(19)
(11)EP 2 540 027 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2013 Bulletin 2013/50

(21)Application number: 11704404.0

(22)Date of filing:  31.01.2011
(51)Int. Cl.: 
H04L 9/06  (2006.01)
H04L 9/08  (2006.01)
(86)International application number:
PCT/EP2011/000417
(87)International publication number:
WO 2012/103896 (09.08.2012 Gazette  2012/32)

(54)

SMART GRID AND METHOD FOR OPERATING A SMART GRID

INTELLIGENTES NETZ UND VERFAHREN ZUM BETREIBEN EINES INTELLIGENTEN NETZES

RÉSEAU INTELLIGENT ET PROCÉDÉ D'OPÉRATION D'UN RÉSEAU INTELLIGENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
02.01.2013 Bulletin 2013/01

(73)Proprietors:
  • NEC Europe Ltd.
    69115 Heidelberg (DE)
  • Universidad de Murcia
    30071 Murcia (ES)

(72)Inventors:
  • GÓMEZ MÁRMOL, Félix
    E-30011 Murcia (ES)
  • SORGE, Christoph
    33100 Paderborn (DE)
  • UGUS, Osman
    21073 Hamburg (DE)
  • MARTINEZ PÉREZ, Gregorio
    E-30870 Mazarr n Murcia (ES)
  • HESSLER, Alban
    64289 Darmstadt (DE)

(74)Representative: Siepe, André 
Ullrich & Naumann Patent- und Rechtsanwälte Schneidmühlstrasse 21
69115 Heidelberg
69115 Heidelberg (DE)


(56)References cited: : 
WO-A1-2008/041052
WO-A1-2008/131787
  
  • CLAUDE CASTELLUCCIA ET AL: "Efficient and provably secure aggregation of encrypted data in wireless sensor networks", ACM TRANSACTIONS ON SENSOR NETWORKS, vol. 5, no. 3, 1 May 2009 (2009-05-01), pages 1-36, XP55017919, ISSN: 1550-4859, DOI: 10.1145/1525856.1525858
  • MELEK Ã NEN ET AL: "Secure Data Aggregation with Multiple Encryption", 29 January 2007 (2007-01-29), WIRELESS SENSOR NETWORKS; [LECTURE NOTES IN COMPUTER SCIENCE;;LNCS], SPRINGER BERLIN HEIDELBERG, BERLIN, HEIDELBERG, PAGE(S) 117 - 132, XP019076931, ISBN: 978-3-540-69829-6 section 4; pages 6-7
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to a smart grid and a method for operating a smart grid including a plurality of smart meters, said smart meters being configured to monitor at least one physical measured quantity and to provide measurement results of said at least one physical measured quantity to a central entity.

[0002] Smart grids of the initially described type are gaining more and more importance. In particular in the field of electrical energy distribution, global electrical grids are verging on the largest technological transformation since the introduction of electricity into the home. The antiquated infrastructure that delivers power to our homes and businesses is being replaced with a collection of digital systems called the smart grid. This grid is the modernization of the existing electrical system that enhances customers' and utilities' ability to monitor, control, and predict energy use.

[0003] The usage-monitoring and -reporting device at each customer site is called the smart meter, which is a kind of "intelligent' counter. The smart meter is a computerized replacement of the electrical meter attached to the exterior of many of our homes today. Typically, a smart meter contains a processor, nonvolatile storage, and communication facilities. Although in many respects, the smart meter's look and function is the same as its unsophisticated predecessor, its additional features make it more useful. The additional features include, in particular, track usage as a function of time of day, disconnect a customer via software, or send out alarms in case of problems.

[0004] Smart meters can provide energy consumption measurements to energy suppliers (almost) instantaneously. This is quite beneficial for the smart grid because it allows an enhancement in the ability of monitoring, controlling and predicting energy use, amongst other advantages. However, some privacy issues may arise, since such monitoring could reveal final users presence in their houses, which electrical appliances they are using at each moment, or even their daily habits at home, as shown in Fig. 1. Therefore, the risk of smart grid deployment lies in the danger that customers become "transparent" customers, since the monitoring and (potentially malicious) analysis of individual consumption data allows for far-reaching conclusions about the customers' lifestyles.

[0005] It is to be noted that although the present description is mostly related to smart meters for monitoring electrical energy consumption, it is also possible to measure in a household the consumption of water, gas, heat or the like.

[0006] The article of Claude Castelluccia et al.: "Efficient and provably secure aggregation of encrypted data in wireless sensor networks", ACM Transactions on Sensor Networks, vol. 5, no. 3, 1 May 2009 describes a method of aggregating data in a wireless sensor network for monitoring physical quantities. The sensors are arranged in a hierarchical tree spanning from a central entity designated as sink. Each sensor encrypts its measured value by the same (bi-)homomorphic encryption scheme and sends it towards the sink. Intermediate sensors in the tree aggregate the data by adding the encrypted values. Because of the homomorphism property the sum of the encrypted values can be decrypted into the sum of the plain text values by using the sum of the sensor's keys. The sensors' individual keys are generated from a group secret and the unique sensor IDs.

[0007] It is therefore an object of the present invention to improve and further develop a smart grid and a method for operating a smart grid of the initially described type in such a way that, by employing mechanisms that are readily to implement, privacy issues of end users/customers are preserved in a reliable and efficient way.

[0008] In accordance with the invention, the aforementioned object is accomplished by a method comprising the features of claim 1. According to this claim such a method is characterized in the following steps:

said smart grid is partitioned into groups G of smart meters smi, such that each of said smart meters belongs to exactly one group,

all smart meters smi of one of said groups encrypt their measured value ei by applying a bihomomorphic encryption scheme Eki and send it to said central entity ES,

one smart meter per group is designated as key aggregator to which all smart meters smi of that group send their key ki employed for said encryption,

said key aggregator computes the aggregation of all received keys ki and sends the aggregated key K to said central entity ES,

said central entity ES aggregates all received encrypted measured values ei and decrypts said aggregation by employing said aggregated key K.



[0009] Furthermore, the aforementioned object is accomplished by a smart grid comprising the features of claim 21. According to this claim such a smart grid is characterized in that said smart grid is partitioned into groups G of smart meters smi, such that each of said smart meters belongs to exactly one group,
wherein all smart meters smi of one of said groups are configured to encrypt their measured value ei by applying a bihomomorphic encryption scheme Eki and to send it to said central entity ES,
wherein one smart meter per group is designated as key aggregator to which all smart meters smi of that group send their key ki employed for said encryption,
wherein said key aggregator includes means for computing the aggregation of all received keys ki and for sending the aggregated key K to said central entity ES, and
wherein said central entity ES is configured to aggregate all received encrypted measured values ei and to decrypt said aggregation by employing said aggregated key K.

[0010] According to the invention it has been recognized that bihomomorphic encryption/decryption of measurements of physical measuring variables, in particular energy consumption, can be employed to guarantee integrity and confidentiality of the measurement values. Insofar, the present invention provides a privacy enhanced architecture for smart metering in order to achieve protection of final users' privacy, e.g. with respect to their energy consumption habits. The present invention prevents the central entity to find out the individual smart meters measurements, but allows it to know the aggregation of them.

[0011] In other words, the central entity is provided with an aggregation of encrypted values (the individual smart meters reports). The central entity cannot decrypt such individual values (preserving this way users' privacy), but it can indeed decrypt the aggregation of them, by means of a bihomomorphic encryption. A bihomomorphic encryption scheme is a symmetric encryption scheme that is homomorphic both on the plaintext space and on the key space. Thus, while the privacy of individual users is preserved, the central entity, e.g. an electricity supplier, is able to accurately monitor the amount of energy (or water, gas, heat, etc., as the case may be) needed by its customers. While this is not necessary for the technical operation of the electricity network, the information can be used for trading with electrical energy. Even nowadays, each electricity supplier has to buy the amount of energy used by its customers at any specific point in time. However, this is currently based on an estimation (using the overall electricity consumption of those customers over a whole year and assuming certain load curves based on prior experience). In addition, aggregated up-to-date information about energy usage of certain groups may improve the forecasts about load of the electricity network in the near future. This information is useful for planning, e.g., which power plants to use.

[0012] In accordance with the invention the grouping of smart meters makes the issuer of a report and such report unlinkable to each other, thereby preserving their privacy from the central entity. Furthermore, the deployment of a key aggregator in a fashion as described above results in that, i) nobody knows other member keys (except the key aggregator), and ii) it does not matter if the aggregator acts maliciously and shares received keys with the central entity because the later cannot link or relate each key with each received measurement value from that group.

[0013] According to a preferred embodiment it may be provided that the at least one specific physical measured quantity is the electrical energy consumption of a consuming unit, in particular a household, an enterprise, a plant, or the like. In such case the central entity may be an energy supplier. In this context it is important to note that the electricity supplier is not necessarily identical to the electrical network provider (though, in some cases, it actually is).

[0014] With respect to a structured and natural arrangement of the groups of smart meters, it may be provided that groups of smart meters are configured by putting into the same group, for instance all the smart meters belonging to a specific building, street, neighborhood, village, or the like. In any case, it is to be noted that all the smart meters within the same group also belong to the same energy supplier. For instance, group Gk would be composed by



[0015] With respect to keeping the central entity reliably up-to-date it may be provided that the smart meters report their measurements to the central entity in regular time intervals, which may be regarded as reporting periods.

[0016] Advantageously, in order to ensure secure data transmission it may be provided that the smart meters report their measurements to the central entity through a secure channel. The establishment of a secure channel requires the use of an authentication mechanism. In theory, any authentication mechanism could be used; the most suitable ones, in order to authenticate the smart meter only as a member of a group of authorized smart meters, would be group signatures or anonymous credential schemes. As a consequence, it is assured that the key aggregator cannot decrypt the values sent by each smart meter, even if he knows their keys, since the former are sent to the central entity through a secure channel.

[0017] With respect to further enhancing security, it may be provided that one smart meter per group is only periodically designated as the key aggregator, i.e. that the smart meter being designated as key aggregator within the group is changed from time to time. In particular, it may be provided that a change of the key aggregator is performed in case a smart meter being designated as key aggregator fails, leaves the group and/or is found to act maliciously. In any case it may be provided that the rest of member smart meters of a group send their keys to the key aggregator in a secure way.

[0018] Once the key aggregator has received all the group members' keys, it aggregates them in order to obtain the aggregated key K in the following way:



[0019] Then, it sends the aggregated key K to the central entity through a secure channel. In order to keep the signaling overhead as low as possible, it may be provided that the aggregated key K is sent to the central entity only once at the first time, i.e. in connection with a first period of measurement reports of a group of smart meters. Subsequently, the aggregated key K has to be sent to the central entity only every time one smart meter fails and/or leaves or enters/joins the respective group.

[0020] According to a preferred embodiment reporting periods are defined, wherein each smart meter of a group uses a different key per reporting period for encrypting its measurement value of that period. By changing the key of a smart meter every reporting period the security of the process is further enhanced since it becomes almost impossible for a malicious participant to decrypt the measured values. Advantageously, in order to enable effortless decryption on the part of the central entity, the keys being employed for each reporting period may be computed in such a way that the aggregation of all the keys of all smart meters of a group always remains the same, i.e. the aggregated key K remains constant. As a consequence, as already outlined above, the number of reporting messages of the aggregated key K from the key aggregator to the central entity can be minimized.

[0021] In a specific embodiment it may be provided that smart meters within the same group form a "ring", wherein each smart meter sends to the next one in the ring a random value δ, through a secure channel, which is subtracted from its key and added to the next smart meter key as follows:



[0022] In other words, each smart meter smi, for establishing a new key ki,j for a subsequent reporting period j, subtracts from its key ki,j-1 employed in the preceding reporting period j-1 the random value δi,j sent to the next smart meter within the ring and adds the random value δi-1,j received from the preceding smart meter within the ring.

[0023] If a smart meter within a group fails, or acts faulty or even maliciously, and tries to subvert the system by sending its key to the key aggregator, but not the corresponding encrypted measurement value (or vice versa), then the central entity is not able to perform the correct decryption.

[0024] In order to tackle this issue and to prevent malicious/faulty smart meters, according to preferred embodiment an additional mechanism, referred to as "tokens solution" hereinafter, may be applied. This "tokens solution" may be realized as follows:
  1. a) Each smart meter smi sends its key kij to the key aggregator KA through a secure channel
  2. b) The key aggregator KA, upon receiving a key from a smart meter, replies with an acknowledgement token (referred to as ACK token hereinafter), TKA,i
  3. c) Each smart meter smi sends then the encrypted measurement Eki,j (eij), together with the ACK token TKA,i, to the central entity
  4. d) The central entity only accepts encrypted measurements from smart meters that come with such tokens
  5. e) The central entity replies with another ACK token TCE,i, directly to the key aggregator KA
  6. f) Once the key aggregator receives such token TCE,i, it actually accepts the key kij received in step a)


[0025] Step d) ensures that it is impossible to send an encrypted value without having previously sent the key to the key aggregator. In turn, step e) excludes the possibility that a smart meter could send its key to the key aggregator, without sending the encrypted measurement to the central entity.

[0026] Again, in order to keep the signaling overhead as low as possible the tokens solution outlined above may be enabled only for a period where a threat is detected such that the central entity is not able to decrypt the aggregation of encrypted values, coming back to the normal functioning scheme straight afterwards.

[0027] By applying the described bihomomorphic encryption/decryption of energy consumption measurements generated by smart meters, together with the constitution of smart meters groups, the explained keys updating mechanism and, when necessary, the "tokens solution", a system is achieved where a central entity, in particular an energy supplier, can still benefit from the (almost) instantaneous reports from smart meters in order to better monitor, control, and predict energy use, while preserving the privacy of final users in terms of their daily habits at home or their appliances usage patterns, for instance.

[0028] There are several ways how to design and further develop the teaching of the present invention in an advantageous way. To this end, it is to be referred to the patent claims subordinate to patent claim 1 on the one hand, and to the following explanation of a preferred example of an embodiment of the invention illustrated by the drawing on the other hand. In connection with the explanation of the preferred example of an embodiment of the invention by the aid of the drawing, generally preferred embodiments and further developments of the teaching will be explained. In the drawings
Fig. 1
is a diagram illustrating exemplarily a load profile of a single-person household measured and report by a smart meter according to prior art,
Fig. 2
schematically illustrates an embodiment of a method according to the present invention with two different groups of smart meters, and
Fig. 3
schematically illustrates a part of a smart grid in which a scenario of smart meter key updating is executed according to an embodiment of the present invention.


[0029] With reference to Fig. 2, an Energy Supplier (from now on, ES) is illustrated that receives electricity measurements eij from a plurality of smart meters smi in period j. In the scenario illustrated in Fig. 2 it is an objective to avoid the ES to know individual measurements from smart meters smi, but only the aggregation of the later. Additionally, it is an objective to avoid the figure of an intermediate aggregator. To do so, the ES must receive all the individual values encrypted, without being able to decrypt them. But, once the aggregation is done, it should be indeed able to decrypt such aggregated value.

[0030] In accordance with the present invention smart meters smi are "hidden" within groups G, two of which are depicted in Fig. 1 - Group 1 and Group 2. That is, every smart meter smi takes its measured value eij, encrypts it by using key kij and applying encryption scheme E, and sends the encrypted value Ekij(eij) to the ES, through a secure channel, thereby hiding its real identity as "a member of group G(i)", wherein



[0031] In accordance with the present invention a bihomomorphic encryption scheme E is employed, which is a symmetric encryption scheme that is additive homomorphic both on the plaintext space and on the key space. This type of encryption allows the ES to decrypt the aggregation of encrypted reports, but not those encrypted measurements individually. The key aggregator only knows the individual keys, while the ES only knows both the aggregated key K and the individual encrypted measurements. It is to be noted that any secure additive bihomomorphic encryption mechanism with these features can be used in the context of the present invention.

[0032] In summary, in the embodiment of Fig. 2 the following steps are executed, which in the following are described for Group 1:
  1. 1) Each smart meter of Group 1

    at time j, updates its key

    and sends it to the key aggregator. In the scenario of Fig. 2, smart meter

    is currently designated as key aggregator, as indicated by the pentagonal shape of the smart meter.
  2. 2) The key aggregator computes the aggregation of all received keys according to the following equation:


    and sends such aggregated key K to the ES, as illustrated by the dashed line. This step is performed only once at the beginning or every time a smart meter of the group leaves/fails or enters/joins the group. If it's not the beginning, then the key aggregator checks that the aggregation of received keys

    is equal to the aggregated key K, for consistency.
  3. 3) Each smart meter

    encrypts its consumption measurement at time j, eij, using its key

    giving as a result

  4. 4) The ES receives the encrypted measurements

    i.e.

  5. 5) The ES computes the aggregation

    that should be equal to

    through the following bihomomorphism:

  6. 6) Then, the ES is able to decrypt such aggregation by means of the following expression:



[0033] A bihomomorphic encryption is an encryption which is additive homomorphic both on the plaintext space and on the key space:



[0034] As mentioned before, this type of encryption allows the ES to decrypt the aggregation of encrypted reports, but not those encrypted measurements individually. The key aggregator only knows the individual keys, while the ES only knows both the aggregated key K and the individual encrypted measurements.

[0035] In the unlikely case of having a collusion between the current (malicious) key aggregator and the ES, the former could send the individual keys of the smart meters of its group to the later, instead of sending the aggregation of such keys. Then, the ES could try all the possible combinations between the set of keys and the set of individual encrypted values, trying to decrypt the later. However, since the individual keys are updated every round, and the key aggregator is designated periodically, it would be computationally expensive (and probably not worthy) for the ES to collude with the key aggregator and perform such attack.

[0036] Fig. 3 schematically illustrates an updating process for the keys employed by smart meters of a specific group according to an embodiment of the present invention. The key updating is performed per reporting period in such a way that the aggregation of all the keys of the group, i.e. the aggregated key K, always remains constant. To this end, smart meters within the same group form a "ring" where each smart meter sends to the next one in the ring a random value, through a secure channel, which is subtracted from its key and added to the next smart meter's key as follows:


wherein j denotes a current reporting period and j-1 the previous reporting period.

[0037] Many modifications and other embodiments of the invention set forth herein will come to mind the one skilled in the art to which the invention pertains having the benefit of the teachings presented in the foregoing description and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.


Claims

1. Method for operating a smart grid including a plurality of smart meters, said smart meters being configured to monitor at least one physical measured quantity and to provide measurement results of said at least one physical measured quantity to a central entity,
characterized in the following steps:

said smart grid is partitioned into groups G of smart meters smi, such that each of said smart meters belongs to exactly one group,

all smart meters smi of one of said groups G encrypt their measured value ei by applying a bihomomorphic encryption scheme Eki and send it to said central entity,

one smart meter per group is designated as key aggregator to which all smart meters smi of that group send their key ki employed for said encryption,

said key aggregator computes the aggregation of all received keys ki and sends the aggregated key K to said central entity,

said central entity aggregates all received encrypted measured values ei and decrypts said aggregation by employing said aggregated key K.


 
2. Method according to claim 1, wherein said at least one specific physical measured quantity is the electrical energy consumption of a consuming unit, in particular a household.
 
3. Method according to claim 1 or 2, wherein said central entity is an energy supplier.
 
4. Method according to any of claims 1 to 3, wherein said groups G of smart meters smi are configured by putting into the same group smart meters smi belonging to a specific building, street, or village.
 
5. Method according to any of claims 1 to 4, wherein said smart meters smi report said at least one specific physical measured quantity to said central entity in regular time intervals.
 
6. Method according to any of claims 1 to 5, wherein said smart meters smi report said at least one specific physical measured quantity to said central entity through a secure channel,
wherein preferably group signatures are employed for establishing said secure channel.
 
7. Method according to any of claims 1 to 6, wherein the smart meter smi being designated as key aggregator within a group G is changed from time to time, and/or
wherein a change of said key aggregator is performed in case a smart meter smi being designated as key aggregator fails, leaves the group G and/or acts maliciously.
 
8. Method according to any of claims 1 to 7, wherein said key aggregator sends the aggregated key K to said central entity through a secure channel, and/or
wherein said key aggregator sends the aggregated key K to said central entity each time a smart meter smi of the respective group G fails or leaves or enters said group.
 
9. Method according to any of claims 1 to 8, wherein reporting periods j are defined and wherein each smart meter smi uses a different key ki,j per reporting period for encrypting said at least one specific physical measured quantity,
wherein said keys ki,j for each reporting period j may be computed in such a way that the aggregated key K of all smart meters smi of a group G remains the same.
 
10. Method according to claim 9, wherein smart meters smi of the same group G are composed as a ring,
wherein each smart meter sends to the subsequent smart meter in said ring a random value δi,j, and
wherein each smart meter smi, for establishing a new key ki,j for a subsequent reporting period j, subtracts from its key ki,j-1 employed in the preceding reporting period j-1 the random value δi,j sent to the next smart meter in said ring and adds the random value δi-1,j received from the preceding smart meter in said ring.
 
11. Method according to any of claims 1 to 10, wherein said key aggregator, upon receiving a key from a smart meter smi, replies with an acknowledgement token.
 
12. Method according to claim 11, wherein said smart meter smi includes said acknowledgement token into its report of said at least one specific physical measured quantity to said central entity,
wherein preferably said central entity is configured to refuse measurement report from smart meters smi that do not include said token.
 
13. Method according to claim 12, wherein said central entity, upon receiving a measurement report from a smart meter smi including a token, replies to said key aggregator with another token,
wherein said key aggregator, upon receiving said token from said central entity, may accept said key received from the corresponding smart meter smi.
 
14. Method according to any of claims 11 to 13, wherein said tokens are added to the respective messages only in cases where said central entity is not able to decrypt the aggregated encrypted measured values ei.
 
15. Smart grid, including a plurality of smart meters, said smart meters being configured to monitor at least one physical measured quantity and to provide measurement results of said at least one physical measured quantity to a central entity,
characterized in that
said smart grid is partitioned into groups G of smart meters smi, such that each of said smart meters belongs to exactly one group,
wherein all smart meters smi of one of said groups G are configured to encrypt their measured value ei by applying a bihomomorphic encryption scheme Eki and to send it to said central entity,
wherein one smart meter per group G is designated as key aggregator to which all smart meters smi of that group send their key ki employed for said encryption,
wherein said key aggregator includes means for computing the aggregation of all received keys ki and for sending the aggregated key K to said central entity, and
wherein said central entity is configured to aggregate all received encrypted measured values ei and to decrypt said aggregation by employing said aggregated key K.
 


Ansprüche

1. Verfahren zum Betreiben eines intelligenten Stromnetzes umfassend eine Vielzahl von intelligenten Zählern, wobei die intelligenten Zähler konfiguriert sind, wenigstens eine physikalische Messgröße zu überwachen und einer zentralen Einheit Messergebnisse der wenigstens einen physikalischen Messgröße bereitzustellen,
gekenntzeichnet durch die folgenden Schritte:

das intelligente Stromnetz ist derart in Gruppen G von intelligenten Zählern smi partitioniert, dass jeder der intelligenten Zähler zu genau einer Gruppe gehört,

alle intelligenten Zähler smi einer der Gruppen G verschlüsseln ihren Messwert ei durch Anwenden eines bihomomorphen Verschlüsselungsschemas Eki und senden ihn an die zentrale Einheit,

ein intelligenter Zähler pro Gruppe wird als Schlüsselaggregator bestimmt, an den alle intelligenten Zähler smi der betreffenden Gruppe ihren für die Verschlüsselung verwendeten Schlüssel ki senden,

der Schlüsselaggregator berechnet die Aggregation aller empfangenen Schlüssel ki und sendet den aggregierten Schlüssel K an die zentrale Einheit,

die zentrale Einheit aggregiert alle empfangenen verschlüsselten Messwerte ei und entschlüsselt die Aggregation durch Verwendung des aggregierten Schlüssels K.


 
2. Verfahren nach Anspruch 1, wobei die wenigstens eine bestimmte physikalische Messgröße der elektrische Energieverbrauch einer Verbrauchereinheit, insbesondere eines Haushalts, ist.
 
3. Verfahren nach Anspruch 1 oder 2, wobei die zentrale Einheit ein Energieversorger ist.
 
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Gruppen G von intelligenten Zählern smi konfiguriert werden, indem in dieselbe Gruppe intelligente Zähler smi eingefügt werden, die zu einem bestimmten Gebäude, einer bestimmten Straße oder einem bestimmten Dorf gehören.
 
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die intelligenten Zähler smi die wenigstens eine bestimmte physikalische Messgröße in regelmäßigen Zeitintervallen an die zentrale Einheit berichten.
 
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei die intelligenten Zähler smi die wenigstens eine bestimmte physikalische Messgröße über einen sicheren Kanal an die zentrale Einheit berichten,
wobei vorzugsweise Gruppensignaturen zur Errichtung des sicheren Kanals verwendet werden.
 
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei der intelligente Zähler smi, der als Schlüsselaggregator innerhalb einer Gruppe G bestimmt ist, von Zeit zu Zeit geändert wird, und/oder
wobei eine Änderung des Schlüsselaggregators vorgenommen wird in dem Fall, dass ein als Schlüsselaggregator bestimmter intelligenter Zähler smi ausfällt, die Gruppe G verlässt und/oder böswillig handelt.
 
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei der Schlüsselaggregator den aggregierten Schlüssel K über einen sicheren Kanal an die zentrale Einheit sendet, und/oder
wobei der Schlüsselaggregator den aggregierten Schlüssel K jedes Mal dann an die zentrale Einheit sendet, wenn ein intelligenter Zähler smi der betreffenden Gruppe G ausfällt oder die Gruppe verlässt oder in die Gruppe eintritt.
 
9. Verfahren nach einem der Ansprüche 1 bis 8, wobei Berichtsperioden j definiert werden und wobei jeder intelligente Zähler smi einen unterschiedlichen Schlüssel kij pro Berichtsperiode zur Verschlüsselung der wenigstens einen bestimmten physikalischen Messgröße verwendet,
wobei die Schlüssel kij für jede Berichtsperiode j derart berechnet werden können, dass der aggregierte Schlüssel K von allen intelligenten Zählern smi einer Gruppe G der Gleiche bleibt.
 
10. Verfahren nach Anspruch 9, wobei intelligente Zähler smi derselben Gruppe G als ein Ring zusammengesetzt sind,
wobei jeder intelligente Zähler an den nachfolgenden intelligenten Zähler in dem Ring einen Zufallswert δi,j sendet, und
wobei jeder intelligente Zähler smi, zur Etablierung eines neuen Schlüssels ki,j für eine nachfolgende Berichtsperiode j, von seinem in der vorangehenden Berichtsperiode j-1 verwendeten Schlüssel ki,j-1 den an den nächsten intelligenten Zähler in dem Ring gesendeten Zufallswert δi,j subtrahiert und den von dem in dem Ring vorausgehenden intelligenten Zähler empfangenen Zufallswert δi-1,j addiert.
 
11. Verfahren nach einem der Ansprüche 1 bis 10, wobei der Schlüsselaggregator, sobald er einen Schlüssel von einem intelligenten Zähler smi empfängt, mit einem Bestätigungstoken antwortet.
 
12. Verfahren nach Anspruch 11, wobei der intelligente Zähler smi den Bestätigungstoken in seinen Bericht der wenigstens einen bestimmten physikalischen Messgröße an die zentrale Einheit einfügt,
wobei die zentrale Einheit vorzugsweise konfiguriert ist, Messungsberichte von intelligenten Zählern smi, die den Token nicht aufweisen, zurückzuweisen.
 
13. Verfahren nach Anspruch 12, wobei die zentrale Einheit, sobald sie einen Messungsbericht von einem intelligenten Zähler smi empfängt, der einen Token aufweist, dem Schlüsselaggregator mit einem weiteren Token antwortet,
wobei der Schlüsselaggregator, sobald er den Token von der zentralen Einheit empfängt, den von dem korrespondierenden intelligenten Zähler smi empfangenen Schlüssel akzeptieren kann.
 
14. Verfahren nach einem der Ansprüche 11 bis 13, wobei die Tokens den jeweiligen Nachrichten nur in Fällen hinzugefügt werden, in denen die zentrale Einheit die aggregierten verschlüsselten Messwerte ei nicht entschlüsseln kann.
 
15. Intelligentes Stromnetz, umfassend eine Vielzahl von intelligenten Zählern, wobei die intelligenten Zähler konfiguriert sind, wenigstens eine physikalische Messgröße zu überwachen und einer zentralen Einheit Messergebnisse der wenigstens einen physikalischen Messgröße bereitzustellen,
dadurch gekennzeichnet, dass
das intelligente Stromnetz derart in Gruppen G von intelligenten Zählern smi partitioniert ist, dass jeder der intelligenten Zähler zu genau einer Gruppe gehört,
wobei alle intelligenten Zählern smi einer der Gruppen G so konfiguriert sind, dass sie ihren Messwert ei durch Anwenden eines bihomomorphen Verschlüsselungsschemas Eki verschlüsseln und ihn an die zentrale Einheit senden,
wobei ein intelligenter Zähler pro Gruppe G als Schlüsselaggregator bestimmt wird, an den alle intelligenten Zähler smi der betreffenden Gruppe ihren für die Verschlüsselung verwendeten Schlüssel ki senden,
wobei der Schlüsselaggregator Mittel zur Berechnung der Aggregation aller empfangenen Schlüssel ki und zum Senden des aggregierten Schlüssels K an die zentrale Einheit umfasst, und
wobei die zentrale Einheit so konfiguriert ist, dass sie alle empfangenen verschlüsselten Messwerte ei aggregiert und die Aggregation durch Verwendung des aggregierten Schlüssels K entschlüsselt.
 


Revendications

1. Procédé de mise en oeuvre d'un réseau intelligent comprenant une pluralité d'appareils de mesure intelligents, lesdits appareils de mesure intelligents étant configurés pour surveiller au moins une quantité physique mesurée et pour fournir les résultats de mesure de ladite au moins une quantité physique mesurée à une entité centrale,
caractérisé par les étapes suivantes :

ledit réseau intelligent est divisé en groupes G d'appareils de mesure intelligents smi, de sorte que chacun desdits appareils de mesure intelligents appartienne exactement à un groupe,

tous les appareils de mesure intelligents smi de l'un desdits groupes G chiffrent leur valeur mesurée ei en appliquant une méthode de chiffrement hihomornorphe Eki et l'envoient à ladite entité centrale,

un appareil de mesure intelligent par groupe est désigné en tant que dispositif d'agrégation de clés auquel tous les appareils de mesure intelligents smi de ce groupe envoient leur clé ki utilisée pour ledit chiffrement,

ledit dispositif d'agrégation de clés calcule l'agrégation de toutes les clés ki reçues et envoie la clé agrégée K à ladite entité centrale,

ladite entité centrale agrège toutes les valeurs mesurées ei chiffrées reçues et déchiffre ladite agrégation en utilisant ladite clé agrégée K.


 
2. Procédé selon la revendication 1, dans lequel ladite au moins une quantité physique mesurée spécifique est la consommation d'énergie électrique d'une unité consommatrice, en particulier un ménage.
 
3. Procédé selon la revendication 1 ou 2, dans lequel ladite entité centrale est un fournisseur d'énergie.
 
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel lesdits groupes G d'appareils de mesure intelligents smi sont configurés en plaçant dans le même groupe les appareils de mesure intelligents smi appartenant à un bâtiment, une rue, ou un village spécifique.
 
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel lesdits appareils de mesure intelligents smi rapportent ladite au moins une quantité physique mesurée spécifique à ladite entité centrale à des intervalles de temps réguliers.
 
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel lesdits appareils de mesure intelligents smi rapportent ladite au moins une quantité physique mesurée spécifique à ladite entité centrale par l'intermédiaire d'un canal sécurisé,
dans lequel, de préférence, des signatures de groupe sont utilisées pour établir ledit canal sécurisé.
 
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel l'appareil de mesure intelligent smi désigné en tant que dispositif d'agrégation de clés dans un groupe G est changé de temps en temps, et/ou
dans lequel un changement dudit dispositif d'agrégation de clés est effectué dans le cas où un appareil de mesure intelligent smi désigné en tant que dispositif d'agrégation de clés devient défaillant, quitte le groupe G et/ou agit de manière malveillante.
 
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel ledit dispositif d'agrégation de clés envoie la clé agrégée K à ladite entité centrale par l'intermédiaire d'un canal sécurisé, et/ou
dans lequel ledit dispositif d'agrégation de clés envoie la clé agrégée K à ladite entité centrale à chaque fois qu'un appareil de mesure intelligent smi du groupe G respectif devient défaillant ou quitte ledit groupe ou entre dans ledit groupe.
 
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel des périodes de rapport j sont définies et dans lequel chaque appareil de mesure intelligent smi utilise une clé respectif ki,j respectif par période de rapport pour chiffrer ladite au moins une quantité physique mesurée spécifique,
dans lequel lesdites clés kij pour chaque période de rapport j peuvent être calculées de manière à ce que la clé agrégée K de tous les appareils de mesure intelligents smi d'un groupe G reste la même.
 
10. Procédé selon la revendication 9, dans lequel les appareils de mesure intelligents smi du même groupe G sont agencés en anneau,
dans lequel chaque appareil de mesure intelligent envoie à l'appareil de mesure intelligent suivant dans ledit anneau une valeur aléatoire δi,j, et
dans lequel chaque appareil de mesure intelligent smi, pour établir une nouvelle clé ki,j pendant une période de rapport j suivante, soustrait de sa clé ki,j-1 utilisée pendant la période de rapport précédente j-1 la valeur aléatoire δi,j envoyée à l'appareil de mesure intelligent suivant dans ledit anneau et ajoute la valeur aléatoire δi-1,j reçue de l'appareil de mesure intelligent précédent dans ledit anneau.
 
11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel ledit dispositif d'agrégation de clés, lors de la réception d'une clé d'un appareil de mesure intelligent smi, répond avec un jeton d'acquittement.
 
12. Procédé selon la revendication 11, dans lequel ledit appareil de mesure intelligent smi introduit ledit jeton d'acquittement dans son rapport de ladite au moins une quantité physique mesurée spécifique à ladite entité centrale,
dans lequel, de préférence, ladite entité centrale est configurée pour refuser un rapport de mesure provenant des appareils de mesure intelligents smi qui ne comprend pas ledit jeton.
 
13. Procédé selon la revendication 12, dans lequel ladite entité centrale, lors de la réception d'un rapport de mesure d'un appareil de mesure intelligent smi comprenant un jeton, répond au dit dispositif d'agrégation de clés avec un autre jeton,
dans lequel ledit dispositif d'agrégation de clés, lors de la réception dudit jeton de ladite entité centrale, peut accepter ladite clé reçue de l'appareil de mesure intelligent smi correspondant.
 
14. Procédé selon l'une quelconque des revendications 11 à 13, dans lequel lesdits jetons sont ajoutés aux messages respectifs uniquement dans des cas où ladite entité centrale n'est pas capable de déchiffrer les valeurs mesurées ei chiffrées agrégées.
 
15. Réseau intelligent, comprenant une pluralité d'appareils de mesure intelligents, lesdits appareils de mesure intelligents étant configurés pour surveiller au moins une quantité physique mesurée et pour fournir les résultats de mesure de ladite au moins une quantité physique mesurée à une entité centrale,
caractérisé en ce que
ledit réseau intelligent est divisé en groupes G d'appareils de mesure intelligents smi, de sorte que chacun desdits appareils de mesure intelligents appartienne exactement à un groupe,
dans lequel tous les appareils de mesure intelligents smi de l'un desdits groupes G sont configurés pour chiffrer leur valeur mesurée ei en appliquant une méthode de chiffrement bihomomorphe Eki et pour l'envoyer à ladite entité centrale,
dans lequel un appareil de mesure intelligent par groupe G est désigné en tant que dispositif d'agrégation de clés auquel tous les appareils de mesure intelligents smi de ce groupe envoient leur clé ki utilisée pour ledit chiffrement,
dans lequel ledit dispositif d'agrégation de clés comprend des moyens pour calculer l'agrégation de toutes les clés ki reçues et pour envoyer la clé agrégée K à ladite entité centrale, et
dans lequel ladite entité centrale est configurée pour agréger toutes les valeurs mesurées ei chiffrées reçues et pour déchiffrer ladite agrégation en utilisant ladite clé agrégée K.
 




Drawing












REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description