(19)
(11)EP 2 556 003 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
10.06.2020 Bulletin 2020/24

(21)Application number: 11766559.6

(22)Date of filing:  04.04.2011
(51)International Patent Classification (IPC): 
B65G 25/04(2006.01)
B65G 27/12(2006.01)
(86)International application number:
PCT/US2011/031110
(87)International publication number:
WO 2011/126987 (13.10.2011 Gazette  2011/41)

(54)

DIFFERENTIAL IMPULSE CONVEYOR WITH IMPROVED DRIVE

DIFFERENTIELLER IMPULSFÖRDERER MIT VERBESSERTEM ANTRIEB

TRANSPORTEUR À IMPULSION DIFFÉRENTIELLE PRÉSENTANT UN ENTRAÎNEMENT AMÉLIORÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 06.04.2010 US 754687

(43)Date of publication of application:
13.02.2013 Bulletin 2013/07

(73)Proprietor: Svejkovsky, Paul
Rockwall, TX 75032 (US)

(72)Inventor:
  • SVEJKOVSKY, Blake
    Coppell TX 75019 (US)

(74)Representative: WP Thompson 
1 Mann Island
Liverpool L3 1BP
Liverpool L3 1BP (GB)


(56)References cited: : 
EP-A1- 0 006 424
US-A- 3 240 322
US-A- 5 850 906
US-B1- 6 398 013
US-B1- 7 216 757
US-A- 2 374 663
US-A- 4 174 032
US-B1- 6 398 013
US-B1- 6 415 911
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to conveyors of the type that utilize an elongate tray to move goods along the tray. More particularly, this invention relates to a differential impulse conveyor wherein a drive unit or drive assembly moves the tray forward at a first speed, then backward at a greater speed such that goods slide relative to the tray and thus move forward along the tray. The improved conveyor drive has high reliability and relatively low cost by avoiding the use of a conventional crank and associated bearings.

    BACKGROUND OF THE INVENTION



    [0002] Various types of conveyors have been devised which employ an elongate tray or pan having a planar surface for transporting goods thereon. These trays conventionally have sides projecting upwardly from the planar floor of the tray, such that the tray has a generally U-shaped cross-sectional configuration. Conveyors with these types of trays are preferred for various applications since the goods transported along the tray need only engage the tray during the conveying operation, and since the tray may be easily cleaned.

    [0003] One type of conveyor which utilizes such a tray is a vibratory conveyor or shaker conveyor. These types of conveyors utilize a drive mechanism which essentially vibrates the tray, so that goods move along a slightly inclined or horizontal tray floor due to the forward direction imparted to the goods while raised off the floor. An earlier version of a conveyor drive is disclosed in U.S. Patent 2,374,663, which utilizes a pair of crank arms. The crank arm causes a change in the rotational speed of a driven pulley. Other drives for a vibratory conveyor system are disclosed in U.S. Patent 4,260,052, 4,913,281 , 5,404,996, 6,019,216, 6,230,875, 6,276,518, 6,415,912, and 6,435,337. More recent drives for vibratory conveyors are disclosed in U.S. Patent 6,719,124 and 6,868,960. U.S. Patent 4,917,655 is directed to a timing belt tensioner.

    [0004] Differential impulse conveyors have significant advantage over vibratory conveyors for many applications. Differential impulse conveyors slide goods along a tray, but do not require vertical movement of the goods with respect to the tray. Goods conveyed with a differential impulse conveyor are thus generally subject to less damage than goods transported by a vibratory conveyor. Moreover, the drive mechanism itself may operate in a quieter manner and may be less susceptible to maintenance problems. An early version of a drive for an inertial conveyor is disclosed in U.S. Patent 5,178,278. Drives for differential impulse conveyors are disclosed in U.S. Patent 5,794,757, 6,079,548, 6,189,683, 6,398,013, 6,415,911 and 6,527,104. Another type of differential impulse conveyor drive is disclosed in U.S. Patent 7,216,757.

    [0005] The disadvantages of the prior art are overcome by the present invention, and an improved differential impulse conveyor and a drive for such a conveyor are hereinafter disclosed.

    [0006] Reference is also made to US 3 240 322, which discloses the features of the preamble of claim 1 and an eccentric pulley drive comprising a movable member to be driven, a driven pulley mounted on a movable axis of rotation and drivingly coupled to the movable member, a drive pulley mounted on a fixed axis of rotation, and belt means trained about and coupling the drive and driven pulleys, one of the pulleys being mounted eccentrically on the axis of rotation thereof.

    SUMMARY OF THE INVENTION



    [0007] The invention is defined by a differential impulse conveyor according to claim 1 and by a method according to claim 7.

    [0008] These and further features and advantages of the present invention will become apparent from the following detailed description, wherein reference is made to the figures in the accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] 

    Figure 1 illustrates one embodiment of the primary components of a differential impulse conveyor according to the present invention.

    Figure 2 illustrates a portion of an alternative conveyor with a biasing spring acting on one of the legs.

    Figure 3 illustrates the portion of another embodiment of a conveyor wherein both the drive pulley and the driven pulley are eccentrically mounted.

    Figure 4 illustrates a side view of another embodiment of a portion of a conveyor, wherein each of the drive pulley and the driven pulley have a substantially vertical axis.

    Figure 5 is a top view, partially in cut-away, of the conveyor shown in Figure 4.


    DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS



    [0010] Figure 1 illustrates one embodiment of a differential impulse conveyor 10 according to the present invention. The conveyor includes a tray 12 which moves laterally in the forward direction (to the right in Figure 1) at a first speed, and in a backward direction at a second speed greater than the first speed, such that goods slide relative to the tray floor during the backward movement and thereby move forward with the tray as it moves forward. The tray 12 as shown in Figure 1 may have a pair of opposing sides 14 which determine the maximum depth of the goods in the tray, such that the tray itself in cross-section has a general U-shaped configuration.

    [0011] As shown in Figure 1, a plurality of legs 18, 20 (two rearward legs 18 and two forward legs 20) are pivotally connected at 26 to the tray, and are pivotally connected at 24 to a base 22, with travel of goods along the tray in Figure 1 being to the right. The legs 18, 20 thus support the tray during lateral movement in the forward and backward directions. Various other mechanisms may be provided for supporting the trays as discussed subsequently. The conveyor is driven by a drive motor 30 which is positioned on motor base 28 supported on the conveyor base 22. The motor 30 is conventionally powered electrically but could be powered hydraulically or pneumatically. The motor rotates a drive shaft 31, which as shown in Figure 1 is concentrically mounted on the motor base 28. Although not shown in Figure 1, those skilled in the art will appreciate that a speed reducer or other gear box may be positioned between the drive motor 30 and the pulley 32, so that the motor powers the speed reducer, and the output of the speed reducer rotates the pulley 32.

    [0012] Figure 1 also shows a driven pulley 36 which is eccentrically mounted on one of the plurality of legs 20, and is powered by the drive pulley 32 and a flexible member 34, such as the timing belt or a timing chain, which interconnects the drive pulley and the driven pulley. Since the driven pulley is eccentrically mounted, its rotation during a full cycle pivots the arm 20 in a forward direction at a relatively slow speed, and in a backward direction at a relatively fast speed, thereby moving goods along the tray. The distance of travel for the tray during the full forward cycle or backward cycle is relatively short, and normally in the range of from 1 to 3 inches. The vertical movement of the tray during this cycle is very limited and does not contribute to or detract from movement of goods along the tray. The timing belt 34 may pull the pulley 36 in a direction so that it rotates closer to the pulley 32, but cannot push the pulley 36 in an opposing direction to take up the slack in the timing belt. Accordingly, a tension mechanism consisting of another timing belt 38 and pulley 40 concentrically mounted on tensioning pulley base 42 are provided. The shaft on which the pulley 36 is mounted may thus effectively have two pulleys, or a single pulley with two belt grooves, so that the tensioning mechanism 38 and 40 act to pull the driven pulley 36 in a direction away from the drive pulley 32.

    [0013] In order to reduce vibration in the system and contribute to a long life, as well as to reduce the noise of the conveyor drive, the drive pulley 32 driven by the motor 30 is also connected to an eccentrically mounted counterweight pulley 46, with timing belt 44 connecting the pulley 32 and the pulley 46. The pulley 46 is eccentrically mounted on arm 48 which is secured to counterweight 50, which in turn is pivotally supported on leg 52 which rotates about pivot 54 on the base 22. Another tensioning mechanism is provided by the timing belt 56 and the concentrically mounted pulley 58, which is supported on pivot base 60 secured to the base 22. Rotation of the pulley 32 thus simultaneously rotates both the eccentrically mounted pulleys 36 and 46, with the appropriate tensioning mechanisms provided for each pulley to take up the slack in the respective flexible member. Pulley 36 thus imparts the desired differential impulse movement to the tray 12, while the pulley 46 moves the counterweight 50 in a manner which opposes the momentum of the tray movement, thereby reducing vibration problems. More particularly, the eccentric mounting of the driven pulley 36 causes it to tighten and loosen belt 34, thereby moving arm 20 forward and backward. The eccentric mounting of pulley 36 also causes belt 34 to pull on a short radius, causing it to rotate fast and after 180° of rotation, and to pull on a long radius, causing it to rotate slow. The combined effect causes arm 20 to move rearward at a fast speed and forward at a slow speed, thereby causing goods to move along the tray. The counterweight and associated counterweight mechanism may not be required for all applications, i.e. small, light pans, or slow speed conveyors.

    [0014] A significant advantage of the Figure 1 embodiment is the simplicity of the drive mechanism. Various types of crank arms are not employed, thereby avoiding the costs associated with both the crank arm and the bearings which control the crank arm movement. A further significant feature of the above conveyor is that the rotational speed and thus the stroke of the tray may be easily controlled by the eccentricity of each pulley, which may be adjustable. In the present design, the pulleys change both the speed and stroke of the pan or tray.

    [0015] Subsequent drawings illustrate portions of a conveyor shown in Figure 1, and Figures 2 and 3 only the front or forward supports 20 are depicted, with no pan 12. Also, the pulleys for driving a counterweight are not shown in Figure 2 for clarity of the depicted components, although in general a counterweight and pulleys for driving the counterweight as discussed in Figure 1 would be used for both the Figure 2 and Figure 3 embodiments. In Figure 2, the drive pulley 120 is concentrically mounted with respect to motor base 28, and the timing belt 34 rotates a driven pulley 122 which is eccentrically mounted on the arm 20. This arrangement achieves the same result as the drive mechanism shown in the Figure 1 embodiment, resulting in backward and forward movement of the tray support 20 and thus the tray. In the Figure 2 embodiment, a spring, such as spring 128, acts between the leg 20 and the spring base 130, thus exerting a continual force to bias the leg 20 away from the drive pulley 120. In Figure 2, the concentric pulley is mounted on the motor and the eccentric pulley on the arm 20. Belt tension and the slow forward movement is provided by the spring in lieu of pulley 40 and belt 38 as shown in Figure 1.

    [0016] Fine tuning between the stroke and the fast/slow ratio may be achieved by varying the height of the driven pulley 122 in relation to the height of the driving pulley 120. Eccentric pulley 122 is thus adjustably positionable along curved slot 144 in guide plate 142, which is secured to arm 20. The pulley 122 may be locked in a selected position to adjust the stroke length and the slow forward/fast backward ratio. Moving the pulley 122 upward within the slot 144 changes the angle of the belt 34, which inclines substantially when the pulley 122 is positioned as shown in Figure 2. Increasing the belt angle from horizontal changes the timing between the slow forward/fast backward movement of the tray and the cranking mechanism involved in that motion. Adjustment of this timing by selectively varying the angle of the driven pulley relative to the drive pulley thus allows for optimization to travel over specific product moving along the tray, so that the selected belt angle is a part of function of the product being conveyed.

    [0017] In the Figure 3 embodiment, both the drive pulley 124 and the driven pulley 126 are eccentrically mounted, with the spring 132 acting as the tension mechanism to take up slack in the flexible member 132 in a manner similar to that achieved with the compensating pulley 40 and the belt 38 shown in Figure 1. The Figure 3 embodiment allows the eccentricity of the pulley to be half of the pulley used in the Figure 1 and Figure 2 embodiments, thereby allowing the timed pulleys to be smaller in diameter with reduced out-of-balance forces. For all the embodiments, substantial stops to limit travel in the forward and backward directions may be provided to minimize over travel of the arms and tray in the event of a belt breakage. A similar mechanism is shown in Figure 3 for fine-tuning the conveyor performance by varying the angle of the driven pulley with respect to the drive pulley. In other embodiments, either the drive pulley or both the drive pulley and the driven pulley may be selectively adjustable, since a change in their relative position is important. Other mechanisms may be used for facilitating that adjustment and then selectively locking the position of the adjustable pulley in place.

    [0018] Figure 4 is a side view of the conveyor 10 with a tray 12 as discussed above. The drive pulley 32 driven by motor 30 powers a driven pulley 36 which is interconnected with the drive pulley via a timing belt 34. Pulley 36 eccentrically rotates about axis 80, which is laterally fixed by plate assembly 82 directly to the pan 12. Another pulley 84 rotates about the same axis 80, with the belt 38 connecting pulley 84 with compensating pulley 86, which eccentrically rotates about the shaft 88 and is rotatably about support 90 secured to the base 22. As with the Figure 1 embodiment, the motor also rotates pulley 92, which acts through the belt 44 to rotate pulley 46, which is in turn moves counterweight 50 slidably supported on pad 94. Pulley 96 is also rotated by the drive motor and belt 44, with belt 56 driving pulley 58 which is eccentrically supported on base post 98. A plurality of support legs 102, 104 may support the tray 12 on the base 22, with bearing slide packages 106 and 108 providing for sliding movement of the tray relative to the base in both the forward and backward directions.

    [0019] Figure 5 is a top view of the assembly shown in Figure 4, with a portion of the tray 12 cutaway to shown the orientation of the primary components of the drive mechanism. An advantage over the previous embodiments is that the space between the floor of the tray and the base in the Figure 5 embodiment may be relatively short because the axes of the pulleys are each substantially vertical in the Figure 4 and 5 embodiment, rather than being substantially horizontal as shown in the Figure 1-3 embodiments. Also, this embodiment shows the option of interconnecting the driven pulley directly to the tray, with the legs 102, 104 only supporting the tray during lateral movement. In alternate embodiments, the tray could be otherwise supported so that it slid back and forth during operation of the drive. In some applications, the tray may be supported from rods or arms extending upward from the tray to a roof or other overhead structure.

    [0020] The embodiment as shown in Figures 4 and 5 has significant advantages in that the vertical spacing between base 22 and the tray 12 may be relatively short. This allows for the possibility of the conveyor to fit within a relatively small vertical spacing, and also allows the possibility of a plurality of conveyors to be vertically stacked in a desired arrangement.

    [0021] The conveyor assembly includes a driven pulley mounted to one of the plurality of legs or the tray, with the driven pulley rotatable about a driven pulley axis. At least one of the drive pulley and the driven pulley have an eccentric pulley axis, thereby imparting movement in either the forward direction or the backward direction to the tray. A tension mechanism takes up slack in the flexible member so that the flexible member returns the tray back to its starting position by moving the tray in the other of the forward direction or the backward direction. The belt or other flexible member may pull the tray in either the forward direction at a first slow speed, or may pull the tray in a backward direction at a second speed greater than the first speed, thereby moving goods forward along the tray. The tension mechanism thus acts to return the tray in the opposite direction, which may correspond to travel of the tray at either a slow forward speed or faster return speed.

    [0022] Two embodiments of a tension mechanism to take up the slack in the flexible member are disclosed. In one embodiment, a spring or other biasing member exerts a biasing force to bias the tray or one of the legs away from the drive pulley, and this biasing force may result in either a slow forward or faster return motion for the tray. In another embodiment, the tension mechanism comprises a tension pulley mounted to a stationary base, with a flexible tensioning member interconnecting the driven pulley and the tensioning pulley. Either tension mechanism may cause either the slow forward or faster return motion of the tray, with the drive pulley and the driven pulley causing the other tray motion.

    [0023] Figure 1 illustrates a feature of the invention wherein each of the shafts for the pulleys 32 and 36, and optionally also shaft 40, shaft 46, and shaft 58, if used, are at the same horizontal level, i.e., within a plane parallel to the floor. This design simplifies the operation of the system, so that fine tuning the system can be commenced with this starting point. More particularly, lowering the drive shaft 31 from this starting point provides a selective change in timing between the rotation of the drive shaft and the lateral movement of the tray. In some applications, it may be desirable to vertically change the height of shaft 31 relative to the shaft drive for pulley 36, as effectively shown in Figures 2 and 3. Even for this embodiment, all shafts other than shaft 31 preferably may be at the same horizontal level.

    [0024] Although specific embodiments of the invention have been described herein in some detail, this has been done solely for the purposes of explaining the various aspects of the invention, and is not intended to limit the scope of the invention as defined in the claims which follow. Those skilled in the art will understand that the embodiment shown and described is exemplary, and various other substitutions, alterations and modifications, including but not limited to those design alternatives specifically discussed herein, may be made in the practice of the invention without departing from its scope.


    Claims

    1. A differential impulse conveyor assembly (10) comprising a tray (12) moveable laterally in a forward direction at a first speed and in a backward direction at a second speed greater than the first speed, thereby moving goods along the tray;
    the assembly further comprising:

    a plurality of legs (18, 20) connected to the tray (12) and supporting the tray (12) during lateral movement;

    a motor (30) for powering a drive pulley (32) about a drive pulley axis;

    a driven pulley (36) powered by the drive pulley (32);

    a flexible member (34) interconnecting the drive pulley (32) and the driven pulley (36), the driven pulley (36) mounted to one of the plurality of legs (20) or to the tray (12) and rotatable about a driven pulley axis;

    the driven pulley (36) having an eccentric pulley axis rotatably mounted to one of the plurality of legs or the tray, thereby causing the tray
    to move in the forward direction and the backward direction
    ; and

    a tension mechanism (38, 40, 42) to take up slack in the flexible member, such that the flexible member (34) returns the tray (12) by moving the tray in the other of the forward direction and the backward direction, characterised in that
    the tension mechanism comprises a tensioning pulley (40) concentrically mounted to a stationary base (22), and a flexible tensioning member (38) interconnecting the driven pulley (36) and the tensioning pulley, or in that the differential impulse conveyor assembly further comprises another driven pulley(46) powered by the motor (30), the another driven pulley mounted to a counterweight (50).


     
    2. A differential impulse conveyor assembly as defined in Claim 1, wherein the tension mechanism comprises:
    a biasing member (128) for exerting a biasing force on at least one of the tray (12) or one of the plurality of legs (20) to bias the tray laterally away from the drive pulley (120).
     
    3. A differential impulse conveyor assembly as defined in Claim 1, wherein the flexible member (34) is one of a timing belt and a link chain.
     
    4. A differential impulse conveyor assembly as defined in Claim 1, further comprising:
    an adjustment mechanism (142, 144) for selectively adjusting a center of rotation of the drive pulley (120) with respect to a center of rotation of the driven pulley (122).
     
    5. A differential impulse conveyor assembly as defined in Claim 1, wherein each of the plurality of legs (18, 20) is pivotably supported at one end to a base (22) and at another end to the tray (12).
     
    6. A differential impulse conveyor assembly (10) as claimed in Claim 1, wherein the motor (30) is for powering a drive pulley (32) about a concentric drive pulley axis.
     
    7. A method of conveying goods, comprising:

    moving a tray (12) laterally in a forward direction at a first speed and in a backward direction at a second speed greater than the first speed, thereby moving goods along the tray;

    providing a plurality of legs (18, 20) connected to the tray (12) and supporting the tray during lateral movement;

    providing a motor (30) for powering a drive pulley (32) about a drive pulley axis;

    powering a driven pulley (36) by the drive pulley (32) and a flexible member (34) interconnecting the drive pulley (32) and the driven pulley (36), the driven pulley mounted to one of the plurality of legs (18, 20) or the tray;
    mounting the driven pulley (36) to one of the tray (12) or one of the plurality of legs (18, 20) about an eccentric driven pulley axis, thereby causing the tray (12) to move in the forward direction and the backward direction ; and

    providing a tension mechanism (38, 40, 42) to take up slack in the flexible member, such that the flexible member (34) returns the tray (12) by moving the tray in the other of the forward direction and backward direction, characterised in that the step of providing a tension mechanism comprises:

    concentrically mounting a tensioning pulley (40) to a stationary base (22); and

    providing a flexible tensioning member (38) interconnecting the driven pulley (36) and the tensioning pulley, or by the step of

    providing another driven pulley (46) powered by the motor (30), the another driven pulley mounted to a counterweight (50).


     
    8. A method as defined in Claim 7, wherein providing a tension mechanism comprises:
    exerting a biasing force on at least one of the plurality of legs to bias the leg laterally away from the motor.
     
    9. A method as defined in Claim 7, further comprising:
    selectively adjusting a center of rotation of the drive pulley (120) with respect to a center of rotation of the driven pulley (122).
     
    10. A method as defined in Claim 7, wherein each of the plurality of legs (18, 20) is pivotably supported at one end to a base (22) and at another end to the tray (12).
     


    Ansprüche

    1. Differentialantriebsförderanlage (10), die eine Rinne (12) aufweist, die seitlich mit einer ersten Geschwindigkeit in einer Vorwärtsrichtung und mit einer zweiten Geschwindigkeit, die größer als die erste Geschwindigkeit ist, in einer Rückwärtsrichtung bewegbar ist, wodurch Fördergut in der Rinne entlangbewegt wird;
    wobei die Anlage ferner Folgendes aufweist:

    mehrere Beine (18, 20), die mit der Rinne (12) verbunden sind und die Rinne (12) während seitlicher Bewegung stützen;

    einen Motor (30) zum Antreiben einer Antriebsscheibe (32) um eine Antriebsscheibenachse ;

    eine angetriebene Scheibe (36), die von der Antriebsscheibe (32) angetrieben wird;

    ein flexibles Element (34), das die Antriebsscheibe (32) und die angetriebene Scheibe (36) miteinander verbindet, wobei die angetriebene Scheibe (36) an einem der mehreren Beine (20) oder an der Rinne (12) montiert ist und um eine Achse der angetriebenen Scheibe drehbar ist;

    wobei die angetriebene Scheibe (36) eine exzentrische Scheibenachse hat, die drehbar an einem der mehreren Beine oder der Rinne montiert ist, wodurch die Rinne zur Bewegung in der Vorwärtsrichtung und der Rückwärtsrichtung veranlasst wird, und

    einen Spannmechanismus (38, 40, 42), um die Lose im flexiblen Element zu beseitigen, so dass das flexible Element (34) die Rinne (12) durch Bewegen der Rinne in der anderen von der Vorwärtsrichtung und der Rückwärtsrichtung zurückführt, dadurch gekennzeichnet, dass

    der Spannmechanismus eine konzentrisch an einer feststehenden Basis (22) montierte Spannscheibe (40) und ein die angetriebene Scheibe (36) und die Spannscheibe miteinander verbindendes flexibles Spannelement (38) aufweist,

    oder dadurch, dass die Differentialantriebsförderanlage ferner Folgendes aufweist:
    eine von dem Motor (30) angetriebene weitere angetriebene Scheibe (46), wobei die weitere angetriebene Scheibe an einem Gegengewicht (50) montiert ist.


     
    2. Differentialantriebsförderanlage nach Anspruch 1, wobei der Spannmechanismus Folgendes aufweist:
    ein Vorspannelement (128) zum Ausüben einer Vorspannkraft auf wenigstens eines von der Rinne (12) oder einem der mehreren Beine (20) zum Vorspannen der Rinne seitlich von der Antriebsscheibe (120) weg.
     
    3. Differentialantriebsförderanlage nach Anspruch 1, wobei das flexible Element (34) eines von einem Steuerriemen und einer Gliederkette ist.
     
    4. Differentialantriebsförderanlage nach Anspruch 1, die ferner Folgendes aufweist:
    einen Einstellmechanismus (142, 144) zum wahlweisen Einstellen eines Drehungsmittelpunkts der Antriebsscheibe (120) in Bezug auf einen Drehungsmittelpunkt der angetriebenen Scheibe (122).
     
    5. Differentialantriebsförderanlage nach Anspruch 1, wobei jedes der mehreren Beine (18, 20) an einem Ende an einer Basis (22) und an einem anderen Ende an der Rinne (12) angelenkt ist.
     
    6. Differentialantriebsförderanlage (10) nach Anspruch 1,
    wobei der Motor (30) zum Antreiben einer Antriebsscheibe (32) um eine konzentrische Antriebsscheibenachse ist.
     
    7. Verfahren zum Transportieren von Fördergut, das Folgendes aufweist:

    seitliches Bewegen einer Rinne (12) mit einer ersten Geschwindigkeit in einer Vorwärtsrichtung und mit einer zweiten Geschwindigkeit, die größer als die erste Geschwindigkeit ist, in einer Rückwärtsrichtung, wodurch Fördergut in der Rinne entlangbewegt wird;

    Bereitstellen von mehreren Beinen (18, 20), die mit der Rinne (12) verbunden sind und die Rinne während seitlicher Bewegung stützen;

    Bereitstellen eines Motors (30) zum Antreiben einer Antriebsscheibe (32) um eine Antriebsscheibenachse;

    Antreiben einer angetriebenen Scheibe (36) durch die Antriebsscheibe (32) und ein flexibles Element (34), das die Antriebsscheibe (32) und die angetriebene Scheibe (36) miteinander verbindet, wobei die angetriebene Scheibe (36) an einem der mehreren Beine (18, 20) oder an der Rinne montiert ist;

    Montieren der angetriebenen Scheibe (36) an einem von der Rinne (12) oder einem der mehreren Beine (18, 20) um eine exzentrische Achse der angetriebenen Scheibe, wodurch die Rinne (12) zur Bewegung in der Vorwärtsrichtung und der Rückwärtsrichtung veranlasst wird; und

    Bereitstellen eines Spannmechanismus (38, 40, 42), um die Lose im flexiblen Element zu beseitigen, so dass das flexible Element (34) die Rinne (12) durch Bewegen der Rinne in der anderen von der Vorwärtsrichtung und der Rückwärtsrichtung zurückführt, dadurch gekennzeichnet, dass der Schritt des Bereitstellens eines Spannmechanismus Folgendes aufweist:

    Konzentrisches Montieren einer Spannscheibe (40) an einer feststehenden Basis (22) und

    Bereitstellen eines flexiblen Spannelements (38), das die angetriebene Scheibe (36) und die Spannscheibe miteinander verbindet, oder durch den Schritt des

    Bereitstellens einer von dem Motor (30) angetriebenen weiteren angetriebenen Scheibe (46), wobei die weitere angetriebene Scheibe an einem Gegengewicht (50) montiert wird.


     
    8. Verfahren nach Anspruch 7, wobei das Bereitstellen eines Spannmechanismus Folgendes aufweist:
    Ausüben einer Vorspannkraft auf wenigstens eines von den mehreren Beinen zum Vorspannen des Beins seitlich vom Motor weg.
     
    9. Verfahren nach Anspruch 7, das ferner Folgendes aufweist:
    wahlweises Einstellen eines Drehungsmittelpunkts der Antriebsscheibe (120) in Bezug auf einen Drehungsmittelpunkt der angetriebenen Scheibe (122).
     
    10. Verfahren nach Anspruch 7, wobei jedes der mehreren Beine (18, 20) an einem Ende an einer Basis (22) und an einem anderen Ende an der Rinne (12) angelenkt ist.
     


    Revendications

    1. Ensemble formant transporteur à impulsion différentielle (10) comportant un plateau (12) mobile dans le sens latéral dans une direction avant à une première vitesse et dans une direction arrière à une deuxième vitesse supérieure à la première vitesse, pour de ce fait déplacer des marchandises le long du plateau ;
    l'ensemble comportant par ailleurs :

    une pluralité de pieds (18, 20) raccordés au plateau (12) et supportant le plateau (12) au cours du mouvement latéral ;

    un moteur (30) servant à mettre en mouvement une poulie d'entraînement (32) autour d'un axe de la poulie d'entraînement ;

    une poulie menée (36) mise en mouvement par la poulie d'entraînement (32) ;

    un élément flexible (34) raccordant mutuellement la poulie d'entraînement (32) et la poulie menée (36), la poulie menée (36) étant montée sur l'un de la pluralité de pieds (20) ou sur le plateau (12) et étant en mesure de tourner autour d'un axe de la poulie menée ;

    la poulie menée (36) ayant un axe à excentrique de la poulie, axe qui est monté de manière rotative sur l'un de la pluralité de pieds ou sur le plateau, pour de ce fait amener le plateau à se déplacer dans la direction avant et dans la direction arrière ; et

    un mécanisme de tension (38, 40, 42) servant à rattraper le mou dans l'élément flexible, de telle sorte que l'élément flexible (34) ramène le plateau (12) en déplaçant le plateau dans l'autre parmi la direction avant et la direction arrière, caractérisé en ce que
    le mécanisme de tension comporte une poulie de tension (40) montée de manière concentrique sur une base fixe (22), et un élément de tension flexible (38) raccordant mutuellement la poulie menée (36) et la poulie de tension, ou en ce que l'ensemble formant transporteur à impulsion différentielle comporte par ailleurs une autre poulie menée (46) mise en mouvement par le moteur (30), ladite une autre poulie menée étant montée sur un contrepoids (50).


     
    2. Ensemble formant transporteur à impulsion différentielle selon la revendication 1, dans lequel le mécanisme de tension comporte :
    un élément de sollicitation (128) servant à exercer une force de sollicitation sur au moins l'un parmi le plateau (12) ou l'un de la pluralité de pieds (20) à des fins de sollicitation du plateau dans le sens latéral à l'opposé de la poulie d'entraînement (120).
     
    3. Ensemble formant transporteur à impulsion différentielle selon la revendication 1, dans lequel l'élément flexible (34) est l'une parmi une courroie crantée et une chaîne à maillons.
     
    4. Ensemble formant transporteur à impulsion différentielle selon la revendication 1, comportant par ailleurs :
    un mécanisme de réglage (142, 144) servant à régler de manière sélective un centre de rotation de la poulie d'entraînement (120) par rapport à un centre de rotation de la poulie menée (122).
     
    5. Ensemble formant transporteur à impulsion différentielle selon la revendication 1, dans lequel chacun de la pluralité de pieds (18, 20) est supporté de manière pivotante au niveau d'une extrémité sur une base (22) et au niveau d'une autre extrémité sur le plateau (12).
     
    6. Ensemble formant transporteur à impulsion différentielle (10) selon la revendication 1,
    dans lequel le moteur (30) sert à mettre en mouvement une poulie d'entraînement (32) autour d'un axe concentrique de la poulie d'entraînement.
     
    7. Procédé de transport de marchandises, comportant les étapes consistant à :

    déplacer un plateau (12) dans le sens latéral dans une direction avant à une première vitesse et dans une direction arrière à une deuxième vitesse supérieure à la première vitesse, pour de ce fait déplacer des marchandises le long du plateau ;

    mettre en œuvre une pluralité de pieds (18, 20) raccordés au plateau (12) et supportant le plateau au cours du mouvement latéral ;

    mettre en œuvre un moteur (30) servant à mettre en mouvement une poulie d'entraînement (32) autour d'un axe de la poulie d'entraînement ;

    mettre en mouvement une poulie menée (36) par la poulie d'entraînement (32) et un élément flexible (34) raccordant mutuellement la poulie d'entraînement (32) et la poulie menée (36), la poulie menée étant montée sur l'un de la pluralité de pieds (18, 20) ou sur le plateau ;

    monter la poulie menée (36) sur l'un parmi le plateau (12) ou l'un de la pluralité de pieds (18, 20) autour d'un axe à excentrique de la poulie menée, pour de ce fait amener le plateau (12) à se déplacer dans la direction avant et dans la direction arrière ; et

    mettre en œuvre un mécanisme de tension (38, 40, 42) servant à rattraper le mou dans l'élément flexible, de telle sorte que l'élément flexible (34) ramène le plateau (12) en déplaçant le plateau dans l'autre parmi la direction avant et la direction arrière, caractérisé en ce que l'étape consistant à mettre en œuvre un mécanisme de tension comporte les étapes consistant à :

    monter de manière concentrique une poulie de tension (40) sur une base fixe (22), et

    mettre en œuvre un élément de tension flexible (38) raccordant mutuellement la poulie menée (36) et la poulie de tension, ou par l'étape consistant à

    mettre en œuvre une autre poulie menée (46) mise en mouvement par le moteur (30), ladite une autre poulie menée étant montée sur un contrepoids (50).


     
    8. Procédé selon la revendication 7, dans lequel l'étape consistant à mettre en œuvre un mécanisme de tension comporte l'étape consistant à :
    exercer une force de sollicitation sur au moins l'un de la pluralité de pieds à des fins de sollicitation du pied dans le sens latéral à l'opposé du moteur.
     
    9. Procédé selon la revendication 7, comportant par ailleurs l'étape consistant à :
    régler de manière sélective un centre de rotation de la poulie d'entraînement (120) par rapport à un centre de rotation de la poulie menée (122).
     
    10. Procédé selon la revendication 7, dans lequel chacun de la pluralité de pieds (18, 20) est supporté de manière pivotante au niveau d'une extrémité sur une base (22) et au niveau d'une autre extrémité sur le plateau (12).
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description