard drives), or any other type that when executed causes a computer to implement the method of the present invention. These instructions may provide for equipment operation, control, data collection and analysis and other functions deemed relevant by a system designer, owner, user or other such personnel, in addition to the functions described in this disclosure.

    [0025] Further, various other components may be included and called upon for providing for aspects of the teachings herein. For example, a power supply (e.g., at least one of a generator, a remote supply and a battery), cooling component, heating component, magnet, electromagnet, sensor, electrode, transmitter, receiver, transceiver, antenna, controller, optical unit, electrical unit or electromechanical unit may be included in support of the various aspects discussed herein or in support of other functions beyond this disclosure.

    [0026] The term "carrier" as used herein means any device, device component, combination of devices, media and/or member that may be used to convey, house, support or otherwise facilitate the use of another device, device component, combination of devices, media and/or member. The logging tool 10 is one non-limiting example of a carrier. Other exemplary non-limiting carriers include drill strings of the coiled tube type, of the jointed pipe type and any combination or portion thereof. Other carrier examples include casing pipes, wirelines, wireline sondes, slickline sondes, drop shots, bottom-hole-assemblies, drill string inserts, modules, internal housings and substrate portions thereof.

    [0027] Elements of the embodiments have been introduced with either the articles "a" or "an." The articles are intended to mean that there are one or more of the elements. The terms "including" and "having" are intended to be inclusive such that there may be additional elements other than the elements listed. The conjunction "or" when used with a list of at least two terms is intended to mean any term or combination of terms. The terms "first" and "second" are used to distinguish elements and are not used to denote a particular order.

    [0028] While the invention has been described with reference to exemplary embodiments, it will be understood that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention, which is defined by the appended claims. In addition, many modifications will be appreciated to adapt a particular instrument, situation or material to the teachings of the invention without departing from the essential scope thereof, which is defined by the appended claims. f.


    Claims

    1. A method (30) for estimating where to fracture an earth formation (3) for the production of hydrocarbons, the method comprising:

    conveying (31) a carrier (10) through a borehole (1) penetrating the earth formation;

    irradiating (32) the formation with neutrons from a neutron source (20)disposed at the carrier (10);

    detecting (33) a first signal (22) from the formation (3) due to the irradiating using a first radiation detector (21), the first signal (22) being related to a saturation of fluids in the formation (3);

    detecting (34) a second signal (24) from the formation (3) due to the irradiating using a second radiation detector (23), the second signal (24) being related to an element emitting the second signal (24) in the formation; and

    estimating (35) where to fracture the earth formation (3) using the first signal (22) and the second signal (24).


     
    2. The method (30) of claim 1, wherein the second signal (24) is further related to an amount of the element or a mineralogy comprising the element or a combination thereof.
     
    3. The method (30) of claim 1, wherein the irradiating, the detecting a first signal (22), and the detecting a second signal (24) are performed in one pass of the carrier (10) through the borehole (1).
     
    4. The method (30) of claim 1, wherein the neutrons, the first signal (22), and the second signal (24) comprise sufficient energy to traverse a casing (4) lining the borehole (1).
     
    5. The method (30) of any preceding claim, wherein the method (3) identifies an interval; wherein the interval corresponds to a saturation of a hydrocarbon that exceeds a threshold level as measured by the first signal (22), preferably wherein the hydrocarbon is gas in a shale play; or wherein the interval corresponds to a relative maximum of a saturation of a hydrocarbon as measured by the first signal, preferably wherein the interval further corresponds to a relative maximum of silica as measured by the second signal (24).
     
    6. The method (30) of claim 1, wherein the neutrons are fast neutrons, the first signal (22) comprises first gamma rays having a characteristic related to the saturation, and the second signal (24) comprises second gamma rays having a characteristic related to the element in the formation (3).
     
    7. The method (30) of claim 1, wherein the second radiation detector (23) is spaced a distance D from the neutron source (20) and the carrier (10) is conveyed at a speed S such that time D/S is less than a half-life of the element emitting the second signal (24) due to being irradiated by the neutron source (20) and greater than about six half-lives of another element activated by the irradiation.
     
    8. The method (30) of claim 1, wherein the first signal (22) comprises gamma rays emitted due to inelastic scattering of the neutrons or thermal capture of the neutrons or combination thereof, preferably wherein the first signal (22) is related to the saturation by way of a mathematical parameter comprising (a) a ratio of gamma rays due to inelastic scattering detected by one first detector (21) spaced a first distance from the neutron generator (20) to gamma rays due to inelastic scattering detected by another first detector (21) spaced a second distance from the neutron generator (20) or (b) a ratio of gamma rays due to thermal neutron capture detected by the one first detector to gamma rays due to thermal neutron capture detected by the another first detector (21) or (c) a combination thereof.
     
    9. An apparatus for estimating where to fracture an earth formation (3) for the production of hydrocarbons, the apparatus comprising:

    a carrier (10) configured to be conveyed through a borehole (1) penetrating the earth formation (3);

    a neutron source (20) disposed at the carrier (10) and configured to irradiate the formation (3) with neutrons;

    a first detector (21) configured to detect a first signal (22) from the formation (3) due to the irradiating, the first signal (22) being related to a saturation of fluids in the formation (3);

    a second detector (23) configured to detect a second signal (24) from the formation (3) due to the irradiating, the second signal (24) being related to an element emitting the second signal (24) in the formation (3); and a processor configured to estimate where to fracture the earth formation (3) using the first signal (22) and the second signal (24).


     
    10. The apparatus of claim 9, wherein the borehole (1) is lined with a casing (4) and the neutron source (20) is configured to emit neutrons with sufficient energy to traverse the casing (4).
     
    11. The apparatus of claim 9, wherein the second detector (21) is spaced a distance D from the neutron source (20) and the carrier (10) is configured to be conveyed at a speed S such that time D/S is less than a half-life of the element emitting the second signal (24) due to being irradiated by the neutron source (20) and greater than about six half-lives of another element activated by the irradiation, preferably wherein the time is substantially greater than the half-life of a selected element such that the selected element is excluded from detection.
     
    12. The apparatus of claim 9, wherein the apparatus identifies a location and the apparatus further comprises a processor configured to estimate the location by determining where the location exceeds a threshold level of hydrocarbon saturation and a threshold level of a selected element, preferably wherein the hydrocarbon is a gas in a shale play and the element is silicon.
     
    13. The apparatus of claim 9, wherein the first detector (21) comprises at least two detectors (21) and the first and second detectors (21, 23) are configured to detect gamma rays, preferably wherein the carrier (10) is conveyed by a wireline.
     
    14. The method or apparatus of claim 1 or claim 9, wherein the first signal (22) and the second signal (24) are presented together on one plot.
     


    Ansprüche

    1. Verfahren (30) zum Schätzen, wo eine Erdformation (3) zur Produktion von Kohlenwasserstoffen frakturiert werden soll, wobei das Verfahren umfasst:
    Befördern (31) eines Trägers (10) durch ein Bohrloch (1), das in die Erdformation eindringt:

    Bestrahlen (32)
    der Formation mit Neutronen aus einer am Träger (10) angeordneten Neutronenquelle (20);

    Erfassen (33)
    eines ersten Signals (22) von der Formation (3) aufgrund des Bestrahlens mittels eines ersten Strahlungsdetektors (21), wobei das erste Signal (22) mit einer Sättigung von Fluiden in der Formation (3) in Beziehung steht;

    Erfassen (34)
    eines zweiten Signals (24) von der Formation (3) aufgrund des Bestrahlens mittels eines zweiten Strahlungsdetektors (21), wobei das zweite Signal (24) mit einem Element in Beziehung steht, welches das zweite Signal (24) in der Formation emittiert; und

    Schätzen (35),
    wo die Erdformation (3) mittels des ersten Signals (22) und des zweiten Signals (24) zu frakturieren ist.


     
    2. Verfahren (30) nach Anspruch 1, wobei das zweite Signal (24) ferner mit einer Menge des Elements oder einer Mineralogie in Beziehung steht, die das Element oder eine Kombination davon umfasst.
     
    3. Verfahren (30) nach Anspruch 1, wobei das Bestrahlen, das Erfassen eines ersten Signals (22) und das Erfassen eines zweiten Signals (24) in einem Durchgang des Trägers (10) durch das Bohrloch (1) durchgeführt werden.
     
    4. Verfahren (30) nach Anspruch 1, wobei die Neutronen, das erste Signal (22) und das zweite Signal (24) ausreichend Energie umfassen, um eine Schalung (4) zu durchqueren, die das Bohrloch (1) auskleidet.
     
    5. Verfahren (30) nach einem der vorstehenden Ansprüche, wobei das Verfahren (3) ein Intervall identifiziert; wobei das Intervall einer Sättigung eines Kohlenwasserstoffs entspricht, die ein Schwellenniveau überschreitet, das durch das erste Signal (22) gemessen wird, vorzugsweise wobei der Kohlenwasserstoff Gas in einem Schiefervorkommen ist; oder wobei das Intervall einem relativen Maximum einer Sättigung eines Kohlenwasserstoffs entspricht, gemessen durch das erste Signal, vorzugsweise wobei das Intervall ferner einem relativen Maximum an Siliciumdioxid, gemessen durch das zweite Signal (24), entspricht.
     
    6. Verfahren (30) nach Anspruch 1, wobei die Neutronen schnelle Neutronen sind, wobei das erste Signal (22) erste Gammastrahlen mit einer Kennlinie umfasst, die mit der Sättigung in Beziehung steht, und das zweite Signal (24) zweite Gammastrahlen mit einer Kennlinie umfasst, die mit dem Element in der Formation (3) in Beziehung steht.
     
    7. Verfahren (30) nach Anspruch 1, wobei der zweite Strahlungsdetektor (23) in einem Abstand D von der Neutronenquelle (20) beabstandet ist und der Träger (10) mit einer Geschwindigkeit S derart befördert wird, dass die Zeit D/S kleiner als eine Halbwertszeit des Elements ist, welches das zweite Signal (24) aufgrund von Bestrahlen durch die Neutronenquelle (20) emittiert, und größer als etwa sechs Halbwertszeiten eines anderen Elements ist, das durch die Bestrahlung aktiviert wird.
     
    8. Verfahren (30) nach Anspruch 1, wobei das erste Signal (22) Gammastrahlen umfasst, die aufgrund von unelastischer Streuung der Neutronen oder eines thermischen Einfangens der Neutronen oder einer Kombination davon emittiert werden, vorzugsweise wobei das erste Signal (22) mit der Sättigung über einen mathematischen Parameter in Beziehung steht, der (a) ein Verhältnis von Gammastrahlen aufgrund von unelastischer Streuung, die von einem ersten Detektor (21) erfasst werden, der in einem ersten Abstand vom Neutronengenerator (20) beabstandet ist, zu Gammastrahlen aufgrund von unelastischer Streuung, die von einem anderen ersten Detektor (21) erfasst werden, der in einem zweiten Abstand vom Neutronengenerator (20) beabstandet ist, oder (b) ein Verhältnis von Gammastrahlen aufgrund eines thermischen Neutroneneinfangens, die von dem einen ersten Detektor erfasst werden, zu Gammastrahlen aufgrund des thermischen Neutroneneinfangens, die von dem anderen ersten Detektor (21) erfasst werden, oder (c) eine Kombination davon umfasst.
     
    9. Vorrichtung zum Schätzen, wo eine Erdformation (3) zur Produktion von Kohlenwasserstoffen frakturiert werden soll, wobei die Vorrichtung umfasst:

    einen Träger (10), der dazu konfiguriert ist, durch ein Bohrloch (1) befördert zu werden, das in die Erdformation (3) eindringt;

    eine Neutronenquelle (20), die am Träger (10) angeordnet und dazu konfiguriert ist, die Formation (3) mit Neutronen zu bestrahlen;

    einen ersten Detektor (21), der dazu konfiguriert ist, ein erstes Signal (22) von der Formation (3), das durch Bestrahlung entsteht, zu erfassen, wobei das erste Signal (22) mit einer Sättigung von Fluiden in der Formation (3) in Beziehung steht;

    einen zweiten Detektor (23), der dazu konfiguriert ist, ein zweites Signal (24) von der Formation (3), das durch Bestrahlung entsteht, zu erfassen,wobei das zweite Signal (24) mit einem Element in Beziehung steht, welches das zweite Signal (24) in der Formation (3) emittiert; und einen Prozessor, der dazu konfiguriert ist, um zu schätzen, wo die Erdformation (3) unter Verwendung des ersten Signals (22) und des zweiten Signals (24) zu frakturieren ist.


     
    10. Vorrichtung nach Anspruch 9, wobei das Bohrloch (1) mit einer Schalung (4) ausgekleidet ist und die Neutronenquelle (20) dazu konfiguriert ist, Neutronen mit ausreichender Energie zum Durchqueren der Schalung (4) zu emittieren.
     
    11. Vorrichtung nach Anspruch 9, wobei der zweite Detektor (21) in einem Abstand D von der Neutronenquelle (20) beabstandet ist und der Träger (10) dazu konfiguriert ist, mit einer Geschwindigkeit S derart befördert zu werden, dass die Zeit D/S kleiner als eine Halbwertszeit des Elements ist, welches das zweite Signal (24) aufgrund von Bestrahlung durch die Neutronenquelle (20) emittiert, und größer als etwa sechs Halbwertszeiten eines anderen durch die Bestrahlung aktivierten Elements, vorzugsweise wobei die Zeit im Wesentlichen größer als die Halbwertszeit eines ausgewählten Elements ist, so dass das ausgewählte Element von der Erfassung ausgeschlossen wird.
     
    12. Vorrichtung nach Anspruch 9, wobei die Vorrichtung eine Position identifiziert und die Vorrichtung ferner einen Prozessor umfasst, der dazu konfiguriert ist, die Position zu schätzen, indem er bestimmt, wo die Position ein Schwellenniveau der Kohlenwasserstoffsättigung und ein Schwellenniveau eines ausgewählten Elements überschreitet, vorzugsweise wobei der Kohlenwasserstoff ein Gas in einem Schiefervorkommen ist und das Element Silicium ist.
     
    13. Vorrichtung nach Anspruch 9, wobei der erste Detektor (21) mindestens zwei Detektoren (21) umfasst und der erste und zweite Detektor (21, 23) dazu konfiguriert sind, Gammastrahlen zu erfassen, vorzugsweise wobei der Träger (10) drahtgebunden befördert wird.
     
    14. Verfahren oder Vorrichtung nach Anspruch 1 oder Anspruch 9, wobei das erste Signal (22) und das zweite Signal (24) gemeinsam auf einer grafischen Darstellung dargestellt sind.
     


    Revendications

    1. Procédé (30) pour estimer où fracturer une formation terrestre (3) pour la production d'hydrocarbures, le procédé comprenant :

    le transport (31)
    d'un support (10) à travers un trou de forage (1) pénétrant dans la formation terrestre ;

    l'irradiation (32)
    de la formation avec des neutrons à partir d'une source de neutrons (20) disposée au niveau du support (10) ;

    la détection (33)
    d'un premier signal (22) provenant de la formation (3) dû à l'irradiation à l'aide d'un premier détecteur de radiation (21), le premier signal (22) étant lié à une saturation de fluides dans la formation (3) ;

    la détection (34)
    d'un deuxième signal (24) provenant de la formation (3) dû à l'irradiation à l'aide d'un deuxième détecteur de radiation (23), le deuxième signal (24) étant lié à un élément émettant le deuxième signal (24) dans la formation ; et

    l'estimation (35)
    de l'endroit où fracturer la formation terrestre (3) à l'aide du premier signal (22) et du deuxième signal (24).


     
    2. Procédé (30) selon la revendication 1, dans lequel le deuxième signal (24) est en outre lié à une quantité de l'élément ou une minéralogie comprenant l'élément ou une combinaison de ceux-ci.
     
    3. Procédé (30) selon la revendication 1, dans lequel l'irradiation, la détection d'un premier signal (22), et la détection d'un deuxième signal (24) sont effectuées en un passage du support (10) à travers le trou de forage (1).
     
    4. Procédé (30) selon la revendication 1, dans lequel les neutrons, le premier signal (22), et le deuxième signal (24) comprennent une énergie suffisante pour traverser un boîtier (4) recouvrant le trou de forage (1).
     
    5. Procédé (30) selon l'une quelconque des revendications précédentes, dans lequel le procédé (3) identifie un intervalle ; dans lequel l'intervalle correspond à une saturation d'un hydrocarbure qui dépasse un niveau seuil tel que mesuré par le premier signal (22), de préférence dans lequel l'hydrocarbure est un gaz dans une zone de schiste ; ou dans lequel l'intervalle correspond à un maximum relatif d'une saturation d'un hydrocarbure tel que mesuré par le premier signal, de préférence dans lequel l'intervalle correspond en outre à un maximum relatif de silice tel que mesuré par le deuxième signal (24).
     
    6. Procédé (30) selon la revendication 1, dans lequel les neutrons sont des neutrons rapides, le premier signal (22) comprend des premiers rayons gamma ayant une caractéristique liée à la saturation, et le deuxième signal (24) comprend des deuxièmes rayons gamma ayant une caractéristique liée à l'élément dans la formation (3).
     
    7. Procédé (30) selon la revendication 1, dans lequel le deuxième détecteur de radiation (23) est espacé d'une distance D de la source de neutrons (20) et le support (10) est transporté à une vitesse S de telle sorte que le temps D/S soit inférieur à une demi-vie de l'élément émettant le deuxième signal (24) en raison de l'irradiation par la source de neutrons (20) et supérieur à environ six demi-vies d'un autre élément activé par l'irradiation.
     
    8. Procédé (30) selon la revendication 1, dans lequel le premier signal (22) comprend des rayons gamma émis en raison de la diffusion inélastique des neutrons ou de la capture thermique des neutrons ou de leurs combinaisons, de préférence dans lequel le premier signal (22) est lié à la saturation au moyen d'un paramètre mathématique comprenant (a) un rapport des rayons gamma dus à une diffusion inélastique détectée par un premier détecteur (21) espacé d'une première distance du générateur de neutrons (20) aux rayons gamma dus à une diffusion inélastique détectée par un autre premier détecteur (21) espacé d'une deuxième distance du générateur de neutrons (20) ou (b) un rapport des rayons gamma dus à une capture thermique de neutrons détectée par le premier détecteur aux rayons gamma dus à une capture thermique de neutrons détectée par l'autre premier détecteur (21) ou (c) leur combinaison.
     
    9. Appareil pour estimer où fracturer une formation terrestre (3) pour la production d'hydrocarbures, le procédé comprenant :

    un support (10) configuré pour être transporté à travers un trou de forage (1) pénétrant dans la formation terrestre (3) ;

    une source de neutrons (20) disposée au niveau du support (10) et configurée pour irradier la formation (3) avec des neutrons ;

    un premier détecteur (21) configuré pour détecter un premier signal (22) provenant de la formation (3) dû à l'irradiation, le premier signal (22) étant lié à une saturation de fluides dans la formation (3) ;

    un deuxième détecteur (23) configuré pour détecter un deuxième signal (24) provenant de la formation (3) dû à l'irradiation, le deuxième signal (24) étant lié à un élément émettant le deuxième signal (24) dans la formation (3) ; et un processeur configuré pour estimer où fracturer la formation terrestre (3) à l'aide du premier signal (22) et du deuxième signal (24).


     
    10. Appareil selon la revendication 9, dans lequel le trou de forage (1) est recouvert d'un boîtier (4) et la source de neutrons (20) est configurée pour émettre des neutrons avec une énergie suffisante pour traverser le boîtier (4).
     
    11. Appareil selon la revendication 9, dans lequel le deuxième détecteur (21) est espacé d'une distance D de la source de neutrons (20) et le support (10) est configuré pour être transporté à une vitesse S de telle sorte que le temps D/S soit inférieur à une demi-vie de l'élément émettant le deuxième signal (24) en raison de l'irradiation par la source de neutrons (20) et supérieur à environ six demi-vies d'un autre élément activé par l'irradiation, de préférence dans lequel le temps est sensiblement supérieur à la demi-vie d'un élément sélectionné de telle sorte que l'élément sélectionné soit exclu de la détection.
     
    12. Appareil selon la revendication 9, dans lequel l'appareil identifie un emplacement et l'appareil comprend en outre un processeur configuré pour estimer l'emplacement en déterminant où l'emplacement dépasse un niveau seuil de saturation d'hydrocarbure et un niveau de seuil d'un élément sélectionné, de préférence dans lequel l'hydrocarbure est un gaz dans une zone de schiste et l'élément est du silicium.
     
    13. Appareil selon la revendication 9, dans lequel le premier détecteur (21) comprend au moins deux détecteurs (21) et les premier et deuxième détecteurs (21, 23) sont configurés pour détecter des rayons gamma, de préférence dans lequel le support (10) est transporté par un câble métallique.
     
    14. Procédé ou appareil selon la revendication 1 ou la revendication 9, dans lequel le premier signal (22) et le deuxième signal (24) sont présentés ensemble sur un tracé.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description