(19)
(11)EP 2 541 234 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 12173446.1

(22)Date of filing:  25.06.2012
(51)International Patent Classification (IPC): 
G01N 21/64(2006.01)
G01N 21/77(2006.01)

(54)

Method of contemporaneously monitoring changes in analyte concentration in a plurality of samples on individual schedules

Verfahren zur gleichzeitigen Überwachung von Veränderungen der Analytkonzentration in einer Mehrzahl von Proben nach individuellen Zeitplänen

Procédé de surveillance simultanée de changements de concentration d'un analyte dans plusieurs échantillons sur des programmes individuels


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.06.2011 US 201113173427

(43)Date of publication of application:
02.01.2013 Bulletin 2013/01

(73)Proprietor: OCULER LIMITED
Ballina, Co. Tipperary (IE)

(72)Inventors:
  • Mayer, Daniel W.
    Wyoming, MN 55092 (US)
  • Ascheman, Timothy A.
    Elk River, MN 55330 (US)

(74)Representative: Purdylucey Intellectual Property 
6-7 Harcourt Terrace
D02 FH73 Dublin 2
D02 FH73 Dublin 2 (IE)


(56)References cited: : 
US-A- 5 595 708
US-A1- 2009 029 402
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Photoluminescent sensors or probes are a widely employed method of measuring analyte concentration, typically oxygen, within an enclosed space such as a package or container. See, for example United States Published Patent Applications 2009/0029402, 2008/8242870, 2008/215254, 2008/199360, 2008/190172, 2008/148817, 2008/146460, 2008/117418, 2008/0051646, and 2006/0002822, and United States Patents 7,569,395, 7,534,615, 7,368,153, 7,138,270, 6,689,438, 5,718,842, 4,810,655, and 4,476,870.

    [0002] Briefly, analyte concentration within a package or container can be measured by placing an analyte sensitive photoluminescent probe within the package or container, allowing the probe to equilibrate within the package or container, exciting the probe with radiant energy, and measuring the extent to which radiant energy emitted by the excited probe is quenched by the presence of the target analyte. Such optical sensors are available from a number of suppliers, including Presence Precision Sensing, GmbH of Regensburg, Germany, Oxysense of Dallas, Texas, United States, and Luxcel Biosciences, Ltd of Cork, Ireland.

    [0003] Such probes can be used to quantify a rate of oxygen uptake by biological and chemical samples, thereby serving as a biomarker of cell or organism viability. Also, many oxygen-dependent enzymatic and chemical reactions can be monitored via oxygen consumption, providing a means for evaluating the performance of various reactants, catalysts, enzymes, etc. and the effect of various conditions (e.g., temperature, pressure, concentrations, etc.).

    [0004] The placement of photoluminescent probes into vials for monitoring oxygen consumption by a sample placed into the vial is known. United States Patent Nos. 5,371,016 and 6,080,574 describe optical systems for measuring sample sterility and microbial growth by monitoring oxygen consumption by a sample placed within a vial having a fluorescence-based oxygen sensor built into the vial. WO98/15645 describes an optical system that uses a solid-state luminescence-based oxygen sensor to assess a biological sample containing living microorganisms by measuring gradients of dissolved oxygen within the sample. United States Patent No. 5,882,922 describes a system for measuring oxygen consumption in samples using wells containing a solid-state oxygen sensor coating applied to the bottom of each well or soluble oxygen probes added to each sample. US 5,595,708 A and US 2009/0029402 disclose methods as defined in the preamble of claim 1.

    [0005] While effective for accurately quantifying a rate of change in analyte concentration within a sample (e.g., oxygen uptake by biological and chemical samples) and thereby allowing quantification of viable microbes within a sample or quantification of a chemical reaction, the systems and techniques employing such technology are time consuming, often creating a choke-point in the distribution of products, such as foodstuffs, from a production facility into the stream of commerce.

    [0006] Accordingly, a substantial need exists for quick, simple and inexpensive technique for hastening quantification of viable microbes within a sample or quantification of a chemical reaction employing photoluminescent probes that does not sacrifice accuracy or reliability.

    SUMMARY OF THE INVENTION



    [0007] The invention is directed to a method as defined in claim 1. Preferred embodiments are defined in the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWING



    [0008] Figure 1 is a schematic depiction of one embodiment of a system capable of use in practicing the claimed invention.

    DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT


    Nomenclature



    [0009] 
    10
    Interrogation Device
    15
    Display Component of Interrogation Device
    20
    Vessel, Vial or Cuvette
    20n
    nth Vessel, Vial or Cuvette
    21
    Open Top End of Vessel, Vial or Cuvette
    22
    Closed Bottom End of Vessel, Vial or Cuvette
    29
    Retention Chamber of Vessel, Vial or Cuvette
    30
    Probe
    30n
    Probe in nth Vessel, Vial or Cuvette
    40
    Barcode
    40n
    Barcode on nth Vessel, Vial or Cuvette
    50
    Sample
    50n
    Sample in nth Vessel, Vial or Cuvette

    Construction



    [0010] The invention is directed to a method of contemporaneously monitoring changes in analyte concentration, in a plurality of samples 50 using a single monitoring device 10.

    [0011] The target analyte can be any molecule of interest capable of being detected (e.g., oxygen O2, carbon dioxide CO2, carbon monoxide CO, etc.). Since the most frequent target-analyte is oxygen, the balance of the disclosure shall be based upon oxygen as the target-analyte without intending to be limited thereby.

    [0012] The source of the samples 50 is essentially unlimited, including solids, gels, liquids and gases taken from any of a variety of sources such as a processing line (e.g., a food processing line) or a point source (e.g., water tower, sewage treatment system, stream, etc.). Persons of routine skill in the art are capable of selecting and preparing suitable samples 20 for use in the present invention.

    [0013] Each sample 50 is placed within the retention chamber 29 of a vessel 20 having an open top end 21, a closed bottom end 22, and a probe 30 within the retention chamber 29. The vessel 20 is preferably a vial or cuvette having a high aspect ratio of depth to circumference, such as disclosed in United States Patent Application Publication 2009/0029402 A. Since a preferred vessel 20 is a vial or cuvette 20, the balance of the disclosure shall reference the vessel 20 as a vial 20 without intending to be limited thereby.

    [0014] Each vial 20 is given a unique identification tag 40 such as a barcode or RFID tag.

    [0015] The preferred methods and compositions described herein are based on the quenching of photoluminescence by an analyte, typically oxygen (O2). Luminescence encompasses both fluorescence and phosphorescence. Electromagnetic radiation in the ultraviolet or visible region is used to excite molecules to higher electronic energy levels. The excited molecules lose their excess energy by one of several methods. One of those methods is fluorescence. Fluorescence refers to the radiative transition of electrons from the first excited singlet state to the singlet ground state (S1 to S0). The lifetime of fluorescence is relatively short, approximately 10-9 to 10-7 seconds. However, intersystem crossing from the lowest excited singlet state to the triplet state often occurs and is attributed to the crossing of the potential energy curves of the two states. The triplet state so produced may return to the ground state by a radiative process known as phosphorescence. Phosphorescence is the radiative relaxation of an electron from the lowest excited triplet state to the singlet ground state (T1 to S0). Because the transition that leads to phosphorescence involves a change in spin multiplicity, it has a low probability and hence a relatively long lifetime of 10-4 to 10 seconds. Fluorescent and phosphorescent lifetime is known to change in a defined fashion relative to changes in the partial pressure of an analyte (PA) capable of quenching the photoluminescent molecules. Hence, the PA in fluid communication with a photoluminescent material can be determined by measuring photoluminescence lifetime.

    [0016] In a preferred embodiment, the probes 30 are optically-active, target-analyte partial pressure sensitive materials configured and arranged to experience changes in target-analyte partial pressure PA in a sample 50 placed within the retention chamber 29 of a vial 20. The analyte-sensitive material is preferably a photoluminescent dye embedded within an analyte permeable polymer matrix. Since the preferred type of probe 30 is an optically-active, target-analyte partial pressure sensitive material, and the most frequent target-analyte of interest is oxygen, the balance of the disclosure shall be based upon a photoluminescent oxygen quenched probe 30 without intending to be limited thereby.

    [0017] The oxygen-sensitive photoluminescent dye may be selected from any of the well-known oxygen sensitive photoluminescent dyes. One of routine skill in the art is capable of selecting a suitable dye based upon the intended use of the probe. A nonexhaustive list of suitable oxygen sensitive photoluminescent dyes includes specifically, but not exclusively, ruthenium(II)-bipyridyl and ruthenium(II)-diphenylphenanothroline complexes, porphyrin-ketones such as platinum(II)-octaethylporphine-ketone, platinum(II)-porphyrin such as platinum(II)-tetrakis(pentafluorophenyl)porphine, palladium(II)-porphyrin such as palladium(II)-tetrakis(pentafluorophenyl)porphine, phosphorescent metallocomplexes of tetrabenzoporphyrins, chlorins, azaporphyrins, and long-decay luminescent complexes of iridium(III) or osmium(II).

    [0018] Typically, the hydrophobic oxygen-sensitive photoluminescent dye is compounded with a suitable oxygen-permeable and hydrophobic carrier matrix. Again, one of routine skill in the art is capable of selecting a suitable oxygen-permeable hydrophobic carrier matrix based upon the intended use of the probe and the selected dye. A nonexhaustive list of suitable polymers for use as the oxygen-permeable hydrophobic carrier matrix includes specifically, but not exclusively, polystryrene, polycarbonate, polysulfone, polyvinyl chloride and some co-polymers.

    [0019] When the probe 30 is based on the quenching of photoluminescence by an analyte, the vial 20, or at least that portion of the vial 20 coated with the probe 30, must allow radiation at the excitation and emission wavelengths to be transmitted to and received from the probe 30 with minimal interference.

    [0020] Instruments 10 for interrogating probes 30 based on the quenching of photoluminescence by an analyte are well known and commercially available from various sources, including Becton Dickinson of Franklin Lakes, New Jersey and Mocon, Inc. of Minneapolis, Minnesota.

    Manufacture of Probe 30 Containing Vials 20



    [0021] The probe 30 containing vials 20 can be conveniently manufactured by (A) preparing a coating cocktail (not shown) which contains the photoluminescent oxygen-sensitive dye and the oxygen-permeable polymer in an organic solvent (not shown) such as ethylacetate, (B) depositing the cocktail into the bottom 22 of the retention chamber 29, such as by using a syringe (not shown), and (C) allowing the cocktail (not shown) to dry, whereby a solid-state coating is formed within the retention chamber 29 at the bottom 22 of the vial 20, thereby forming a probe 30 within the vial 20.

    [0022] Generally, the concentration of the polymer in the organic solvent should be in the range of 0.1 to 20% w/w, with the ratio of dye to polymer in the range of 1:20 to 1:10,000 w/w, preferably 1:50 to 1:5,000 w/w.

    Use



    [0023] The probe 30 can be used to quickly, easily, accurately and reliably monitor changes in oxygen concentration within a sample 50 deposited into the retention chamber 29 of the vessel 20 in accordance with traditional methods employed to interrogate such probes 30. Briefly, the probe 30 is used to measure oxygen concentration within a sample 20 deposited into the retention chamber 29 of the vessel 20 by (A) depositing a sample 50 to be tested into the retention chamber 29, and (B) ascertaining the oxygen concentration within the retention chamber 29 by (i) repeatedly exposing the probe 30 to excitation radiation over time, (ii) measuring radiation emitted by the excited probe 30 after at least some of the exposures, (iii) measuring passage of time during the repeated excitation exposures and emission measurements, and (iv) converting at least some of the measured emissions to an oxygen concentration based upon a known conversion algorithm, and (C) reporting at least one of (i) at least two ascertained oxygen concentrations and the time interval between those reported concentrations, and (ii) a rate of change in oxygen concentration within the enclosed space calculated from data obtained in step (B). Conversion algorithms used to convert the measured emissions to an oxygen concentration are well know to and readily developable by those with routine skill in the art.

    [0024] The radiation emitted by the excited probe 30 can be measured in terms of intensity and/or lifetime (rate of decay, phase shift or anisotropy), with measurement of lifetime generally preferred as a more accurate and reliable measurement technique when seeking to establish oxygen concentration via measurement of the extent to which the dye has been quenched by oxygen.

    [0025] Testing of individual samples 50 from amongst a plurality of samples 50n can be commenced without delay and continued on separate and discrete schedules for each sample 50 using a single monitoring device 10 by (i) obtaining a first sample 501, (ii) placing the first sample 501 into a vial 20 to form a first sample-containing vial 201, (iii) performing an initial interrogation of the first sample-containing vial 201 with the single interrogation device 10, (iv) performing subsequent interrogations of the first sample-containing vial 201 with the single interrogation device 10 on a schedule measured from the time at which the initial interrogation of the first sample-containing vial 201 was performed, and (v) repeating steps (i) through (iv) for subsequently obtained samples 50n with the initial interrogation of each vial 20n containing a subsequently obtained sample 50n taken whenever each vial 20n is ready for an initial interrogation and the single interrogation device 10 is available - without regard to the time at which the initial interrogation of any other sample-containing vial 20n was taken.

    Examples


    Example 1 (prophetic)


    Manual



    [0026] Samples of a processed food product are taken from a processing line every hour on the half hour to ascertain viable bacterial count (TVC, APC or CFU) just prior to packaging. Each sample is transported from the processing line to a testing room, digested for a predefined period of time, and deposited into a barcoded vial containing a photoluminescent oxygen-sensitive probe.

    [0027] Each sample is placed into an instrument capable of reading the barcode on each vial, interrogating the probe in each vial, and for each vial maintaining a database of the results of each interrogation and the time at which each interrogation was taken. The instrument reads the barcode on each inserted vial using a barcode reader. If the vial has not been previously interrogated, the instrument requests the operator to input the lot number of the sample deposited into the vial. Upon receipt of the requested data, the instrument interrogates the probe to obtain an initial reading. The results of the initial reading and the time of day at which the initial reading is taken are recorded and correlated to the barcode of the tested vial. Upon completion of the initial interrogation, a schedule is established for subsequent interrogations of the vial and an operator is instructed to remove the vial from the instrument and place the vial into an incubation chamber.

    [0028] The instrument displays a chronologically ordered sequence of scheduled interrogations that includes an identification of the vials to be interrogated and an indication of the time remaining until the next scheduled interrogation for each vial. The instrument provides both a visual and audible cue (e.g.,

    and an accompanying tone) to an operator when an identified vial is to be removed from the incubation chamber and inserted into the instrument for testing. An exemplary display is provided below.
    VIAL IDLOT #TIME TO NEXT READING
    123456789 11-14798 0 hrs 3 min

    123456790 11-14799 0 hrs 9 min
    123456902 11-14803 0 hrs 43 min
    123455780 11-14796 0 hrs 45 min


    [0029] Upon insertion of a vial for a subsequent interrogation, the instrument reads the barcode to ensure that the inserted vial matches the vial scheduled for interrogation, interrogates the vial when the scheduled interrogation time is reached, and signals the operator to remove the vial upon completion of the interrogation. If a vial is inserted after its scheduled interrogation time, the vial is interrogated as quickly as possible after insertion into the instrument.

    [0030] The results of each interrogation and elapsed time since the initial interrogation for the vial are recorded by the instrument.

    [0031] Each vial is interrogated until a threshold value is reached in the readings from the probe, at which time the instrument indicates that testing is complete and provides the operator with an indication of whether the sample contained an ACCEPTABLE or UNACEPTABLE viable bacterial count based upon a preestablished threshold. Upon request, the operator can obtain the actual value of the viable bacterial count from the instrument.

    Example 2 (prophetic)


    Automated



    [0032] Samples of a processed food product are taken from a processing line every hour on the half hour to ascertain viable bacterial count (TVC, APC or CFU) just prior to packaging. Each sample is transported from the processing line to a testing room, digested for a predefined period of time, and deposited into a barcoded vial containing a photoluminescent oxygen-sensitive probe.

    [0033] Each sample is placed into a carousel capable of holding a plurality of vials. The carousel is housed within an instrument capable of reading the barcode on each vial in the carousel, interrogating the probe in each vial, and for each vial maintaining a database of the results of each interrogation and the time at which each interrogation was taken. A "check status" signal is transmitted to the instrument each and every time the carousel is accessed by an operator. Upon receiving the "check status" signal, the instrument reads the barcode on all vials in the carousel. If the instrument encounters a vial that has not been previously interrogated, the instrument requests the operator to input the lot number of the sample deposited into the vial. Upon receipt of the requested data, the instrument interrogates the probe to obtain an initial reading. The results of the initial reading and the time of day at which the initial reading is taken are recorded and correlated to the barcode of the tested vial. Upon completion of the initial interrogation, a schedule is established for subsequent interrogations of the vial.

    [0034] The instrument displays a chronologically ordered sequence of scheduled interrogations that includes an identification of the vials to be interrogated and an indication of the time remaining until the next scheduled interrogation for each vial. The instrument automatically locates and interrogates the vials in accordance with the programmed and displayed schedule.
    VIAL IDLOT #TIME TO NEXT READING
    123456789 11-14798 Reading Underway
    123456790 11-14799 0 hrs 9 min
    123456902 11-14803 0 hrs 43 min
    123455780 11-14796 0 hrs 45 min


    [0035] The results of each interrogation and elapsed time since the initial interrogation for the vial are recorded by the instrument.

    [0036] Each vial is interrogated until a threshold value is reached in the readings from the probe, at which time the instrument indicates that testing is complete and provides the operator with an indication of whether the sample contained an ACCEPTABLE or UNACEPTABLE viable bacterial count based upon a preestablished threshold. Upon request, the operator can obtain the actual value of the viable bacterial count from the instrument.


    Claims

    1. A method of monitoring changes in analyte concentration in a plurality of samples, comprising the steps of:

    (a) obtaining at least two separate and independent vessels (20), each defining a single retention chamber (29) and having an analyte sensitive probe (30) within the retention chamber,

    (b) placing a test sample (50) into each vessel to form filled vessels, and

    (c) periodically interrogating the probe within each filled vessel employing a single interrogation device (10) wherein (i) interrogations measure changes in the probe reflective of changes in analyte concentration within the retention chamber of the filled vessel, (ii) an initial interrogation of the probe is taken at time t0 for each filled vessel, (iii) subsequent interrogations of the probe of each filled vessel are taken periodically on a schedule measured from the time to for each filled vessel, (iv) the initial interrogation of each filled vessel is taken at a different time of day, and (v) at least two filled vessels are contemporaneously interrogated, characterized in that (vi) the initial interrogation for at least one filled vessel occurs subsequent to a subsequent interrogation of at least one other filled vessel.


     
    2. The method of claim 1, wherein the method monitors consumption of oxygen by viable bacteria in the sample and correlates measured changes in oxygen concentration to a concentration of bacteria in the sample prior to monitoring.
     
    3. The method of claim 1 or 2, wherein the vessel is a vial or a cuvette formed from an oxygen barrier material.
     
    4. The method of any one claims 1 to 3, wherein the step of obtaining at least two separate and independent vessels comprises the step of obtaining at least ten vessels.
     
    5. The method of any one of claims 1 to 4, wherein at least ten filled vessels are contemporaneously interrogated.
     
    6. The method of any one of claims 3 to 5, wherein (i) the vessels (20) have an open top end (21) and a closed bottom end (22), and (ii) the probe (30) is positioned within the retention chamber (29) of each vessel proximate the bottom end.
     
    7. The method of any one of claim 1 to 6 wherein the analyte is oxygen and the probe is an oxygen sensitive photoluminescent dye.
     
    8. The method of any one of claims 1 to 7, wherein the test sample is a food product intended for human consumption.
     
    9. The method of any one of claims 1 to 8, wherein the food product has been stomached prior to placement in the vessel.
     
    10. The method of any one of claims 1 to 9, wherein the interrogations measure changes in the probe reflective of changes in analyte concentration dissolved within the test sample retained within the retention chamber of the filled vessel.
     
    11. The method of any one of claims 1 to 10, wherein interrogations measure photoluminescence lifetime.
     
    12. The method of any one of claims 1 to 11, wherein a human perceptible reminder signal and information identifying a specific filled vessel scheduled for the next forthcoming subsequent interrogation is generated by the interrogation device for each subsequent interrogation.
     
    13. The method of any one of claims 1 to 12, wherein each vessel (20) is tagged with a barcode (40) and the information identifying a specific filled vessel is the barcode.
     


    Ansprüche

    1. Verfahren zur Überwachung von Änderungen der Analytenkonzentration in einer Vielzahl von Proben, das die folgenden Schritte umfasst:

    (a) Erhalten von mindestens zwei separaten und unabhängigen Gefäßen (20), wobei jedes eine einzelne Retentionskammer (29) definiert und eine Analyten-sensitive Sonde (30) innerhalb der Retentionskammer aufweist,

    (b) Einbringen einer Untersuchungsprobe (50) in jedes Gefäß, um gefüllte Gefäße zu bilden, und

    (c) regelmäßiges Abfragen der Sonde innerhalb jedes gefüllten Gefäßes unter Einsatz einer einzelnen Abfragevorrichtung (10),

    wobei (i) Abfragen Änderungen der Sonde messen, die Änderungen der Analytenkonzentration innerhalb der Retentionskammer des gefüllten Gefäßes reflektieren, (ii) eine erste Abfrage der Sonde zu einem Zeitpunkt to für jedes gefüllte Gefäß erfolgt, (iii) nachfolgende Abfragen der Sonde von jedem gefüllten Gefäß regelmäßig nach einem Zeitplan, gemessen vom Zeitpunkt to für jedes gefüllte Gefäß, erfolgen, (iv) die erste Abfrage von jedem gefüllten Gefäß zu einer unterschiedlichen Tageszeit erfolgt und (v) mindestens zwei gefüllte Gefäße gleichzeitig abgefragt werden, dadurch gekennzeichnet, dass (vi) die erste Abfrage für mindestens ein gefülltes Gefäß nach einer nachfolgenden Abfrage von mindestens einem anderen gefüllten Gefäß erfolgt.
     
    2. Verfahren nach Anspruch 1, wobei das Verfahren den Verbrauch an Sauerstoff durch lebensfähige Bakterien in der Probe überwacht und gemessene Änderungen der Sauerstoffkonzentration mit einer Konzentration an Bakterien in der Probe vor der Überwachung korreliert.
     
    3. Verfahren nach Anspruch 1 oder 2, wobei das Gefäß ein Fläschchen oder eine Küvette ist, die aus einem Sauerstoffbarrierematerial ausgebildet sind.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der Schritt des Erhaltens von mindestens zwei separaten und unabhängigen Gefäßen den Schritt des Erhaltens von mindestens zehn Gefäßen umfasst.
     
    5. Verfahren nach einem der Ansprüche 1 bis 4, wobei mindestens zehn gefüllte Gefäße gleichzeitig abgefragt werden.
     
    6. Verfahren nach einem der Ansprüche 3 bis 5, wobei (i) die Gefäße (20) ein offenes oberes Ende (21) und ein geschlossenes unteres Ende (22) aufweisen und (ii) die Sonde (30) innerhalb der Retentionskammer (29) von jedem Gefäß nahe des unteren Endes positioniert ist.
     
    7. Verfahren nach einem der Ansprüche 1 bis 6, wobei der Analyt Sauerstoff ist und die Sonde ein Sauerstoff-sensitiver photolumineszierender Farbstoff ist.
     
    8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Untersuchungsprobe ein Lebensmittelprodukt ist, das zum menschlichen Verzehr vorgesehen ist.
     
    9. Verfahren nach einem der Ansprüche 1 bis 8, wobei das Lebensmittelprodukt vor der Einbringung in das Gefäß verdaut wurde.
     
    10. Verfahren nach einem der Ansprüche 1 bis 9, wobei die Abfragen Änderungen der Sonde messen, die Änderungen der Analytenkonzentration reflektieren, die innerhalb der Untersuchungsprobe gelöst ist, die innerhalb der Retentionskammer des gefüllten Gefäßes enthalten ist.
     
    11. Verfahren nach einem der Ansprüche 1 bis 10, wobei Abfragen die Lebensdauer von Photolumineszenz messen.
     
    12. Verfahren nach einem der Ansprüche 1 bis 11, wobei ein vom Menschen wahrnehmbares Erinnerungssignal und Informationen, die ein spezielles gefülltes Gefäß identifizieren, das für die nächste bevorstehende nachfolgende Abfrage vorgesehen ist, durch die Abfragevorrichtung für jede nachfolgende Abfrage erzeugt werden.
     
    13. Verfahren nach einem der Ansprüche 1 bis 12, wobei jedes Gefäß (20) mit einem Strichcode (40) gekennzeichnet ist und die Informationen, die ein spezielles gefülltes Gefäß identifizieren, der Strichcode sind.
     


    Revendications

    1. Méthode de suivi de changements de concentration en analyte dans une pluralité d'échantillons, comprenant les étapes consistant à :

    (a) obtenir au moins deux récipients séparés et indépendants (20), définissant chacun une chambre de rétention unique (29) et ayant une sonde sensible aux analytes (30) au sein de la chambre de rétention,

    (b) placer un échantillon à tester (50) dans chaque récipient afin de former des récipients remplis, et

    (c) interroger de manière périodique la sonde au sein de chaque récipient rempli en employant un dispositif d'interrogation unique (10)

    (i) les interrogations mesurent les changements au niveau de la sonde traduisant des changements de concentration en analyte au sein de la chambre de rétention du récipient rempli,

    (ii) une interrogation initiale de la sonde est effectuée au temps to pour chaque récipient rempli,

    (iii) des interrogations ultérieures de la sonde de chaque récipient rempli sont effectuées de manière périodique selon un programme mesuré à partir du temps to pour chaque récipient rempli,

    (iv) l'interrogation initiale de chaque récipient rempli est effectuée à un moment différent dans la journée, et

    (v) au moins deux récipients remplis sont interrogés en même temps, caractérisée en ce que

    (vi) l'interrogation initiale pour au moins un récipient rempli se produit après une interrogation ultérieure d'au moins un autre récipient rempli.


     
    2. Méthode selon la revendication 1, la méthode effectuant le suivi de la consommation en oxygène par des bactéries viables dans l'échantillon et la corrélation de changements mesurés de la concentration en oxygène avec une concentration en bactéries dans l'échantillon préalablement au suivi.
     
    3. Méthode selon la revendication 1 ou 2, dans laquelle le récipient est un flacon ou une cuvette formé(e) à partir d'un matériau de barrière à l'oxygène.
     
    4. Méthode selon l'une quelconque des revendications 1 à 3, dans laquelle l'étape consistant à obtenir au moins deux récipients séparés et indépendants comprend l'étape consistant à obtenir au moins dix récipients.
     
    5. Méthode selon l'une quelconque des revendications 1 à 4, dans laquelle au moins dix récipients remplis sont interrogés en même temps.
     
    6. Méthode selon l'une quelconque des revendications 3 à 5, dans laquelle

    (i) les récipients (20) possèdent une extrémité supérieure ouverte (21) et une extrémité inférieure fermée (22), et

    (ii) la sonde (30) est positionnée au sein de la chambre de rétention (29) de chaque récipient à proximité de l'extrémité inférieure.


     
    7. Méthode selon l'une quelconque des revendications 1 à 6, dans laquelle l'analyte est l'oxygène et la sonde est un colorant photoluminescent sensible à l'oxygène.
     
    8. Méthode selon l'une quelconque des revendications 1 à 7, dans laquelle l'échantillon à tester est un produit alimentaire prévu pour une consommation par l'homme.
     
    9. Méthode selon l'une quelconque des revendications 1 à 8, dans laquelle le produit alimentaire a été homogénéisé à l'aide d'un Stomacher préalablement à son placement dans le récipient.
     
    10. Méthode selon l'une quelconque des revendications 1 à 9, dans laquelle les interrogations mesurent les changements au niveau de la sonde traduisant des changements de concentration en analyte solubilisé dans l'échantillon à tester retenu au sein de la chambre de rétention du récipient rempli.
     
    11. Méthode selon l'une quelconque des revendications 1 à 10, dans laquelle les interrogations mesurent la durée de vie de la photoluminescence.
     
    12. Méthode selon l'une quelconque des revendications 1 à 11, dans laquelle un signal de rappel perceptible par l'homme et des informations identifiant un récipient rempli spécifique programmé pour l'interrogation ultérieure suivante à venir est généré par le dispositif d'interrogation pour chaque interrogation ultérieure.
     
    13. Méthode selon l'une quelconque des revendications 1 à 12, dans laquelle chaque récipient (20) est marqué par un code-barre (40) et les informations identifiant un récipient rempli spécifique sont constituées du code-barre.
     




    Drawing








    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description