Field
[0001] The invention relates to an implantable prosthesis and a shell for an implantable prosthesis and methods for making them, in particular a light weight implantable prosthesis containing a biocompatible filler which is suitable for use as a breast implant.
Background
[0002] Reconstructive and cosmetic surgery is now common practice. Specifically cosmetic breast surgery has been developed to allow reconstruction of a woman's breast that was affected by procedures such as mastectomy. Cosmetic breast surgery has also become available to amend the appearance of a woman's breast, for example by adding an implant to increase the size of the breast, to correct asymmetries, change shape and fix deformities.
[0003] Generally the implant is required to be able to provide a specific form and maintain the form for many years, preferably for the lifetime of the woman in which the implant is installed to prevent the need for additional invasive surgery. The implant is also required to have a specific feel preferably imitating the feel of a real breast. The implant also needs to be biodurable such that it is not ruined by interaction with the human body and it needs to be biocompatible so that the woman's health is not detrimentally affected by the implant under extreme circumstances, for example the implant is required to be non toxic in case of leakage from the implant.
[0004] The standard implants used today comprise an outer shell typically from vulcanised silicone or polyurethane, and an inner content typically formed form a silicone gel or saline. The specific weight of the commonly used filling materials is generally between 0.95 to 1.15g/cm
3. An average implant may weigh between 50 to 1000 grams, or even more. The weight of the implant is an addition, which is not negligible for a person.
[0005] Over time breast implants are known to cause many problems, mostly related to the weight of the implant, for example, ptosis (i.e. sagging and deformity), breast tissue atrophy, prominence of the implant through breast tissue, back pain, and straie of the skin.
[0006] The use of salt to create porosity in silicone breast implant shells has been attempted. The porosity leading to a cellular structure of the shell has been created on the outside of the implant mainly to address issues with capsular contracture. This concept has also been used to offset density differences between the implant and breast tissue. Density differences lead to wrinkles and associated fold flaw failures in saline filled implants.
[0007] Patent Specification
WO 2006/114786 claims a reduced weight implantable prosthesis comprising an outer surface shell for encapsulating the prosthesis; a gel mixture comprising a mixture of a cohesive gel and micro-spheres for fill the gel; one or more inner volumes internal to the shell which do not contain said gel mixture; and wherein the gel mixture contains less than 60% by volume of micro-spheres mixed into said cohesive gel.
[0008] US Patent Specification 2009/0299472 discloses a lightweight breast prosthesis formed as an enclosed body having therein at least two compartments chamber, one compartment filled with silicone gel and the other or others are filled with a substance lighter than silicone gel.
Summary
[0009] It has been found that using porosity inside rather than outside of the shell and using a thick layer of the porous structure can lead to an effective weight reduction of implants. The 'foamed' shell can then be filled with the biocompatible filler as normal.
[0010] In a first aspect of the invention, there is provided an implantable prosthesis comprising:
- (i) an outer shell of a silicone or a silicon-containing polyurethane, having an interior surface and an exterior surface, the exterior surface adapted to contact tissue in the body;
- (ii) a biocompatible filler layer contained within the outer shell;
- (iii) a first low density foam inner layer having an interior shell and an exterior shell which substantially prevent the pores of the foam being filled with the biocompatible silicone gel filler, the low density silicone foam inner layer being contained within the biocompatible filler layer;
- (iv) a biocompatible silicone gel filler contained within the interior shell of the low density silicone foam inner layer; and
- (v) at least a second low density silicone foam inner layer having an interior shell and an exterior shell and positioned inside the first biocompatible silicone gel filler layer such that a silicone gel filler layer is present between the first low density silicone foam layer and the second low density silicone foam layer, and another silicone gel filler layer is present between the second low density silicone foam layer and the outer shell.
[0011] Preferably the implantable prosthesis is lightweight. The term "lightweight" is used in the present context to refer to a prosthesis which achieves a weight reduction of up to 20% to 50% or more.
[0012] In a second aspect of the invention, there is provided a method for making an implantable layered prosthesis as defined above.
[0013] The biocompatible filler is preferably a gel or a fluid and could be porous itself.
Detailed Description
[0014] The present invention relates to an implantable prosthesis according to claim 1. Further aspects are defined in the dependent claims 2-11.
[0015] The foamed inner layers result in the prosthesis and the shell being lightweight. The filler could also be porous which would also reduce the weight of the prosthesis.
[0016] The volume of the prosthesis and the space occupied by the filler can be calculated if it assumed that the prosthesis is hemispherical, the volume occupied by the filler will be as follows:

in which, R is the inner radius of the prosthesis. If the inner radius is decreased due to introduced porosity or foaming and the inner radius is taken as r, then the fraction of volume occupied by the filler, f will be as follows:

[0017] For a 9 cm prosthesis, a 1 cm porous structure on the prosthesis can lead to greater than 25% less volume for the filler to occupy. With the 'foamed' shell not adding a significant weight to the prosthesis, a layer of foam can result significant reduction in the overall weight of the prosthesis.
Implantable prosthesis
[0018] The implantable prosthesis may be used in numerous locations in the body. While the most common use is for restoring or improving on normal body contour or augmenting as well as reconstructing the female breast, it will be appreciated that the prosthesis may be implanted in other areas of the body, for example to replace or augment testicles, pectorals, a chin, cheeks, a calf, buttocks or other parts of the human or an animal body, while exhibiting tactile properties similar to natural tissue.
Outer, interior and exterior shells
[0019] The outer, interior and exterior shells may be composed of the same or different materials such as a biocompatible silicon-containing material, for example, silicone or a silicon-containing polyurethane.
[0020] The term "silicone" as used herein refers to silicone or silicone based solids of varying hardness including elastomers, rubbers and resins. The hardness may be in the range of 10 to 90 Shore A. These polymers include silicons together with carbon, hydrogen and oxygen. Silicones are also known as polymerised siloxanes or polysiloxanes composed of units having the formula (R)
2SiO in which R is an organic side chain which is not hydrogen. Representative examples are [SiO(CH
3)
2]
n (polydimethylsiloxane) and [SiO(C
6H
5)
2]
n (polydiphenylsiloxane) in which n is an integer of 1 or greater. The compounds can be viewed as a hybrid of both organic and inorganic compounds. The organic side chains confer hydrophobic properties while the -Si-O-Si-O- backbone is purely inorganic. Examples of silicones or silicone-based materials include silicone rubber, coatings, encapsulants and sealants.
[0021] The polyurethane is preferably biostable for use as a biomaterial in medical devices, articles or implants. Suitable biostable polyurethanes include polyurethanes, polyurethane ureas in particular polyurethanes, polyurethane ureas or polycarbonates containing silicon. Examples of silicon-containing polyurethanes, polyurethane ureas or polycarbonates include those disclosed in
WO92/00338,
WO98/13405,
WO98/54242,
WO99/03863,
WO99/50327,
WO00/64971 and
WO2007/112485. The polyurethanes, polyurethane ureas or polycarbonates generally contain a soft segment and a hard segment. The segments can be combined as copolymers or as blends. For example, polyurethanes with soft segments such as PTMO, polyethylene oxide, polypropylene oxide, polycarbonate, polyolefin, polysiloxane (for example polydimethylsiloxane) and other polyether soft segments made from higher homologous series of diols may be used. Mixtures of any of the soft segments may also be used. The soft segments also may have either alcohol end groups or amine end groups. The molecular weight of the soft segments may vary from about 500 to about 6000. It will be understood that the molecular weight values referred to herein are "number average molecular weights".
[0022] Suitable polyether diol and diamine soft segments include those represented by the formula (I)
A-[
(CH2)m -
O]
n -
A' (I)
in which
A and A' are OH or NHR wherein R is H or optionally substituted C
1-
6 alkyl, more preferably optionally substituted C
1-4 alkyl;
m is an integer of 4 or more, preferably 4 to 18; and
n is an integer of 2 to 50.
[0023] Polyether diols of formula (I) wherein m is 4 to 10 such as polytetramethylene oxide(PTMO), polyhexamethylene oxide (PHMO), polyheptamethylene oxide, polyoctamethylene oxide (POMO) and polydecamethylene oxide (PDMO) are preferred. PHMO is particularly preferred.
[0024] The preferred molecular weight range of the polyether is 200 to 5000, more preferably 200 to 2000.
[0025] Suitable polycarbonate diols include poly(alkylene carbonates) such as poly(hexamethylene carbonate) and poly(decamethylene carbonate); polycarbonates prepared by reacting alkylene carbonate with alkanediols for example 1,4-butanediol, 1,10-decanediol (DD), 1,6-hexanediol (HD) and/or 2,2-diethyl 1,3-propanediol (DEPD); and silicon based polycarbonates prepared by reacting alkylene carbonate with 1,3-bis(4-hydroxybutyl)-1,1,3,3-tetramethyldisiloxane (BHTD) and/or alkanediols.
[0026] It will be appreciated when both the polyether and polycarbonate macrodiols are present, they may be in the form of a mixture or a copolymer. An example of a suitable copolymer is a copoly(ether carbonate) macrodiol represented by the formula (II)

in which
R1 and R2 are the same or different and selected from an optionally substituted C1-6 alkylene, C2-6 alkenylene, C2-6 alkynylene, arylene or a heterocyclic divalent radical; and
p and q are integers of 1 to 20.
[0027] Although the compound of formula (II) above indicates blocks of carbonate and ether groups, it will be understood that they also could be distributed randomly in the main structure.
[0028] Suitable polysiloxane diols or diamines are represented by the formula (III):

in which
A and A' are OH or NHR wherein R is H or optionally substituted C1-6 alkyl, more preferably optionally substituted C1-4 alkyl;
R11, R12, R13 and R14 are independently selected from hydrogen or optionally substituted C1-6 alkyl;
R15 and R16 are the same or different and selected from optionally substituted C1-6 alkylene, C2-6 alkenylene, C12-6 alkynylene, arylene or a heterocyclic divalent radical; and
p is an integer of 1 or greater.
[0029] A preferred polysiloxane is a hydroxyl terminated PDMS which is a compound of formula (III) in which A and A' are hydroxyl, R
11 to R
14 are methyl and R
15 and R
16 are as defined above. Preferably R
15 and R
16 are the same or different and selected from propylene, butylene, pentylene, hexylene, ethoxypropyl (-CH
2CH
2OCH
2CH
2CH
2-), propoxypropyl and butoxypropyl, more preferably ethoxypropyl. A particularly preferred polysiloxane is Shin Etsu product X-22-160AS having a molecular weight of 947.12 which is α-ω-bis(hydroxyethoxypropyl)polydimethylsiloxane.
[0030] Other silicon-containing diols of the formula (III) are 1,3-bis(4-hydroxybutyl)tetramethyl disiloxane (BHTD) (compound of formula (III) in which A and A' are OH, R
11, R
12, R
13 and R
14 are methyl, R
15 and R
16 are butyl and R
17 is O), 1,4-bis(3-hydroxypropyl)tetramethyl disilylethylene (compound of formula (III) in which A and A' are OH, R
1, R
12, R
13 and R
14 are methyl, R
15 and R
16 are propyl and R
17 is ethylene) and 1-4-bis(3-hydroxypropyl)tetramethyl disiloxane, more preferably BHTD.
[0031] The polysiloxanes may be obtained as commercially available products such as X-22-160AS from Shin Etsu in Japan or prepared according to known procedures. The preferred molecular weight range of the polysiloxane macrodiol is 200 to 6000, more preferably from 200 to 5000.
[0032] Other preferred polysiloxanes are polysiloxane macrodiamines which are polymers of the formula (III) wherein A is NH
2, such as, for example, amino-terminated PDMS.
[0033] Suitable silicon-containing polycarbonates have the formula (IV):

in which
R11, R12, R13, R14 and R15 are as defined in formula (III) above;
R16 is an optionally substituted C1-6 alkylene, C2-6 alkenylene, C2-6 alkynylene, arylene or a heterocyclic divalent radical;
R17 is a divalent linking group, preferably O, S or NR18;
R18 and R19 are same or different and selected from hydrogen or optionally substituted C1-6 alkyl;
A and A' are as defined in formula (III) above;
m, y and z are integers of 0 or more; and
x is an integer of 0 or more.
[0034] Preferably z is an integer of 0 to 50 and x is an integer of 1 to 50. Suitable values for m include 0 to 20, more preferably 0 to 10. Preferred values for y are 0 to 10, more preferably 0 to 2.
[0035] A preferred silicon-containing polycarbonate is a compound of the formula (IV) in which A and A' are hydroxyl.
[0036] Particularly preferred silicon-containing polycarbonate diols are compounds of the formula (IV) in which A and A' are hydroxyl, R
11, R
12, R
13 and R
14 are methyl, R
18 is ethyl, R
19 is hexyl, R
15 and R
16 are propyl or R
14 butyl and R
17 is O or -CH
2-CH
2-, more preferably R
5 and R
16 are propyl when R
17 is O and R
15 and R
16 are butyl when R
17 is -CH
2-CH
2-. The preferred molecular weight range of the silicon-based polycarbonate macrodiol is from 400 to 5000, more preferably from 400 to 2000.
[0037] Preferably, the hard segment is formed from a diisocyanate and a chain extender.
[0038] The diisocyanate may be represented by the formula OCN-R-NCO, where -R- may be aliphatic, aromatic, cycloaliphatic or a mixture of aliphatic and aromatic moieties. Examples of diisocyanates include 4,4'-diphenylmethane diisocyanate (MDI), methylene biscyclohexyl diisocyanate (H
12 MDI), tetramethylene diisocyanate, hexamethylene diisocyanate, trimethyhexamethylene diisocyanate, tetramethylxylylene diisocyanate such as p-tetramethylxylene diisocyanate(p-TMXDI) or m-tetramethylxylene-diisocyanate (m-TMXDI), 4,4'-dicyclohexylmethane diisocyanate, dimer acid diisocyanate, isophorone diisocyanate (IPDI), metaxylene diisocyanate, diethylbenzene diisocyanate, decamethylene 1,10 diisocyanate, cyclohexylene 1,2-diisocyanate, trans-cyclohexylene-1,4-diisocyanate (CHDI), 2,4-toluene diisocyanate (2,4-TDI), 2,6-toluene diisocyanate, xylene diisocyanate, pphenylene diisocyanate (p-PDI), m-phenylene diisocyanate (m-PDI), hexahydrotoylene diisocyanate (and isomers), naphthylene-1,5-diisocyanate (NDI), 1-methoxyphenyl 2,4-diisocyanate, 4,4'-biphenylene diisocyanate, 3,3'-dimethoxy-4,4'-biphenyl diisocyanate or 1,6-diisocyanatehexane (DICH), isomers or mixtures thereof. Preferably the diisocyanate is MDI.
[0039] The term "chain extender" in the present context means any chain extender which is capable of reacting with a diisocyanate group. The chain extender generally has a molecular weight range of 500 or less, preferably 15 to 500, more preferably 60 to 450 and may be selected from diol or diamine chain extenders.
[0040] Examples of diol chain extenders include C
1-12 alkane diols such as 1,4-butanediol (BDO), 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol and 1,12-dodecanediol; cyclic diols such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,4-bis(2-hydroxyethoxy)benzene and p-xyleneglycol; and silicon-containing diols such as 1,3-bis(4-hydroxybutyl) tetramethyldisiloxane and 1,3-bis(6-hydroxyethoxypropyl) tetramethyldisiloxane.
[0041] Preferably the diol chain extender is BDO.
[0042] The diol chain extender may also contain silicon. Suitable silicon-containing diol chain extenders include those of formula (V)

in which
R1, R2, R3 and R4 are the same or different and selected from H and an optionally substituted C1-6alkyl;
R5 and R6 are the same of different and selected from optionally substituted C1-6alkylene, C2-6alkenylene, C12-6alkynylene, arylene and a heterocyclic divalent radical;
R7 is a divalent linking group, preferably O; and n is 0 or greater, preferably 2 or less.
[0043] Suitable diamine chain extenders include C
1-12 alkane diamines such as 1,2-ethylenediamine, 1,3-propanediamine, 1,4-butanediamine and 1, 6-hexanediamine; and silicon-containing diamines such as 1,3-bis(3-aminopropyl) tetramethyldisiloxane and 1,3-bis(4-aminobutyl)tetramethyldisiloxane.
[0044] The diamine chain extender may also contain silicon. Suitable silicon-containing diamine chain extenders include those of formula (VI)

in which
R is hydrogen or an optionally substituted C1-6alkyl;
R1, R2, R3 and R4 are the same or different and selected from hydrogen and optionally substituted C1-6alkyl;
R5 and R6 are the same or different and selected from optionally substituted C1-6alkylene, C2-6alkenylene, C12-6alkynylene, arylene and a heterocyclic divalent radical;
R7 is a divalent linking group, preferably O; and
n is 0 or greater, preferably 2 or less.
[0045] The outer shell serves as an enclosure for preventing the content of prosthesis from leaking out. Optionally the prosthesis may be provided in various shapes, for example round, oval, anatomical, custom or other and the outer shell may be smoothened or textured with various patterns.
[0046] The interior and exterior shells house the foamed inner layer and substantially prevent the pores of the foam from being filled with the biocompatible filler.
Foamed inner layer
[0047] The foamed inner layer is preferably an open celled low density foam and may be composed of the same materials as described above for the outer, interior and exterior shells. These materials can be made porous using any suitable known technique such as the use of a blowing agent for example water or alcohol which produces hydrogen and the hydrogen is trapped by the crosslinking of the biocompatible silicon-containing material. Examples of suitable low density silicone foams are disclosed in
US 4,767,794.
[0048] More than one foamed inner layer is advantageously present to result in a significant reduction in the overall weight of the prosthesis. The foamed inner layer is located between the interior and exterior shells.
Biocompatible filler
[0049] The biocompatible filler may be a gel or a saline solution or a combination of both. When the filler is a gel it is typically a silicone gel including the silicon containing biostable gels described in
WO2006/034547 or
WO2007/121513.
[0050] The filler is contained within the interior shell of the foamed inner layer. The interior shell ensures that there is substantially no migration of the filler into the foamed inner layer(s) and the outer shell also ensures there is no migration of the filler into the body. Migration of the filler into the body is a matter of concern in the use of such prosthesis.
[0051] The filler can assume a porous structure using a similar method to that described in relation to the foamed inner layer above. That can lead to further reduction in the weight of the prosthesis.
Method
[0052] The implantable prosthesis of the present invention can be made by a method according to claim 12 or to any of the dependent claims 13 and 14.
[0053] It is important to ensure that the individual layers are cured prior to coating subsequent layers. The curing can be achieved by allowing each layer to dry at room temperature or higher, for example up to 160°C. When the foamed inner layer is coated, porosity is achieved by use of a blowing agent as described above and then curing the layer.
[0054] An exemplary embodiment of the invention will now be described with reference to the following non-limiting drawing and/or example.
Brief Description of the Drawing
[0055] Figure 1 is a drawing of a cross-section of an implantable prosthesis according to an exemplary embodiment of the present invention.
[0056] In an exemplary embodiment of the invention as shown in Figure 1, an implantable prosthesis 2 includes an outer shell 4 which is composed of a silicon-containing material such as silicone or a silicon-containing polyurethane. There is one or more biocompatible filler layer(s) 6 which is typically a gel or a saline solution contained within the outer shell 4. There is one or more foamed inner layer(s) 8 contained within the biocompatible filler layer(s). The biocompatible filler layer(s) 6 have interior shells 10 and exterior shells 12 which may be composed of the same materials as the outer shell 4 thereby substantially preventing the pores of the foam being filled with the biocompatible filler. The foamed inner layer(s) 8 may be composed of the same material as the outer shell which has been made porous by use of a blowing agent such as water or alcohol.
[0057] The implantable prosthesis is filled with a biocompatible filler 14 which is typically a gel or saline solution.
Example
[0058] An embodiment of the invention will now be described with reference to the following non-limiting example.
[0059] Different mandrels were manufactured with different radii in a such a way so that a layered breast implant could be made. Four different shells were manufactured, between the first two shells there was a gap of -0.5 cm and a silicone gel was injected which was subsequently cured. Between the second and third shell there was a larger gap of ~1cm and silicone foam (as disclosed in
US 4,767,794) was injected which foamed to a density of <0.1 g/cc. In the gap between the third and fourth shell a same silicone gel was injected and cured. The layered breast implant had it weight reduced to less than 50% to a similar sized breast implant with a uniform gel filling.
[0060] In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.
1. An implantable layered prosthesis having layers with different radii and comprising:
(i) an outer shell (4) of a silicone or a silicon-containing polyurethane, having an interior surface and an exterior surface, the exterior surface adapted to contact tissue in the body;
(ii) a biocompatible silicone gel filler layer (6) contained within the outer shell;
(iii) a first low density silicone foam inner layer (8) having an interior shell (10) and an exterior shell (12) which substantially prevent the pores of the foam being filled with the biocompatible silicone gel filler, the low density silicone foam inner layer being contained within the biocompatible silicone gel filler layer;
(iv) a biocompatible silicone gel filler (14) contained within the interior shell (10) of the low density silicone foam inner layer (8); and
(v) at least a second low density silicone foam layer (8) having an interior shell (10) and an exterior shell (12) and positioned inside the first biocompatible silicon gel filler layer (6), such that a silicone gel filler layer is present between the first low density silicone foam layer and the second low density silicone foam layer, and another silicone gel filler layer is present between the second low density silicone foam layer and the outer shell (4).
2. A prosthesis according to Claim 1 and wherein the interior and exterior shells (10, 12) have a hardness in the range 10 to 90 Shore A and comprise polymerised siloxanes or polysiloxanes composed of units having the formula (R)2SiO where R is an organic side chain which is not hydrogen and which confers hydrophobic properties while the -Si-O-Si-O backbone is purely inorganic.
3. A prosthesis according to claim 1 and wherein the interior and exterior shells (10, 12) have a hardness in the range 10 to 90 Shore A and comprise a polyurethane having a soft segment and a hard segment, the soft segment comprising polysiloxane having a molecular weight of 500 to 6000 and represented by the formula III:

where A and A' are OH or NHR, R is H or optionally substituted C
1 - 6 alkyl;
R11, R12, R13, and R14 are independently selected from hydrogen or optionally substituted C1 - 6 alkyl;
R15 and R16 are the same or different and selected from optionally substituted C1 - 6 alkylene, C2 - 6 alkenylene, C12 - 6 alkynylene, arylene,or a heterocyclic divalent radical, and
P is an integer of 1 or greater.
4. A prosthesis according to claim 3 and wherein the polysiloxane is a hydroxyl terminated PDMS which is a compound of formula (III) above in which A and A' are hydroxyl, R11 to R14 are methyl and R15 and R16 are the same or different and selected from propylene, butylene, pentylene, hexylene, ethoxypropyl (-CH2CH2OCH2CH2CH2-), propoxypropyl and butoxypropyl,
5. A prosthesis according to claim 3 and wherein other silicon-containing diols of the formula (III) are 1,3-bis(4-hydroxybutyl)tetramethyl disiloxane (BHTD) (compound of formula (III) in which A and A' are OH, R11, R12, R13 and R14 are methyl, R15 and R16 are butyl and R17 is O), 1,4-bis(3-25 hydroxypropyl)tetramethyl disilylethylene (compound of formula (III) in which A and A' are OH, R1, R12, R13 and R14 are methyl, R15 and R16 are propyl and R17 is ethylene) and 1-4-bis(3-hydroxypropyl)tetramethyl disiloxane, or BHTD.
6. A prosthesis according to claim 3 and wherein the polysiloxanes include polysiloxane macrodiamines which are polymers of the formula (III) wherein A is NH2, and amino-terminated PDMS.
7. A prosthesis according to claim 3 and wherein the soft segment is a silicon-containing polycarbonate having a molecular weight range 400 - 5000 and having the formula (IV):

in which
R11, R12, R13, R14 and R15 are as defined in formula (III);
R16 is an optionally substituted C1-6 alkylene, C2-6 alkenylene, C2-6 alkynylene, arylene or a heterocyclic divalent radical;
R17 is a divalent linking group, preferably O, S or NR18;
R18 and R19 are same or different and selected from hydrogen or optionally substituted C1-6 alkyl;
A and A' are as defined in formula (III);
m, y and z are integers of 0 or more; and
x is an integer of 0 or more,
or is a compound of the formula (IV) in which A and A' are hydroxyl,
or in which A and A' are hydroxyl, R11, R12, R13 and R14 are methyl, R18 is ethyl, R19 is hexyl, R15 and R16 are propyl or R14 butyl and R17 is O or -CH2-CH2-, or R5 and R16 are propyl when R17 is O and R15 and R16 are butyl when R17 is -CH2-CH2-.
Preferably z is an integer of 0 to 50 and x is an integer of 1 to 50. Suitable values for m include 0 to 20, more preferably 0 to 10. Preferred values for y are 0 to 10, more preferably 0 to 2.
8. A prosthesis according to any one of claims 3 to 7 and wherein the hard segment is formed from a diisocyanate and a chain extender.
9. A prosthesis according to claim 8 and wherein the diisocyanate is represented by the formula OCN-R-NCO, where -R- may be aliphatic, aromatic, cycloaliphatic or a mixture of aliphatic and aromatic moieties and includes 4,4'-diphenylmethane diisocyanate (MDI), methylene 30 biscyclohexyl diisocyanate (H12 MDI), tetramethylene diisocyanate, hexamethylene diisocyanate, trimethyhexamethylene diisocyanate, p-tetramethylxylene diisocyanate (p-TMXDI) or m-tetramethylxylene-diisocyanate (m-TMXDI), 4,4'-dicyclohexylmethane diisocyanate, dimer acid diisocyanate, isophorone diisocyanate (IPDI), metaxylene diisocyanate, diethylbenzene diisocyanate, decamethylene 1,10 diisocyanate, cyclohexylene 1,2-diisocyanate, trans-cyclohexylene-1,4-diisocyanate (CHDI), 2,4-toluene diisocyanate (2,4-TDI), 2,6-toluene diisocyanate, xylene diisocyanate, pphenylene diisocyanate (p-PDI), m-phenylene diisocyanate (m-PDI), hexahydrotoylene diisocyanate (and isomers), naphthylene-1,5-diisocyanate (NDI), 1-methoxyphenyl 2,4-diisocyanate, 4,4'-biphenylene diisocyanate, 3,3'-dimethoxy-4,4'-biphenyl diisocyanate or 1,6-diisocyanatehexane (DICH), isomers or mixtures thereof.
10. A prosthesis according to claim 8 or claim 9 and wherein the chain extender comprises any one or more of 1,4-butanediol (BDO), 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,4-bis(2-hydroxyethoxy)benzene and p-xyleneglycol; and 1,3-bis(4-hydroxybutyl) tetramethyldisiloxane and 1,3-bis(6-hydroxyethoxypropyl) Tetramethyldisiloxane, the silicon-containing diol chain extenders of formula (V)

in which
R1, R2, R3 and R4 are the same or different and selected from H and an optionally substituted C1-6alkyl;
R5 and R6 are the same of different and selected from optionally substituted C1-6alkylene, C2-6alkenylene, C12-6alkynylene, arylene and a heterocyclic divalent radical;
R7 is a divalent linking group, preferably O; and n is 0 or greater; and 1,2-ethylenediamine, 1,3-propanediamine, 1,4-butanediamine and 1, 6-hexanediamine; and 1,3-bis(3-aminopropyl) tetramethyldisiloxane and 1,3-bis(4-aminobutyl)tetramethyldisiloxane and those of formula (VI)

in which
R is hydrogen or an optionally substituted C1-6alkyl;
R1, R2, R3 and R4 are the same or different and selected from hydrogen and optionally substituted C1-6alkyl;
R5 and R6 are the same or different and selected from optionally substituted C1-6alkylene, C2-6alkenylene, C12-6alkynylene, arylene and a heterocyclic divalent radical;
R7 is a divalent linking group, preferably O; and
n is 0 or greater, preferably 2 or less.
11. A prosthesis according to any one of the preceding claims and wherein the foamed inner layer (8) is an open celled low density porous foam formed of the same materials as those of the interior and exterior shells (10, 12).
12. A method for making an implantable layered prosthesis (2) having layers with different radii and comprising
(i) forming an interior shell (10) of a silicone or a silicon-containing polyurethane;
(ii) injecting a biocompatible silicone gel filler (14) into the interior shell (10);
(iii) coating the interior shell (10) with an inner layer of a low density silicone foam (8);
(iv) coating the foam inner layer (8) with an exterior shell (12) of a silicone or a silicon-containing polyurethane, wherein the exterior shell (12) and the interior shell (10) substantially prevent the pores of the foam from being filled with the filler;
(v) coating the exterior shell (12) of the foam inner layer (8) with an outer shell of a silicone or a silicon-containing polyurethane; and
(vi) injecting a biocompatible silicone gel filler (6) between the exterior shell (12) of the foam inner layer (8) and the outer shell of step (v), whereby the low density silicone foam inner layer (8) is contained within an outer layer of the biocompatible silicone gel filler (6) and at least once:
(vii) coating the outer shell of the preceding step with a further foam layer (8);
(viii) coating the further foam layer (8) of the preceding step with a further exterior shell (12);
(ix) coating the further exterior shell (12) of the further foam layer (8) of the preceding step with a further outer shell (4); and
(x) injecting a biocompatible silicone gel filler between said further exterior shell (12) of said further foam layer (8) and the further outer shell (4), wherein each layer is cured before a subsequent layer is added..
13. A method as claimed in claim 12 for making an implantable layered prosthesis as in any one of claims 2 to 11.
14. A method as claimed in claim 12 or claim 13 and comprising forming succeeding layers on the preceding outer layer.
1. Implantierbare Schichtprothese, die Schichten mit unterschiedlichen Radien aufweist, umfassend:
(1) eine äußere Hülle (4) aus einem Silikon oder einem siliziumhaltigen Polyurethan mit einer inneren Oberfläche und einer äußeren Oberfläche, wobei die äußere Oberfläche geeignet ist, das Gewebe im Körper zu berühren;
(ii) eine biokompatible Silikongel-Füllstoffschicht (6), die in der äußeren Hülle enthalten ist;
(iii) eine erste Silikonschaum-Innenschicht (8) mit niedriger Dichte, die eine innere Hülle (10) und eine äußere Hülle (12) aufweist, die im Wesentlichen verhindern, dass sich die Poren des Schaums mit dem biokompatiblen Silikongel-Füllstoff füllen, wobei die Innenschicht aus Silikonschaum mit niedriger Dichte innerhalb der biokompatiblen Silikongel-Füllstoffschicht enthalten ist;
(iv) einen biokompatiblen Silikongel-Füllstoff (14), der in der inneren Hülle (10) der Innenschicht (8) aus Silikonschaum mit niedriger Dichte enthalten ist; und
(v) mindestens eine zweite Silikonschaum-Schicht (8) mit niedriger Dichte, die eine innere Hülle (10) und eine äußere Hülle (12) aufweist und innerhalb der ersten biokompatiblen Silikongel-Füllstoffschicht (6) angeordnet ist, so dass eine Silikongel-Füllstoffschicht zwischen der ersten Silikonschaum-Schicht mit niedriger Dichte und der zweiten Silikonschaum-Schicht mit niedriger Dichte vorhanden ist und eine weitere Silikongel-Füllstoffschicht zwischen der zweiten Silikonschaum-Schicht mit niedriger Dichte und der äußeren Hülle (4) vorhanden ist.
2. Prothese nach Anspruch 1, wobei die inneren und äußeren Hüllen (10, 12) eine Härte im Bereich von 10 bis 90 Shore A aufweisen und polymerisierte Siloxane oder Polysiloxane umfassen, die aus Einheiten der Formel (R)2SiO zusammengesetzt sind, wobei R eine organische Seitenkette ist, die nicht Wasserstoff ist und die hydrophobe Eigenschaften verleiht, während das -Si-O-Si-O-Grundgerüst rein anorganisch ist.
3. Prothese nach Anspruch 1, wobei die inneren und äußeren Hüllen (10, 12) eine Härte im Bereich von 10 bis 90 Shore A aufweisen und ein Polyurethan umfassen, das ein weiches Segment und ein hartes Segment aufweist, wobei das weiche Segment Polysiloxan umfasst, das ein Molekulargewicht von 500 bis 6000 aufweist und dargestellt wird durch die Formel III:

in der:
A und A' OH oder NHR sind, R H oder wahlweise substituiertes C1-6-Alkyl ist;
R11, R12, R13 und R14 unabhängig voneinander ausgewählt sind aus Wasserstoff oder wahlweise substituiertem C1-6-Alkyl;
R15 und R16 gleich oder verschieden sind und ausgewählt sind aus wahlweise substituiertem C1-6-Alkylen, C2-6-Alkenylen, C12-6-Alkinylen, Arylen oder einem heterocyclischen zweiwertigen Radikal, und
P eine ganze Zahl von 1 oder größer ist.
4. Prothese nach Anspruch 3, wobei das Polysiloxan ein PDMS mit HydroxylEndgruppen ist, das eine Verbindung der obigen Formel (III) ist, in der A und A' Hydroxyl sind, R11 bis R14 Methyl sind und R15 und R16 gleich oder verschieden sind und ausgewählt sind aus Propylen, Butylen, Pentylen, Hexylen, Ethoxypropyl (-CH2CH2OCH2CH2CH2-), Propoxypropyl und Butoxypropyl.
5. Prothese nach Anspruch 3, wobei andere siliciumhaltige Diole der Formel (III) 1,3-Bis(4-hydroxybutyl)tetramethyldisiloxan (BHTD) (Verbindung der Formel (III), in der A und A' OH sind, R11, R12, R13 und R14 Methyl sind, R15 und R16 Butyl sind und R17 O ist), 1,4-Bis(3-25-hydroxypropyl)tetramethyldisilylethylen (Verbindung der Formel (III), in der A und A' OH sind, R1, R12, R13 und R14 Methyl sind, R15 und R16 Propyl sind und R17 Ethylen ist) und 1-4-Bis(3-hydroxypropyl)tetramethyldisiloxan oder BHTD sind.
6. Prothese nach Anspruch 3, wobei die Polysiloxane Polysiloxanmakrodiamine, bei denen es sich um Polymere der Formel (III) handelt, in der A NH2 ist, und PDMS mit Amino-Endgruppen beinhalten.
7. Prothese nach Anspruch 3, wobei das weiche Segment ein siliziumhaltiges Polycarbonat, das einen Molekulargewichtsbereich von 400 bis 5000 aufweist und das die Formel (IV) hat:

in der:
R11, R12, R13, R14 und R15 wie in Formel (III) definiert sind;
R16 ein wahlweise substituiertes C1-6-Alkylen-, C2-6-Alkenylen-, C2-6-Alkinylen-, Arylen- oder ein heterocyclisches zweiwertiges Radikal ist;
R17 eine zweiwertige verbindende Gruppe, vorzugsweise O, S oder NR18 ist;
R18 und R19 gleich oder verschieden sind und aus Wasserstoff oder wahlweise substituiertem C1-6-Alkyl ausgewählt sind;
A und A' wie in Formel (III) definiert sind;
m, y und z ganze Zahlen von 0 oder mehr sind; und
x eine ganze Zahl von 0 oder mehr ist,
oder eine Verbindung der Formel (IV) ist, in der A und A' Hydroxyl sind,
oder in der A und A' Hydroxyl sind, R11, R12, R13 und R14 Methyl sind, R18 Ethyl ist, R19 Hexyl ist, R15 und R16 Propyl sind oder R14 Butyl ist und R17 O oder -CH2-CH2- ist, oder R5 und R16 Propyl sind, wenn R17 O ist und R15 und R16 Butyl sind, wenn R17 - CH2-CH2- ist;
vorzugsweise z eine ganze Zahl von 0 bis 50 ist und x ist eine ganze Zahl von 1 bis 50 ist; geeignete Werte für m 0 bis 20 sind, besonders bevorzugt 0 bis 10; bevorzugte Werte für y 0 bis 10 sind, besonders bevorzugt 0 bis 2.
8. Prothese nach einem der Ansprüche 3 bis 7, wobei das harte Segment aus einem Diisocyanat und einem Kettenverlängerer gebildet ist.
9. Prothese nach Anspruch 8, wobei das Diisocyanat durch die Formel OCN-R-NCO dargestellt wird, wobei -R- aliphatisch, aromatisch, cycloaliphatisch oder ein Gemisch aus aliphatischen und aromatischen Resten sein kann und 4,4'-Diphenylmethandiisocyanat (MDI), Methylen-30-biscyclohexyl-Diisocyanat (H12 MDI), Tetramethylendiisocyanat, Hexamethylendiisocyanat, Trimethyhexamethylendiisocyanat, p-Tetramethylxylendiisocyanat (p-TMXDI) oder m-Tetramethylxylendiisocyanat (m-TMXDI), 4,4'-Dicyclohexylmethandiisocyanat, Dimersäurediisocyanat, Isophorondiisocyanat (IPDI), Metaxylendiisocyanat, Diethylbenzoldiisocyanat, Decamethylen-1,10-diisocyanat, Cyclohexylen-1,2-diisocyanat, trans-Cyclohexylen-1,4-diisocyanat (CHDI), 2,4-Toluoldiisocyanat (2,4-TDI), 2,6-Toluoldiisocyanat, Xyloldiisocyanat, p-Phenylendiisocyanat (p-PDI), m-Phenylendiisocyanat (m-PDI), Hexahydrotoylendiisocyanat (und Isomere), Naphthylen-1,5-diisocyanat (NDI), 1-Methoxyphenyl-2,4-diisocyanat, 4,4'-Biphenylendiisocyanat, 3,3'-Dimethoxy-4,4'-biphenyl-diisocyanat oder 1,6-Diisocyanathexan (DICH), Isomere oder Gemische davon enthält.
10. Prothese nach Anspruch 8 oder Anspruch 9, wobei der Kettenverlängerer eines oder mehrere umfasst von: 1,4-Butandiol (BDO), 1,6-Hexandiol, 1,8-Octandiol, 1,9-Nonandiol, 1,10-Decandiol, 1,4-Cyclohexandiol, 1,4-Cyclohexandimethanol, 1,4-Bis(2-hydroxyethoxy)benzol und p-Xylenglykol; und 1,3-Bis(4-hydroxybutyl)tetramethyldisiloxan und 1,3-Bis(6-hydroxyethoxypropyl)tetramethyldisiloxan, die siliciumhaltigen Diol-Kettenverlängerer der Formel (V)

in der:
R1, R2, R3 und R4 gleich oder verschieden sind und ausgewählt sind aus H und einem wahlweise substituierten C1-6-Alkyl;
R5 und R6 gleich oder verschieden sind und ausgewählt sind aus wahlweise substituiertem C1-6-Alkylen, C2-6-Alkenylen, C12-6-Alkinylen, Arylen und einem heterocyclischen zweiwertigen Radikal;
R7 eine zweiwertige Verbindungsgruppe, vorzugsweise O, ist; und n 0 oder größer ist; und
1,2-Ethylendiamin, 1,3-Propandiamin, 1,4-Butandiamin und 1,6-Hexandiamin; und
1,3-Bis-(3-aminopropyl)-tetramethyldisiloxan und 1,3-Bis-(4-aminobutyl)-tetramethyldisiloxan und die der Formel (VI)

in der:
R Wasserstoff oder ein wahlweise substituiertes C1-6-Alkyl ist;
R1, R2, R3 und R4 gleich oder verschieden sind und aus Wasserstoff und wahlweise substituiertem C1-6-Alkyl ausgewählt sind;
R5 und R6 gleich oder verschieden sind und aus wahlweise substituiertem C1-6-Alkylen, C2-6-Alkenylen, C12-6-Alkinylen, Arylen und einem heterocyclischen zweiwertigen Radikal ausgewählt sind;
R7 eine zweiwertige Verbindungsgruppe, vorzugsweise O, ist; und
n 0 oder größer, vorzugsweise 2 oder kleiner ist.
11. Prothese nach einem der vorangegangenen Ansprüche, wobei die geschäumte Innenschicht (8) ein offenzelliger poröser Schaumstoff mit niedriger Dichte ist, der aus denselben Materialien wie die inneren- und äußeren Hüllen (10, 12) besteht.
12. Verfahren zur Herstellung einer implantierbaren, geschichteten Prothese (2), die Schichten mit unterschiedlichen Radien aufweist, umfassend:
(i) Ausbilden einer inneren Hülle (10) aus einem Silikon oder einem siliziumhaltigen Polyurethan;
(ii) Einspritzen eines biokompatiblen Silikongel-Füllstoffs (14) in die innere Hülle (10);
(iii) Beschichten der inneren Hülle (10) mit einer Innenschicht aus einem Silikonschaumstoff (8) mit niedriger Dichte;
(iv) Beschichten der inneren Schaumstoffschicht (8) mit einer äußeren Hülle (12) aus einem Silikon oder einem siliziumhaltigen Polyurethan, wobei die äußere Hülle (12) und die innere Hülle (10) im Wesentlichen verhindern, dass die Poren des Schaumstoffs sich mit dem Füllstoff füllen;
(v) Beschichten der äußeren Hülle (12) der Schaumstoff-Innenschicht (8) mit einer äußeren Hülle aus einem Silikon oder einem siliziumhaltigen Polyurethan; und
(vi) Einspritzen eines biokompatiblen Silikongel-Füllstoffs (6) zwischen die äußere Hülle (12) der Schaumstoff-Innenschicht (8) und die äußere Hülle aus Schritt (v),
wobei die innere Silikonschaum-Schicht (8) mit niedriger Dichte innerhalb einer äußeren Schicht des biokompatiblen Silikongel-Füllstoffs (6) enthalten ist, und mindestens einmal Folgendes erfolgt:
(vii) Beschichten der äußeren Hülle aus dem vorhergehenden Schritt mit einer weiteren Schaumstoff-Schicht (8);
(viii) Beschichten der weiteren Schaumstoff-Schicht (8) aus dem vorangegangenen Schritt mit einer weiteren äußeren Hülle (12);
(ix) Beschichten der weiteren äußeren Hülle (12) der weiteren Schaumstoff-Schicht (8) aus dem vorangegangenen Schritt mit einer weiteren äußeren Hülle (4); und
(x) Einspritzen eines biokompatiblen Silikongel-Füllstoffs zwischen die weitere äußere Hülle (12) der weiteren Schaumstoff-Schicht (8) und die weitere äußere Hülle (4),
wobei jede Schicht ausgehärtet wird, bevor eine nachfolgende Schicht hinzugefügt wird.
13. Verfahren nach Anspruch 12 zur Herstellung einer implantierbaren geschichteten Prothese nach einem der Ansprüche 2 bis 11.
14. Verfahren nach Anspruch 12 oder 13, bei dem aufeinanderfolgende Schichten auf der vorhergehenden äußeren Schicht ausgebildet werden.
1. Prothèse implantable en couches comportant des couches de rayons différents et comprenant :
(i) une coque externe (4) en silicone ou en polyuréthane contenant du silicium, ayant une surface intérieure et une surface extérieure, la surface extérieure étant adaptée pour entrer en contact avec un tissu dans le corps ;
(ii) une couche de charge de gel de silicone biocompatible (6) contenue au sein de la coque externe ;
(iii) une première couche interne de mousse de silicone basse densité (8) ayant une coque intérieure (10) et une coque extérieure (12) qui empêchent sensiblement les pores de la mousse d'être chargés de la charge de gel de silicone biocompatible, la couche interne de mousse de silicone basse densité étant contenue au sein de la couche de charge de gel de silicone biocompatible;
(iv) une charge de gel de silicone biocompatible (14) contenue au sein de la coque intérieure (10) de la couche intérieure de mousse de silicone basse densité (8) ; et
(v) au moins une deuxième couche de mousse de silicone basse densité (8) ayant une coque intérieure (10) et une coque extérieure (12) et positionnée à l'intérieur de la première couche de charge de gel de silicone biocompatible (6), de sorte qu'une couche de charge de gel de silicone est présente entre la première couche de mousse de silicone basse densité et la deuxième couche de mousse de silicone basse densité, et une autre couche de charge de gel de silicone est présente entre la deuxième couche de mousse de silicone basse densité et la coque externe (4).
2. Prothèse selon la revendication 1 et dans laquelle les coques intérieure et extérieure (10, 12) présentent une dureté dans la plage de 10 à 90 Shore A et comprennent des siloxanes ou polysiloxanes polymérisés composés de motifs répondant à la formule (R) 2SiO où R est une chaîne latérale organique qui n'est pas de l'hydrogène et qui confère des propriétés hydrophobes tandis que le squelette -Si-O-Si-O est purement inorganique.
3. Prothèse selon la revendication 1 et dans laquelle les coques intérieure et extérieure (10, 12) présentent une dureté dans la plage de 10 à 90 Shore A et comprennent un polyuréthane ayant un segment mou et un segment dur, le segment mou comprenant du polysiloxane ayant un poids moléculaire de 500 à 6000 et représenté par la formule III :

où A et A' sont OH ou NHR, R est H ou un alkyle en C
1-6 facultativement substitué ;
R11, R12, R13 et R14 sont choisis indépendamment parmi l'hydrogène ou un alkyle en C1-6 facultativement substitué ;
R15 et R16 sont identiques ou différents et choisis parmi alkylène en C1-6 facultativement substitué, alcénylène en C2-6, alcynylène en C12-6, arylène ou un radical divalent hétérocyclique, et
P est un nombre entier de 1 ou plus.
4. Prothèse selon la revendication 3 et dans laquelle le polysiloxane est un PDMS terminé par hydroxyle qui est un composé de formule (III) ci-dessus dans laquelle A et A' sont des hydroxyle, R11 à R14 sont des méthyle et R15 et R16 sont identiques ou différents et choisis parmi propylène, butylène, pentylène, hexylène, éthoxypropyle (-CH2CH2OCH2CH2CH2-), propoxypropyle et butoxypropyle.
5. Prothèse selon la revendication 3 et dans laquelle d'autres diols contenant du silicium de formule (III) sont le 1,3-bis(4-hydroxybutyl)tétraméthyl disiloxane (BHTD) (composé de formule (III) dans laquelle A et A' sont OH, R11, R12, R13 et R14 sont méthyle, R15 et R16 sont butyle et R17 est O), le 1,4-bis(3-25 hydroxypropyl)tétraméthyl disilyléthylène (composé de formule (III) dans laquelle A et A' sont OH, Ri, R12, R13 et R14 sont méthyle, R15 et R16 sont propyle et R17 est éthylène) et le 1-4-bis (3-hydroxypropyl)tétraméthyl disiloxane, ou BHTD.
6. Prothèse selon la revendication 3 et dans laquelle les polysiloxanes incluent des polysiloxane macrodiamines qui sont des polymères de formule (III) dans laquelle A est NH2, et du PDMS terminé par amino.
7. Prothèse selon la revendication 3 et dans laquelle le segment mou est du polycarbonate contenant du silicium ayant un poids moléculaire dans la plage de 400 à 5000 et répondant à la formule (IV) :

dans laquelle
R11, R12, R13, R14 et R15 sont tels que définis dans la formule (III) ;
R16 est un alkylène en C1-6 facultativement substitué , alcénylène en C2-6, alcynylène en C2-6, arylène ou un radical divalent hétérocyclique;
R17 est un groupe de liaison divalent, de préférence O, S ou NR18 ;
R18 et R19 sont identiques ou différents et sont choisis parmi l'hydrogène ou un alkyle en C1-6 facultativement substitué ;
A et A' sont tels que définis dans la formule (III) ;
m, y et z sont des entiers de 0 ou plus ; et
x est un nombre entier de 0 ou plus,
ou est un composé de formule (IV) dans laquelle A et A' sont hydroxyle,
ou dans laquelle A et A' sont hydroxyle, R11, R12, R13 et R14 sont méthyle, R18 est éthyle, R19 est hexyle, R15 et R16 sont propyle ou R14 est butyle et R17 est O ou -CH2-CH2-, ou R5 et R16 sont propyle lorsque R17 est O et R15 et R16 sont butyle lorsque R17 est -CH2-CH2-.
De préférence, z est un nombre entier de 0 à 50 et x est un nombre entier de 1 à 50. Des valeurs convenables pour m incluent 0 à 20, de manière davantage préférée 0 à 10. Des valeurs préférées pour y sont de 0 à 10, de manière davantage préférée de 0 à 2.
8. Prothèse selon l'une quelconque des revendications 3 à 7 et dans laquelle le segment dur est formé à partir d'un diisocyanate et d'un allongeur de chaîne.
9. Prothèse selon la revendication 8 et dans laquelle le diisocyanate est représenté par la formule OCN-R-NCO, où -R- peut être aliphatique, aromatique, cycloaliphatique ou un mélange de fractions aliphatiques et aromatiques et inclut les 4,4'-diphénylméthane diisocyanate (MDI), méthylène 30 biscyclohexyl diisocyanate (H12 MDI), tétraméthylène diisocyanate, hexaméthylène diisocyanate, triméthyhexaméthylène diisocyanate, p-tétraméthylxylène diisocyanate (p-TMXDI) ou m-tétraméthylxylène diisocyanate (m-TMXDI), 4,4'-dicyclohexylméthane diisocyanate, diisocyanate d'acide dimère, isophorone diisocyanate (IPDI), métaxylène diisocyanate, diéthylbenzène diisocyanate, décaméthylène 1,10-diisocyanate, cyclohexylène 1,2-diisocyanate, trans-cyclohexylène 1,4-diisocyanate (CHDI), 2,4-toluène diisocyanate (2,4-TDI), 2,6-toluène diisocyanate, xylène diisocyanate, pphénylène diisocyanate (p-PDI), m-phénylène diisocyanate (m-PDI), hexahydrotoylène diisocyanate (et isomères), naphthylène-1,5 diisocyanate (NDI), 1-méthoxyphényl 2,4-diisocyanate, 4,4'-biphénylène diisocyanate, 3,3'-diméthoxy-4,4'-biphényl diisocyanate ou 1,6-diisocyanatehexane (DICH), leurs isomères ou leurs mélanges.
10. Prothèse selon la revendication 8 ou la revendication 9 et dans laquelle l'allongeur de chaîne comprend l'un quelconque ou plusieurs des composés suivants : 1,4-butanediol (BDO), 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-décanediol, 1,4-cyclohexanediol, 1,4-cyclohexanediméthanol, 1,4-bis(2-hydroxyéthoxy)benzène et p-xylèneglycol ; et
le 1,3-bis(4-hydroxybutyl) tétraméthyldisiloxane et le 1,3-bis(6-hydroxyéthoxypropyl) tétraméthyldisiloxane, les allongeurs de chaîne diol contenant du silicium de formule (V)

dans laquelle
R1, R2, R3 et R4 sont identiques ou différents et choisis parmi H et alkyle en C1-6 facultativement substitué ;
R5 et R6 sont identiques ou différents et sont choisis parmi alkylène en C1-6 facultativement substitué, alcénylène en C2-6, alcynylène en C12-6, arylène et un radical divalent hétérocyclique ;
R7 est un groupe de liaison divalent, de préférence O ; et n vaut 0 ou plus ; et
1,2-éthylènediamine, 1,3-propanediamine, 1,4-butanediamine et 1,6-hexanediamine ; et 1,3-bis(3-aminopropyl)tétraméthyldisiloxane et 1,3-bis(4-aminobutyl)tétraméthyldisiloxane et ceux de formule (VI)

dans laquelle
R est un hydrogène ou alkyle en C1-6 facultativement substitué ;
R1, R2, R3 et R4 sont identiques ou différents et choisis parmi l'hydrogène et un alkyle en C1-6 facultativement substitué ;
R5 et R6 sont identiques ou différents et choisis parmi alkylène en C1-6 facultativement substitué , alcénylène en C2-6, alcynylène en C12-6, arylène et un radical divalent hétérocyclique;
R7 est un groupe de liaison divalent, de préférence O ; et
n vaut 0 ou plus, de préférence 2 ou moins.
11. Prothèse selon l'une quelconque des revendications précédentes et dans laquelle la couche interne moussée (8) est une mousse poreuse basse densité à cellules ouvertes formée des mêmes matériaux que ceux des coques intérieure et extérieure (10, 12).
12. Procédé de fabrication d'une prothèse implantable en couches (2) comportant des couches de rayons différents et comprenant les étapes suivantes
(i) la formation d'une coque intérieure (10) en silicone ou en polyuréthane contenant du silicium ;
(ii) l'injection d'une charge de gel de silicone biocompatible (14) dans la coque intérieure (10) ;
(iii) le revêtement de la coque intérieure (10) avec une couche interne d'une mousse de silicone basse densité (8) ;
(iv) le revêtement de la couche interne de mousse (8) avec une coque extérieure (12) en silicone ou polyuréthane contenant du silicium, dans lequel la coque extérieure (12) et la coque intérieure (10) empêchent sensiblement les pores de la mousse d'être chargés de la charge ;
(v) le revêtement de la coque extérieure (12) de la couche interne de mousse (8) avec une coque externe en silicone ou polyuréthane contenant du silicium ; et
(vi) l'injection d'une charge de gel de silicone biocompatible (6) entre la coque extérieure (12) de la couche interne de mousse (8) et la coque externe de l'étape (v), moyennant quoi la couche interne de mousse de silicone basse densité (8) est contenue au sein d'une couche externe de la charge de gel de silicone biocompatible (6) et au moins une fois :
(vii) le revêtement de la coque externe de l'étape précédente avec une couche de mousse supplémentaire (8) ;
(viii) le revêtement de la couche de mousse supplémentaire (8) de l'étape précédente avec une coque extérieure supplémentaire (12) ;
(ix) le revêtement de la coque extérieure supplémentaire (12) de la couche de mousse supplémentaire (8) de l'étape précédente avec une coque externe supplémentaire (4) ; et
(x) l'injection d'une charge de gel de silicone biocompatible entre ladite coque extérieure supplémentaire (12) de ladite couche de mousse supplémentaire (8) et la coque externe supplémentaire (4), dans lequel chaque couche est durcie avant qu'une couche ultérieure ne soit ajoutée.
13. Procédé selon la revendication 12 pour fabriquer une prothèse implantable en couches selon l'une quelconque des revendications 2 à 11.
14. Procédé selon la revendication 12 ou la revendication 13, comprenant la formation de couches successives sur la couche externe précédente.