(19)
(11)EP 2 546 464 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 12176611.7

(22)Date of filing:  16.07.2012
(51)Int. Cl.: 
F01D 5/28  (2006.01)
F23R 3/06  (2006.01)
F23R 3/00  (2006.01)
F23R 3/08  (2006.01)

(54)

Coated gas turbine components

Beschichtete Gasturbinenkomponenten

Composants de turbine à gaz revêtus.


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 15.07.2011 US 201113184136

(43)Date of publication of application:
16.01.2013 Bulletin 2013/03

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventor:
  • Pater Christopher M.
    Tolland, CT 06084 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 1 632 720
US-A- 5 941 686
US-A1- 2010 143 655
EP-A2- 1 437 194
US-A1- 2007 036 942
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The present invention relates generally to coated gas turbine components, and more particularly components having airflow apertures and protective coatings.

    [0002] Combustion chambers are engine sections which receive and combust fuel and high pressure gas. Gas turbine engines utilize at least one combustion chamber in the form of a main combustor which receives pressurized gas from a compressor, and expels gas through a turbine which extracts energy from the resulting gas flow. Some gas turbine engines utilize an additional combustion chamber in the form of an afterburner, a component which injects and combusts fuel downstream of the turbine to produce thrust. All combustion chambers, including both main-line combustors and afterburners, are constructed to withstand high temperatures and pressures.

    [0003] Combustion chambers and other high-temperature gas turbine components vary greatly in geometry depending on location and application. All combustion chambers comprise a plurality of walls or tiles which guide and constrain gas flow, typically including a liner which surrounds a combustion zone within the combustion chamber. Liners and some other combustion chamber walls are conventionally ventilated with numerous air holes or apertures for cooling. Conventional apertures for this purpose are holes with walls normal to the surface of the liner. Some combustion chamber walls, including liners for main-line combustors and afterburners, receive thermal barrier coatings, coatings for erosion prevention, or radar absorbent coatings to reduce the radar profile of exposed portions of the turbine. Such coatings must withstand exceptionally high temperatures and pressures, and are frequently formed of brittle ceramics which are vulnerable to fracturing and delamination. Coatings in other high-temperature, high-pressure areas of gas turbines, particularly on combustor nozzles and hot turbine blades and vanes, share similar design requirements.

    [0004] According to some prior art techniques, cooling apertures have been bored or punched in combustion chamber walls after coating deposition. More recent techniques apply coatings to combustion chamber walls and other gas turbine components after the formation of apertures. When using either technique, coatings near apertures are especially vulnerable to mechanical stresses, and are prone to fracture, ablate and delaminate from the substrate combustion chamber wall. A design solution is needed which reduces the stresses on combustion chamber wall coatings at aperture locations.

    [0005] US 5941686A discloses a fluid cooled article having a protective coating on a surface the article having a wall having a fluid cooling passage. The passage has a first and a second opening. The coating is deposited on the wall surface and partially within the passage at the second opening. Document EP1437194 discloses a gas turbine engine component of the state of the art according to the preamble of claim 1.

    SUMMARY



    [0006] The present invention is directed toward a gas turbine engine component subject to extreme temperatures and pressures, the gas turbine engine component comprising: a wall having a first surface and a second surface which define opposite sides of the wall, and an airflow aperture that extends through the wall in a direction generally perpendicular to the first surface, the airflow aperture defined by an aperture wall surface which extends from a first opening in the first surface to a second opening in the second surface, and which is flared at a juncture with the first surface such that the first opening has a greater cross-sectional flow area than the second opening, wherein the aperture wall surface has a radius of curvature or an effective non-zero radius of curvature such that the abruptness of the angular transition from the first surface to the aperture wall surface is reduced; and a high-pressure, high-temperature resistant coating adhered to the first surface, and adhered to a portion of the aperture wall surface adjacent the first opening; characterised in that the coating reduces the effective aperture width of the aperture to a flow width.

    [0007] Certain preferred embodiments of the invention will now be described by way of example only and with reference to the accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] 

    FIG. 1 is a schematic view of a gas turbine engine.

    FIGs. 2A, 2B, 2C, and 2D are cross-sectional views of cooling apertures in an engine combustion chamber wall of FIG. 1.

    FIG. 3 is a cross-sectional view of the cooling aperture of FIG. 2B, illustrating relevant geometry.

    FIG. 4 is a cross-sectional view of the cooling aperture of FIG. 2C, illustrating relevant geometry.

    FIGs. 5A, 5B, and 5C are simplified cross-sectional views illustrating formation of the cooling aperture of FIG. 2A using a rotary machine tools.


    DETAILED DESCRIPTION



    [0009] FIG. 1 is a schematic view of gas turbine engine 10, comprising compressor 12, combustor 14, turbine 16, and afterburner 18. Combustor 14 has combustor outer wall 20 and combustor liner 22, and afterburner 18 has afterburner outer wall 24 and afterburner liner 26. Compressor 12 receives and pressurizes environmental air, and delivers this pressurized air to combustor 14. Combustor 14 injects fuel into this pressurized air, and ignites the resulting fuel-air mixture. Turbine 16 receives gas flow from combustor 14, and extracts much of the kinetic energy of this airflow to power compressor 12 and other systems, potentially including an electrical generator (not shown). Exhaust from turbine 16 passes through afterburner 18, wherein additional fuel is injected, and the resulting fuel-air mixture ignited to produce thrust.

    [0010] Combustor outer wall 20 is a first rigid heat-resistant barrier which defines the outer extent of combustor 14. Combustor liner 22 is a second rigid heat-resistant barrier, such as of nickel alloy, with a plurality of cooling apertures, as described with respect to FIGs. 2A-2D. These cooling apertures supply a thin film of cooling air to the interior of combustor liner 22.

    [0011] The operation of afterburner 18 largely parallels the operation of combustor 14. Afterburner outer wall 24 and afterburner liner 26 are rigid heat-resistant barriers, and afterburner liner 26 features a plurality of cooling apertures, like combustor liner 22. These apertures provide a film of cooling air to the interior of afterburner liner 26, where fuel is injected and combusted to provide additional thrust.

    [0012] Combustor liner 22 and afterburner liner 26 receive coatings such as thermal barrier coatings. These coatings must withstand extreme temperatures and pressures for extended periods. To improve the adhesion of these coatings to combustor liner 22 and afterburner liner 26 in such high temperatures and pressures, apertures in combustor liner 22 and afterburner liner 26 are formed in geometries described below with respect to FIGs. 2A-2D to increase the aperture wall surface area on which coating is deposited and to reduce stress in the coating that can lead to failure of the coating at or near the apertures.

    [0013] FIGs. 2A, 2B, 2C, and 2D depict various embodiments of aperture 104 (i.e. apertures 104a, 104b, 104c, and 104d) in combustor liner 22. Although description is provided in terms of combustor liner 22, it will be understood by those skilled in the art that apertures 104a, 104b, 104c, and 104d may be cooling holes in any appropriate combustion chamber wall, such as afterburner liner 26.

    [0014] FIG. 2A depicts one embodiment of combustor liner 22. Although description hereinafter will focus on apertures in combustor liner 22 (see FIG. 1), those skilled in the art will recognize that the aperture geometries disclosed herein may be utilized for cooling holes in afterburner liner 26, or in other coated high-temperature and high-pressure gas turbine structures, such as in coated airfoil blade or vane surfaces, nozzle flaps, or nozzle seals. FIG. 2A shows combustor liner 22a having first surface 100a and second surface 102a interrupted by aperture 104a. First surface 100 and second surface 102 define opposite sides of combustor liner 22a. First surface 100a may, for instance, be an inner surface of combustor liner 22, and second surface 102a may, for instance, be an outer surface of combustor liner 22.

    [0015] Aperture 104a is a cooling hole extending through liner 22a along an axis normal to liner first surface 100a. Aperture 104a is defined and bounded in liner 22a by aperture wall surface 106a. Aperture wall surface 106a spans between first surface 100a and second surface 102a. Coating 108a is deposited atop first surface 100a, and infiltrates aperture 104a to at least partially cover aperture wall surface 106a, as shown. Coating 108 is a high-temperature and high-pressure resistant coating such as a ceramic-based plasma spray coating. Aperture 104a may be a cooling hole through combustor liner 22a. Aperture wall surface 106a may be substantially symmetric across a midpoint of aperture 104a, and is flared where it meets first surface 100a. In particular, aperture wall surface 106a meets first surface 100a in circular, elliptical, or polygonal hole perimeter. Aperture wall surface 106a is angled at a uniform obtuse angle relative to first surface 100a, at this hole perimeter. In particular, aperture wall surface 106a is curved continuously from first surface 100a at this hole perimeter. In other embodiments, aperture wall surface 106a may be sloped, flared, beveled or chamfered at the hole perimeter where it meets first surface 100a, as discussed in further detail below with respect to FIGs. 2B, 2C, and 2D. Aperture 104a thus diverges from a narrow opening at second surface 102a to a wider opening at surface 100a, i.e. an opening with a greater cross-sectional flow area. This curve, slope, flare, bevel, of chamfer at the hole perimeter provides a vector component of aperture wall surface 106a parallel to first surface 100a.

    [0016] Coating 108a is applied, for example, by physical vapor deposition in a direction normal to first surface 100a, and is thus able to adhere to aperture wall surface 106a. Aperture wall surface 106a has a tapered segment generally contiguous to first surface 100a onto which coating 108a can be deposited inside aperture 104a. The curve (or, alternatively, slope, flare, bevel, or chamfer) at the juncture of aperture wall surface 106a and first surface 100a provides a less abrupt angular transition from first surface 100a to aperture wall surface 106a, dramatically reducing stress on coating 108 around aperture 104a as discussed in detail with respect to FIGs. 3 and 4. In addition, this contour at the juncture of aperture wall surface 106a and first surface 100a allows coating 108a to adhere to at least a portion of aperture wall surface 106a, thereby reduces ablation and delamination of coating 108a near aperture 104a.

    [0017] FIG. 2B depicts an alternative embodiment of combustor liner 22 (or other coated gas turbine structure, as discussed above). FIG. 2B generally parallels FIG. 2A both in structure and numbering, and depicts similar combustor liner 22b having first surface 100b and second surface 102b interrupted by aperture 104b. Aperture 104b has aperture wall surface 106b, a substantially symmetric surface which, like aperture wall surface 106a, is flared in a continuous curve near first surface 100b, but which is cylindrically shaped near second surface 102b. Like aperture wall surface 106a, aperture wall surface 106b diverges from an opening at second surface 102b to a wider opening at first surface 100b, thereby providing a region of aperture wall surface 106b on which coating 108b is deposited. The flared juncture between first surface 100b and aperture wall surface 106b reduces stress on coating 108b at the hole perimeter of aperture 104b by reducing the abruptness of the angular transition between first surface 100b and aperture wall surface 106b, thereby decreasing the chance of ablation or delamination of coating 108b.

    [0018] FIG. 2C depicts an alternative embodiment of combustor liner 22 (or other coated gas turbine structures, as discussed above). FIG. 2C generally parallels FIGs. 2A and 2B both in structure and numbering, and depicts similar combustor liner 22c having first surface 100c and second surface 102c interrupted by aperture 104c. Aperture wall surface 106c of aperture 104c has a frusto-conical, uncurved cross-sectional profile from first surface 100c to second surface 102c. Like aperture wall surfaces 106a and 106b, aperture wall surface 106c diverges from an opening in second surface 102c to a wider opening in second surface 100c. Similarly to aperture wall surfaces 106a and 106b, aperture wall surface 106c is flared or inclined at a hole perimeter where it meets first surface 100c, thereby providing a less abrupt angular transition from first surface 100c to aperture wall surface 106c which reduces strain on coating 108c and allows coating 108c to adhere to at least a region of aperture wall surface 106c.

    [0019] FIG. 2D depicts an alternative embodiment of combustor liner 22 (or other coated gas turbine structures, as discussed above). FIG. 2D generally parallels FIGs. 2A, 2B, and 2C in structure and numbering, and depicts similar combustor liner 22d having first surface 100d and second surface 102d interrupted by aperture 104d. Aperture wall surface 106d has a symmetric frusto-conical cross-sectional profile near first surface 100d, and a cylindrical profile near second surface 102d. This chamfer at the junction of first surface 100d and aperture wall surface 106d reduces the abruptness of the angular transition between first surface 100d and aperture wall surface 106d, reducing strain on coating 108d near aperture 104d. Like aperture wall surfaces 106a, 106b, and 106c, the flare of aperture wall surface 106d near first surface 100d allows coating 108d to be adhered to at least a portion of aperture wall surface 106d, reducing the chance of delamination or ablation of coating 108d near aperture 104d.

    [0020] FIGs. 3 and 4 illustrate dimensions of apertures 104b and 104c of FIGs 2B and 2C, respectively. Although apertures 104b and 104c are described as substantially circular holes, one skilled in the art will recognize that the present invention may similarly be applied to elliptical, rectangular, and other polygonal holes.

    [0021] FIG. 3 illustrates combustor liner 22b with first surface 100b, second surface 102b, coating 108b, and aperture 104b with aperture wall surface 106b. The minimum width of aperture 104b defines minor width Wminor, while the maximum width of aperture 104b defines major width Wmajor, as shown. In the case of a circular hole, Wminor and Wmajor are minimum and maximum diameters of aperture 104b, respectively. Applying coating 108b further reduces the effective aperture width of aperture 104b to flow width w, which corresponds to the usable cross-sectional area of aperture 104b for airflow purposes. Coating 108b has coating thickness t, and aperture wall surface 106b has radius of curvature r. This curvature of aperture wall surface 106b reduces the abruptness of the angular transition from first surface 100b to aperture wall surface 106b, thereby reducing stress on coating 108b relative to flat aperture wall surfaces perpendicular to first surface 100b. As an illustrative example, coating stress k drops by more than a factor of 2 as radius of curvature r approaches coating thickness t:



    (Young, Warren C., Roark's Formulas for Stress & Strain, 6th Ed.)

    [0022] As radius of curvature r increases, aperture wall surface 106b approaches aperture wall surface 106a. Larger radii of curvature r reduce strain on coating 108, decreasing the likelihood of coating ablation or delamination.

    [0023] FIG. 4 parallels FIG. 3, and depicts combustor liner 22c with first surface 100c, second surface 102c, coating 108c, and aperture 104c with aperture wall surface 106c. Aperture wall surface 106c is not curved, but is angled at surface angle Θ relative to normal to first surface 100c. Angle Θ provides a less abrupt angular transition for coating 108c at aperture 104c, introducing an effective nonzero radius of curvature to the transition between first surface 100c and aperture wall surface 106c which reduces coating stress k in a manner qualitatively similar to the stress reduction described above with respect to FIG. 3.

    [0024] In addition to improving the stress characteristics of coating 108c near apertures, the present invention increases the area of coating adhesion on aperture wall surface 106c. For example, the area of coating adhesion on aperture wall surface 106c of a circular aperture 104c can be expressed as:



    [0025] The areas of coating adhesion on aperture wall surfaces 106a, 106b, and 106d is similarly increased over prior art cylindrical apertures. This increased adhesion area reduces the likelihood of ablation or delamination of coating 108c.

    [0026] Flow width w is predictable from coating thickness t and the geometry of aperture 104. For a circular aperture 104c:



    [0027] A desired flow width w can be produced by selecting an appropriate deposition rate of coating 108c and appropriate dimensions for aperture 104c. In this way, aperture 104c can be constructed with desired cross-sectional area for cooling airflow. Flow width w is similarly predictable for apertures 104a, 104b, and 104d.

    [0028] Aperture wall surface 106c is flared where it meets first surface 100c. This geometry provides area for coating 108 to adhere to aperture wall surface 106c, reducing strain on coating 108c near apertures 104c. Aperture wall surfaces 106a, 106b, and 106d reduce coating strain analogously.

    [0029] FIGs. 5A, 5B, and 5C depict possible steps in the formation of aperture 104a. These steps can alternatively be used to fabricate apertures 104b, 104c, or 104d. Apertures can generally be formed by a variety of methods, including casting, machine stamping, electrodischarge machining, and laser boring. FIGs. 5A, 5B, and 5C depict only a few possible fabrication methods.

    [0030] FIG. 5A depicts rotary punch 200 and combustor liner 22. Rotary punch 200 is a rotating machining tool with punch heads 202. Punch heads 202 punch holes through combustor liner 22 as a first step in formation of apertures 104a. Punch heads 202 may be circular, elliptical, rectangular, or other polygonal punches, and may have widths or diameters selected to produce desired dimensions of apertures 104a, such as minor width Wminor As rotary punch 200 turns, punch heads 202 rotate one by one into alignment with desired locations for apertures 104a. Punch heads 202 then press through combustor liner 22, punching out sections corresponding to apertures 104a.

    [0031] FIG. 5B depicts embossing die 204 and combustor liner 22. Embossing die 204 is a rotating machining tool with embossing posts 206. Embossing posts 206 emboss combustor liner 22 at the locations of holes formed by rotary punch 200. Embossing posts 206 turn into position with locations of apertures 104a, and press into combustor liner 22 to mold holes formed by rotary punch 200 into the desired geometry of apertures 104a (or, alternatively, any other aperture of the present invention, such as 104b, 104c, or 104d).

    [0032] FIG. 5C depicts rolling die 208, ductile sheet stock, and combustor liner 22. As an alternative to embossing die 204, rolling die 208 can be used to mold holes formed by rotary punch 200 into the desired geometry of apertures 104a (or other aperture geometries). Rolling die 208 is a rotating machining tool which presses ductile sheet stock against combustor liner 22 at the locations of holes formed by rotary punch 100. Ductile sheet stock is a sheet of consumable ductile material through which rolling die 208 applies pressure to deform combustor liner 22 into a desired shape.

    [0033] The formation of apertures 104a, 104b, 104c, and 104c may require applications of a combination of rotary punch 200, embossing die 204, and rolling die 208. Aperture 104a may, for instance, be formed by iteratively punching and embossing combustor liner 22 using a variety of rotary punches 200 and embossing dies 204. Aperture 104a is formed over multiple such iterations, such that aperture wall surface 106a of resulting aperture 104a converges from an opening at first surface 100a to narrower opening at second surface 102a (see FIG. 2A).

    [0034] Aperture geometries of the present invention, such as illustrated in FIGs. 2A-2D, provide increased substrate adhesion area as compared to the prior art, and significantly reduce stress on coating 108. In addition, these geometries allow airflow width w to be precisely controlled during machining of apertures 104 and deposition of coating 108 to produce a desired cross-sectional flow area.

    [0035] While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made without departing from the scope of the invention defined by the attached claims. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.


    Claims

    1. A gas turbine engine component subject to extreme temperatures and pressures, the gas turbine engine component comprising:

    a wall having a first surface (100) and a second surface (102) which define opposite sides of the wall, and an airflow aperture (104) that extends through the wall in a direction generally perpendicular to the first surface, the airflow aperture defined by an aperture wall surface (106) which extends from a first opening in the first surface to a second opening in the second surface, and which is flared at a juncture with the first surface such that the first opening has a greater cross-sectional flow area than the second opening, wherein the aperture wall surface has a radius of curvature (r) or an effective non-zero radius of curvature such that the abruptness of the angular transition from the first surface to the aperture wall surface is reduced; and

    a high-pressure, high-temperature resistant coating (108) adhered to the first surface, and adhered to a portion of the aperture wall surface adjacent the first opening;

    characterised in that the coating reduces the effective aperture width of the aperture (104) to a flow width (w).


     
    2. The gas turbine engine component of claim 1, wherein the gas turbine engine component is a gas turbine combustor liner or afterburner liner.
     
    3. The gas turbine engine component of claim 1, wherein the gas turbine engine component is an airfoil blade or vane.
     
    4. The gas turbine engine component of claim 1, 2 or 3, wherein the aperture wall surface (106) adjacent the second surface (102) is substantially perpendicular to the first and second surfaces.
     
    5. The gas turbine engine component of any preceding claim, wherein the coating (108) is adhered in a uniform thickness.
     
    6. The gas turbine engine component of claim 5, wherein the portion of the aperture wall surface (106) adjacent the first surface (100) has cross-sectional profile with a radius of curvature greater than or equal to the uniform thickness of the coating (108)
     
    7. The gas turbine engine component of any preceding claim, wherein the portion of the aperture wall surface (106) adjacent the first surface (100) has a substantially frusto-conical cross-sectional profile.
     
    8. The gas turbine engine component of claim 7, wherein the aperture wall surface (106) has a frusto-conical cross-sectional profile from the first surface (100) to the second surface (102).
     
    9. The gas turbine engine component of any preceding claim, wherein the coating (108) is a ceramic-based protective coating.
     
    10. The gas turbine engine component of any preceding claim, wherein the first and second openings are substantially circular.
     
    11. The gas turbine engine component of any one of claims 1 to 9, wherein at least one of the first or second openings is elliptical.
     
    12. The gas turbine engine component of any preceding claim, wherein the aperture wall surface (106) is angled at a uniform obtuse angle relative to the first surface (100) at the first opening.
     
    13. The gas turbine engine component of any preceding claim, wherein the high-pressure, high-temperature resistant coating (100) comprises a ceramic-based plasma spray coating.
     
    14. The gas turbine engine component of claim 13, wherein the ceramic-based coating is a thermal barrier coating.
     
    15. The gas turbine engine component of any preceding claim, wherein the aperture wall surface (106) is curved continuously with the first surface (100) at the hole perimeter.
     


    Ansprüche

    1. Gasturbinentriebwerkkomponente, die extremen Temperaturen und Drücken ausgesetzt ist, wobei die Gasturbinentriebwerkkomponente Folgendes umfasst:

    eine Wand, die eine erste Fläche (100) und eine zweite Fläche (102), die gegenüberliegende Seiten der Wand definieren, und eine Luftstromöffnung (104) aufweist, die sich durch die Wand in einer Richtung allgemein senkrecht zu der ersten Fläche erstreckt, wobei die Luftstromöffnung durch eine Öffnungswandfläche (106) definiert ist, die sich von einer ersten Aussparung in der ersten Fläche zu einer zweiten Aussparung in der zweiten Fläche erstreckt, und die an einer Verbindungsstelle mit der ersten Fläche aufgeweitet ist, sodass die erste Aussparung einen im Querschnitt größeren Durchflussbereich aufweist als die zweite Aussparung, wobei die Öffnungswandfläche einen Krümmungsradius (r) oder einen effektiven Nicht-Null-Krümmungsradius aufweist, sodass die Steilheit des winkeligen Übergangs von der ersten Fläche zu der Öffnungswandfläche reduziert ist; und

    eine gegen Hochdruck und hohe Temperatur widerstandsfähige Beschichtung (108), die an der ersten Fläche anhaftet und an einem Abschnitt der Öffnungswandfläche benachbart zu der ersten Aussparung anhaftet;

    dadurch gekennzeichnet, dass die Beschichtung die effektive Öffnungsbreite der Öffnung (104) auf eine Durchflussbreite (w) reduziert.


     
    2. Gasturbinentriebwerkkomponente nach Anspruch 1, wobei die Gasturbinentriebwerkkomponente eine Gasturbinenbrennkammerauskleidung oder Nachbrennerauskleidung ist.
     
    3. Gasturbinentriebwerkkomponente nach Anspruch 1, wobei die Gasturbinentriebwerkkomponente eine Laufschaufel oder Leitschaufel ist.
     
    4. Gasturbinentriebwerkkomponente nach Anspruch 1, 2 oder 3, wobei die Öffnungswandfläche (106) benachbart zur zweiten Fläche (102) im Wesentlichen senkrecht zu der ersten und zweiten Fläche liegt.
     
    5. Gasturbinentriebwerkkomponente nach einem der vorstehenden Ansprüche, wobei die Beschichtung (108) in einer einheitlichen Dicke anhaftet.
     
    6. Gasturbinentriebwerkkomponente nach Anspruch 5, wobei der Abschnitt der Öffnungswandfläche (106) benachbart zur ersten Fläche (100) ein Querschnittsprofil mit einem Krümmungsradius größer oder gleich der einheitlichen Dicke der Beschichtung (108) aufweist.
     
    7. Gasturbinentriebwerkkomponente nach einem der vorstehenden Ansprüche, wobei der Abschnitt der Öffnungswandfläche (106) benachbart zur ersten Fläche (100) ein im Wesentlichen kegelstumpfförmiges Querschnittsprofil aufweist.
     
    8. Gasturbinentriebwerkkomponente nach Anspruch 7, wobei die Öffnungswandfläche (106) ein kegelstumpfförmiges Querschnittsprofil von der ersten Fläche (100) zur zweiten Fläche (102) aufweist.
     
    9. Gasturbinentriebwerkkomponente nach einem der vorstehenden Ansprüche, wobei die Beschichtung (108) eine Schutzbeschichtung auf Keramikbasis ist.
     
    10. Gasturbinentriebwerkkomponente nach einem der vorstehenden Ansprüche, wobei die erste und zweite Aussparung im Wesentlichen kreisförmig sind.
     
    11. Gasturbinentriebwerkkomponente nach einem der Ansprüche 1 bis 9, wobei mindestens eine von der ersten oder zweiten Aussparung elliptisch ist.
     
    12. Gasturbinentriebwerkkomponente nach einem der vorstehenden Ansprüche, wobei die Öffnungswandfläche (106) in einem einheitlichen stumpfen Winkel relativ zu der ersten Fläche (100) an der ersten Aussparung abgewinkelt ist.
     
    13. Gasturbinentriebwerkkomponente nach einem der vorstehenden Ansprüche, wobei die gegen Hochdruck und hohe Temperatur widerstandsfähige Beschichtung (100) eine Plasmasprühbeschichtung auf Keramikbasis umfasst.
     
    14. Gasturbinentriebwerkkomponente nach Anspruch 13, wobei die Beschichtung auf Keramikbasis eine Wärmesperrenbeschichtung ist.
     
    15. Gasturbinentriebwerkkomponente nach einem der vorstehenden Ansprüche, wobei die Öffnungswandfläche (106) durchgehend mit der ersten Fläche (100) am Lochumkreis gekrümmt ist.
     


    Revendications

    1. Composant de moteur à turbine à gaz soumis à des températures et à des pressions extrêmes, le composant de moteur à turbine à gaz comprenant :

    une paroi ayant une première surface (100) et une seconde surface (102) qui définissent des côtés opposés de la paroi, et une ouverture d'écoulement d'air (104) qui s'étend à travers la paroi dans une direction généralement perpendiculaire à la première surface, l'ouverture d'écoulement d'air étant définie par une surface de paroi d'ouverture (106) qui s'étend d'une première ouverture dans la première surface à une seconde ouverture dans la seconde surface, et qui est évasée au niveau d'un point de jonction avec la première surface de sorte que la première ouverture a une zone d'écoulement en coupe transversale plus grande que la seconde ouverture, dans lequel la surface de paroi d'ouverture a un rayon de courbure (r) ou un rayon de courbure non nul effectif de sorte que le caractère abrupt de la transition angulaire de la première surface à la surface de paroi d'ouverture est réduite ; et

    un revêtement résistant à la haute pression et aux hautes températures (108) collé à la première surface, et collé à une partie de la surface de la paroi d'ouverture adjacente à la première ouverture ;

    caractérisé en ce que le revêtement réduit la largeur d'ouverture effective de l'ouverture (104) à une largeur d'écoulement (w).


     
    2. Composant de moteur à turbine à gaz selon la revendication 1, dans lequel le composant de moteur à turbine à gaz est une chemise de chambre de combustion ou une chemise de postcombustion de turbine à gaz.
     
    3. Composant de moteur à turbine à gaz selon la revendication 1, dans lequel le composant de moteur à turbine à gaz est une aube ou une pale à profil aérodynamique.
     
    4. Composant de moteur à turbine à gaz selon la revendication 1, 2 ou 3, dans lequel la surface de paroi d'ouverture (106) adjacente à la seconde surface (102) est sensiblement perpendiculaire aux première et seconde surfaces.
     
    5. Composant de moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel le revêtement (108) est collé dans une épaisseur uniforme.
     
    6. Composant de moteur à turbine à gaz selon la revendication 5, dans lequel la partie de la surface de paroi d'ouverture (106) adjacente à la première surface (100) a un profil en coupe transversale avec un rayon de courbure supérieur ou égal à l'épaisseur uniforme du revêtement (108).
     
    7. Composant de moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel la partie de la surface de paroi d'ouverture (106) adjacente à la première surface (100) a un profil en coupe transversale sensiblement tronconique.
     
    8. Composant de moteur à turbine à gaz selon la revendication 7, dans lequel la surface de paroi d'ouverture (106) a un profil en coupe transversale tronconique de la première surface (100) à la seconde surface (102).
     
    9. Composant de moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel le revêtement (108) est un revêtement protecteur à base de céramique.
     
    10. Composant de moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel les première et seconde ouvertures sont sensiblement circulaires.
     
    11. Composant de moteur à turbine à gaz selon l'une quelconque des revendications 1 à 9, dans lequel au moins l'une des première ou seconde ouvertures est elliptique.
     
    12. Composant de moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel la surface de paroi d'ouverture (106) est inclinée selon un angle obtus uniforme par rapport à la première surface (100) au niveau de la première ouverture.
     
    13. Composant de moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel le revêtement résistant à la haute pression et aux hautes températures (100) comprend un revêtement par pulvérisation de plasma à base de céramique.
     
    14. Composant de moteur à turbine à gaz selon la revendication 13, dans lequel le revêtement à base de céramique est un revêtement de barrière thermique.
     
    15. Composant de moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel la surface de paroi d'ouverture (106) est incurvée en continu avec la première surface (100) au niveau du périmètre de trou.
     




    Drawing












    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description