(19)
(11)EP 2 557 629 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.10.2018 Bulletin 2018/40

(21)Application number: 10849310.7

(22)Date of filing:  01.12.2010
(51)International Patent Classification (IPC): 
H01P 7/06(2006.01)
H01J 37/32(2006.01)
C23C 16/511(2006.01)
(86)International application number:
PCT/CN2010/079322
(87)International publication number:
WO 2011/124074 (13.10.2011 Gazette  2011/41)

(54)

CYLINDRICAL PLASMA RESONANT CAVITY

ZYLINDRISCHER PLASMARESONANZHOHLRAUM

CAVITÉ RÉSONNANTE CYLINDRIQUE À PLASMA


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.04.2010 CN 201010147798

(43)Date of publication of application:
13.02.2013 Bulletin 2013/07

(73)Proprietor: Yangtze Optical Fibre and Cable Joint Stock Limited Company
Wuchang District Wuhan Hubei 430073 (CN)

(72)Inventors:
  • LI, Zhenyu
    Wuhan Hubei 430073 (CN)
  • LU, Songtao
    Wuhan Hubei 430073 (CN)
  • LIU, Shanpei
    Wuhan Hubei 430073 (CN)
  • LONG, Shengya
    Wuhan Hubei 430073 (CN)
  • LEI, Gaoqing
    Wuhan Hubei 430073 (CN)
  • LIU, Yongtao
    Wuhan Hubei 430073 (CN)

(74)Representative: Zeuner Summerer Stütz 
Nußbaumstrasse 8
80336 München
80336 München (DE)


(56)References cited: : 
WO-A2-03/049141
CN-A- 1 835 279
CN-A- 1 858 298
CN-A- 101 853 768
JP-A- 1 011 403
CN-A- 1 589 089
CN-A- 1 835 279
CN-A- 1 858 298
CN-U- 201 622 996
JP-A- 3 078 302
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The invention relates to a cylindrical plasma resonant cavity used for manufacturing an optical fiber perform using PCVD (Plasma Chemical Vapor Deposition), which is an improvement of conventional plasma resonant cavity.

    BACKGROUND OF THE INVENTION



    [0002] PCVD (Plasma Chemical Vapor Deposition), a main process for manufacturing an optical fiber preform, has the characteristics of flexibility and accuracy, and a plasma resonant cavity microwave system is a core part of PCVD processing equipment. The plasma resonant cavity microwave system includes three parts: a plasma resonant cavity, a microwave generator, and a waveguide device. Microwaves generated by the microwave generator are coupled to the plasma resonant cavity through the waveguide device, and the high-frequency microwave energy is transmitted to an area for processing an optical fiber preform through the plasma resonant cavity for finishing the PCVD processing. The match between the plasma resonant cavity and microwave is very important in the process. The mismatching between the two not only affects the coupling effect and causes energy loss, but also easily damages the system device, and also affects the machining precision of the PCVD processing.

    [0003] The conventional plasma resonant cavity used for manufacture of optical fiber preforms includes two different structure types: a coaxial structure type and a cylindrical structure type. The cylindrical structure type is more suitable for processing large-diameter performs using PCVD. The cylindrical resonant cavity is simple in cavity structure, easy for processing and manufacturing, and excellent in deposition performance. However, most conventional resonant cavities adopt fixed structures, the size of the cavity body is fixed, the requirements of deposition of lining pipes with different sizes cannot be met, and the processing range is greatly limited.

    [0004] An example of a conventional plasma resonant cavity is described in CN 1835279 A. Other examples of microwave plasma cavities for processing substrates are known from WO 03/049141 A2 and JP S 6411403 A.

    SUMMARY OF THE INVENTION



    [0005] In view of the above-described problems, it is one objective of the invention to provide a plasma resonant cavity. The plasma resonant cavity is not only simple in structure, easy for processing and excellent in deposition performance, but also can adjust the matching performance of load within a certain range, meet the requirements of deposition of lining pipes with different sizes, and extend the processing range.

    [0006] To achieve the above objective, in accordance with one embodiment of the invention, there provided is a plasma resonant cavity comprising a cylindrical resonant cavity casing, cutoff waveguides, and a waveguide inlet circumferentially formed on the cylindrical resonant cavity casing, wherein the cutoff waveguides are arranged at two ends of the cylindrical resonant cavity casing and comprise a removable end cover structure, an intermediate through hole is formed on each cutoff waveguide with the removable end cover structure, and a raised round table is arranged on an inner end surface of the cutoff waveguide and configured with the resonant cavity.

    [0007] In this embodiment, the cutoff waveguides with the removable end cover structure at two ends of the resonant cavity casing are symmetrical.

    [0008] In this embodiment, a connecting hole is formed at the periphery of the end surface of each cutoff waveguide with the removable end surface structure, a screw hole is correspondingly formed at the end of the cylindrical resonant cavity casing, and the removable end cover is fixedly connected with the end of the cylindrical resonant cavity casing through a bolt.

    [0009] In this embodiment, a cooling water channel is arranged in each cutoff waveguide with the removable end surface structure, and two ends of the cooling water channel are communicated with a cooling water pipeline.

    [0010] Advantages of the invention are summarized below: firstly, each cutoff waveguide adopts the removable end surface structure, the inner diameter and length of the cutoff waveguide are adjusted by adjusting the diameter of the intermediate through holes and the axial thickness of the removable end covers, the resonant cavity is matched with glass lining pipes with different diameters within a certain size range, the waveguide device is better matched with the load of the resonant cavity, and the coupling effect is enhanced to adapt to the change of load in the processing process and reduce the energy loss, therefore, the processing range of the cylindrical plasma resonant cavity is extended; secondly, the cavity structure is simple, and the processing and manufacturing are easy; in the whole cavity body, energy is evenly distributed; the deposition is uniform; the deposition and adhesion effect is good, dust is less, pipes are not clogged, the deposition rate and the deposition efficiency are high, and the processing precision and the processing efficiency of the PCVD process are improved; thirdly, the service performance is stable, the operational reliability is high, other devices are not involved in the resonant cavity, the phenomenon of electric arc striking and the damage of microwave to the system device can be avoided, so that the effective service life of the plasma resonant cavity microwave system is prolonged; and fourthly, the cooling water channel is arranged in the removable end cover structure of each cutoff waveguide, thus the structure is simple, and the cooling requirements of the resonant cavity in the high temperature environment can be fully met.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0011] 

    FIG 1 is a front sectional view of a plasma resonant cavity in accordance with one embodiment of the invention;

    FIG 2 is a comparison chart of refractive index variation homogeneity of a core layer of a deposited core rod in accordance with one embodiment of the invention;

    FIG. 3 is a comparison chart of refractive index variation homogeneity of a cladding layer of a deposited core rod in accordance with one embodiment of the invention;

    FIG 4 is a comparison chart of refractive index variation homogeneity of a deposited core rod in accordance with one embodiment of the invention; and

    FIG. 5 is a comparison chart of diameter uniformity of a core layer of a deposited core rod in accordance with one embodiment of the invention.


    DETAILED DESCRIPTION OF THE EMBODIMENTS



    [0012] A plasma resonant cavity comprises a cylindrical resonant cavity casing 1. The diameter of a cavity body of the resonant cavity is D, the length of the cavity body is L, and a waveguide inlet 4 is circumferentially formed on the cylindrical resonant cavity casing 1 and connected with a waveguide device. Cutoff waveguides 2 with a removable end cover structure are arranged at two ends of the cylindrical resonant cavity casing 1; an intermediate through hole 5 with a diameter of d is formed on each cutoff waveguide 2 with the removable end cover structure, and a raised round table is arranged on the inner end surface of each cutoff waveguide 2 and configured with the resonant cavity. The distance from the inner end surface of the round table to the outer end surface of the removable end cover structure refers to the length l of the cutoff waveguide. A connecting hole is formed at the periphery of the end surface of each cutoff waveguide with the removable end surface structure, a screw hole is correspondingly formed at the end of the cylindrical resonant cavity casing, and the removable end cover is fixedly connected with the end of the cylindrical resonant cavity casing through a bolt. The cutoff waveguides (at two ends of the cylindrical resonant cavity casing) with the removable end cover structure are symmetrical. Thus, a fixed cylindrical plasma resonant cavity capable of detachably exchanging the cutoff waveguides is formed, so that the glass lining pipes with different diameters can be processed within a certain range. In addition, a cooling water channel 6 is arranged in each cutoff waveguide 2 with the removable end cover structure, two ends of the cooling water channel 6 are communicated with a cooling water pipeline, and the whole resonant cavity casing and the cutoff waveguides can be sufficiently cooled through heat conduction. The cross-sectional area of an inlet pipeline or an outlet pipeline of the cooling water channel is 40 - 50 mm2, and the cross-sectional area of the cooling water channel in the removable end cover is about 270 - 470 mm2. The water supply pressure of external cooling water is about 3 - 4 Bar, the flow rate is 2.5 - 3 m/s, and the cooling water flow is about 6 - 9 L/min. The temperature difference Δt between a cooling water inlet and a cooling water outlet of the cooling water channel is 28 - 32°C, and the heat exchange capability is about 12 - 19 kJ.

    [0013] The main structure parameters of the plasma resonant cavity are as follows:
    1. (1) As for a glass lining pipe with an outer diameter of about 36 mm, the parameters are as follows:
      D = 100 ± 5 mm, L = 87 ± 2 mm, d = 45 ± 2 mm, and l = 50 ± 5 mm.
    2. (2) As for a glass lining pipe with an outer diameter of about 47 mm, the parameters are as follows:
      D = 100 ± 5 mm, L = 87 ± 2 mm, d = 55 ± 2 mm, and l = 50 ± 5 mm.
    3. (3) As for a glass lining pipe with an outer diameter of about 55 mm, the parameters are as follows:
      D = 100 ± 5 mm, L = 87 ± 2 mm, d = 65 ± 2 mm, and l = 50 ± 5 mm.
    4. (4) As for a glass lining pipe with an outer diameter of about 60 mm, the parameters are as follows:
      D = 100 ± 5 mm, L = 87 ± 2 mm, d = 70 ± 2 mm, and l = 50 - 70 mm.


    [0014] As shown in FIGS. 2 - 4, under the same external conditions, the deposition rate of the core layer of the resonant cavity of the invention is higher than that of other resonant cavities.

    [0015] As shown in FIG 5, in the deposition area with length of 0 - 200 mm, the deposition effect of the resonant cavity of the invention is better than that of other resonant cavities as far as the indexes of diameter and refractivity are concerned.


    Claims

    1. A plasma resonant cavity, comprising:

    a) a cylindrical resonant cavity casing (1);

    b) cutoff waveguides (2); and

    c) a waveguide inlet (4) circumferentially formed on the cylindrical resonant cavity casing (1);

    wherein
    the cutoff waveguides (2) are arranged at two ends of the cylindrical resonant cavity casing (1) and comprise a removable end cover structure; an intermediate through hole (5) is formed on each cutoff waveguide (2) with the removable end cover structure; and
    a raised round table is arranged on an inner end surface of the cutoff waveguide (2) and configured with the resonant cavity.
     
    2. The plasma resonant cavity of claim 1, characterized in that the cutoff waveguides (2) with the removable end cover structure at the two ends of the cylindrical resonant cavity casing (1) are symmetrical.
     
    3. The plasma resonant cavity of claim 1 or 2, characterized in that

    a connecting hole is formed at the periphery of an end surface of each cutoff waveguide (2) with the removable end surface structure;

    a screw hole is correspondingly formed at one end of the cylindrical resonant cavity casing (1); and

    the removable end cover is fixedly connected with the end of the cylindrical resonant cavity casing (1) through a bolt.


     
    4. The plasma resonant cavity of claim 3, characterized in that a cooling water channel (6) is arranged in each cutoff waveguide (2) with the removable end surface structure, and two ends of the cooling water channel (6) are communicated with a cooling water pipeline.
     
    5. The plasma resonant cavity of claim 4, characterized in that the cross-sectional area of an inlet pipeline or an outlet pipeline of the cooling water channel (6) is 40 - 50 mm2, and the cross-sectional area of the cooling water channel (6) in the removable end cover structure is 270 - 470 mm2.
     
    6. The plasma resonant cavity of claim 4, characterized in that the water supply pressure of cooling water is about 3 - 4 barar, the flow rate is 2.5 - 3 m/s, the cooling water flow is about 6 - 9 L/min, and the temperature difference between a cooling water inlet and a cooling water outlet of the cooling water channel (6) is 28 - 32°C.
     
    7. The plasma resonant cavity of claim 4, having the structure parameters as follows: D = 100 ± 5 mm, L = 87 ± 2 mm, d = 45 ± 2 mm, and l = 50 ± 5 mm, characterized in that D represents a diameter of a cavity body of the resonant cavity, L represents a length of the cavity body, d represents a diameter of the intermediate through hole, and l represents a length of the cutoff waveguide (2) which is the distance from an inner end surface of the round table to an outer end surface of the removable end cover structure.
     
    8. The plasma resonant cavity of claim 4, having the structure parameters as follows: D = 100 ± 5 mm, L = 87 ± 2 mm, d = 55 ± 2 mm, and l = 50 ± 5 mm, characterized in that D represents a diameter of a cavity body of the resonant cavity, L represents a length of the cavity body, d represents a diameter of the intermediate through hole, and l represents a length of the cutoff waveguide (2) which is the distance from an inner end surface of the round table to an outer end surface of the removable end cover structure.
     
    9. The plasma resonant cavity of claim 4, having the structure parameters as follows: D = 100 ± 5 mm, L = 87 ± 2 mm, d = 65 ± 2 mm, and l = 50 ± 5 mm, characterized in that D represents a diameter of a cavity body of the resonant cavity, L represents a length of the cavity body, d represents a diameter of the intermediate through hole, and l represents a length of the cutoff waveguide (2) which is the distance from an inner end surface of the round table to an outer end surface of the removable end cover structure.
     
    10. The plasma resonant cavity of claim 4, having the structure parameters as follows: D = 100 ± 5 mm, L = 87 ± 2 mm, d = 70 ± 2 mm, and l = 50 - 70 mm, characterized in that D represents a diameter of a cavity body of the resonant cavity, L represents a length of the cavity body, d represents a diameter of the intermediate through hole, and l represents a length of the cutoff waveguide (2) which is the distance from an inner end surface of the round table to an outer end surface of the removable end cover structure.
     


    Ansprüche

    1. Plasma-Resonanzhohlraum, umfassend:

    a) ein zylindrisches Resonanzhohlraum-Gehäuse (1);

    b) frequenzbegrenzende Wellenleiter (2); und

    c) einen Wellenleitereinlass (4), der in Umfangsrichtung auf dem zylindrischen Resonanzhohlraum-Gehäuse (1) gebildet ist;

    wobei
    die frequenzbegrenzenden Wellenleiter (2) an zwei Enden des zylindrischen Resonanzhohlraum-Gehäuses (1) angeordnet sind und eine entfernbare Endabdeckungsstruktur umfassen;
    ein intermediäres Durchgangsloch (5) auf jedem frequenzbegrenzenden Wellenleiter (2) mit der entfernbaren Endabdeckungsstruktur gebildet ist;
    und ein erhöhter Rundtisch auf einer inneren Endfläche des frequenzbegrenzenden Wellenleiters (2) angeordnet und mit dem Resonanzhohlraum ausgebildet ist.
     
    2. Plasma-Resonanzhohlraum nach Anspruch 1, dadurch gekennzeichnet, dass die frequenzbegrenzenden Wellenleiter (2) mit der abnehmbaren Endabdeckungsstruktur an den zwei Enden des zylindrischen Resonanzhohlraum-Gehäuses (1) symmetrisch sind.
     
    3. Plasma-Resonanzhohlraum nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass
    ein Verbindungsloch an der Peripherie einer Endfläche jedes frequenzbegrenzenden Wellenleiters (2) mit der abnehmbaren Endflächenstruktur gebildet ist;
    ein Schraubloch dementsprechend an einem Ende des zylindrischen Resonanzhohlraum-Gehäuses (1) gebildet ist; und
    die abnehmbare Endabdeckung fest mit dem Ende des zylindrischen Resonanzhohlraum-Gehäuses (1) durch einen Bolzen befestigt ist.
     
    4. Plasma-Resonanzhohlraum nach Anspruch 3, dadurch gekennzeichnet, dass ein Kühlwasserkanal (6) in jedem frequenzbegrenzenden Wellenleiter (2) mit der abnehmbaren Endflächenstruktur angeordnet ist, und zwei Enden des Kühlwasserkanals (6) mit einer Kühlwasserrohrleitung verbunden sind.
     
    5. Plasma-Resonanzhohlraum nach Anspruch 4, dadurch gekennzeichnet, dass die Querschnittsfläche einer Einlassrohrleitung oder einer Auslassrohrleitung des Kühlwasserkanals (6) 40 bis 50 mm2 beträgt, und die Querschnittsfläche des Kühlwasserkanals (6) in der abnehmbaren Endabdeckungsstruktur 270 bis 470 mm2 beträgt.
     
    6. Plasma-Resonanzhohlraum nach Anspruch 4, dadurch gekennzeichnet, dass der Wasserzufuhrdruck von Kühlwasser etwa 3 bis 4 bar beträgt, die Strömungsgeschwindigkeit 2,5 bis 3 m/s beträgt, der Kühlwasserstrom 6 bis 9 l/min beträgt, und die Temperaturdifferenz zwischen einem Kühlwassereinlass und einem Kühlwasserauslass des Kühlwasserkanals (6) 28 bis 32 °C beträgt.
     
    7. Plasma-Resonanzhohlraum nach Anspruch 4, der die folgenden Strukturparameter hat: D=100 ± 5 mm, L = 87 ± 2 mm, d = 45 ± 2 mm und l = 50 ± 5 mm, dadurch gekennzeichnet, dass D einen Durchmesser eines Hohlraumkörpers des Resonanzhohlraums darstellt, L eine Länge des Hohlraumkörpers darstellt, d einen Durchmesser des intermediären Durchgangslochs darstellt, und l eine Länge des frequenzbegrenzenden Wellenleiters (2) darstellt, die der Abstand von einer inneren Endfläche des Rundtisches bis zu einer äußeren Endfläche der abnehmbaren Endabdeckungsstruktur ist.
     
    8. Plasma-Resonanzhohlraum nach Anspruch 4, der die folgenden Strukturparameter hat: D=100 ± 5 mm, L = 87 ± 2 mm, d = 55 ± 2 mm und l = 50 ± 5 mm, dadurch gekennzeichnet, dass D einen Durchmesser eines Hohlraumkörpers des Resonanzhohlraums darstellt, L eine Länge des Hohlraumkörpers darstellt, d einen Durchmesser des intermediären Durchgangslochs darstellt, und l eine Länge des frequenzbegrenzenden Wellenleiters (2) darstellt, die der Abstand von einer inneren Endfläche des Rundtisches bis zu einer äußeren Endfläche der abnehmbaren Endabdeckungsstruktur ist.
     
    9. Plasma-Resonanzhohlraum nach Anspruch 4, der die folgenden Strukturparameter hat: D = 100 ± 5 mm, L = 87 ± 2 mm, d = 65 ± 2 mm, und l = 50 ± 5 mm, dadurch gekennzeichnet, dass D einen Durchmesser eines Hohlraumkörpers des Resonanzhohlraums darstellt, L eine Länge des Hohlraumkörpers darstellt, d einen Durchmesser des intermediären Durchgangslochs darstellt, und l eine Länge des frequenzbegrenzenden Wellenleiters (2) darstellt, die der Abstand von einer inneren Endfläche des Rundtisches bis zu einer äußeren Endfläche der abnehmbaren Endabdeckungsstruktur ist.
     
    10. Plasma-Resonanzhohlraum nach Anspruch 4, der die folgenden Strukturparameter hat: D = 100 ± 5 mm, L = 87 ± 2 mm, d = 70 ± 2 mm, and l = 50 - 70 mm, dadurch gekennzeichnet, dass D einen Durchmesser eines Hohlraumkörpers des Resonanzhohlraums darstellt, L eine Länge des Hohlraumkörpers darstellt, d einen Durchmesser des zwischenliegenden Durchgangslochs darstellt, und l eine Länge des frequenzbegrenzenden Wellenleiters (2) darstellt, die der Abstand von einer inneren Endfläche des Rundtisches bis zu einer äußeren Endfläche der abnehmbaren Endabdeckungsstruktur ist.
     


    Revendications

    1. Cavité résonnante à plasma, comprenant :

    a) un boîtier cylindrique de la cavité résonnante (1) ;

    b) des guides d'ondes de coupure (2) ; et

    c) une entrée de guide d'ondes (4) formée de manière circonférentielle sur le boîtier cylindrique de la cavité résonnante (1) ;

    dans laquelle
    les guides d'ondes de coupure (2) sont agencés aux deux extrémités du boîtier cylindrique de la cavité résonnante (1) et comprennent une structure de couvercle d'extrémité amovible ;
    un trou perforant intermédiaire (5) est formé sur chaque guide d'onde de coupure (2) équipée de la structure de couvercle d'extrémité amovible ; et
    une table ronde soulevée est agencée sur une surface d'extrémité interne du guide d'onde de coupure (2) et conçue avec la cavité résonnante.
     
    2. Cavité résonnante à plasma selon la revendication 1, caractérisée en ce que les guides d'ondes de coupure (2) équipés de la structure de couvercle d'extrémité amovible au niveau des deux extrémités du boîtier cylindrique de la cavité résonnante (1) sont symétriques.
     
    3. Cavité résonnante à plasma selon la revendication 1 ou la revendication 2, caractérisée en ce qu'un trou de connexion est formé au niveau de la périphérie d'une surface d'extrémité de chaque guide d'onde de coupure (2) équipée de la structure de surface d'extrémité amovible ;
    qu'un trou de vis est formé de manière correspondante au niveau d'une extrémité du boîtier cylindrique de la cavité résonnante (1) ; et
    le couvercle d'extrémité amovible est relié de manière fixe à l'extrémité du boîtier cylindrique de la cavité résonnante (1) grâce à un boulon.
     
    4. Cavité résonnante à plasma selon la revendication 3, caractérisée en ce qu'un canal d'eau de refroidissement (6) est agencé dans chaque guide d'ondes de coupure (2) équipé de la structure de surface d'extrémité amovible, et deux extrémités du canal d'eau de refroidissement (6) sont mises en communication avec une conduite d'eau de refroidissement.
     
    5. Cavité résonnante à plasma selon la revendication 4, caractérisée en ce que la section transversale d'une conduite d'entrée ou d'une conduite de sortie du canal d'eau de refroidissement (6) est 40 à 50 mm2, et la section transversale du canal d'eau de refroidissement (6) dans la structure de couvercle d'extrémité amovible est 270 à 470 mm2.
     
    6. Cavité résonnante à plasma selon la revendication 4, caractérisée en ce que de la pression d'approvisionnement en eau d'eau de refroidissement est d'environ 3 à 4 barar, le débit d'écoulement est 2,5 à 3 m/s, le débit d'eau de refroidissement est d'environ 6 à 9 L/min, et la différence de température entre une entrée d'eau de refroidissement et une sortie d'eau de refroidissement du canal d'eau de refroidissement (6) est 28 à 32 °C.
     
    7. Cavité résonnante à plasma selon la revendication 4, ayant les paramètres de structure suivants : D = 100 ± 5 mm, L = 87 ± 2 mm, d = 45 ± 2 mm et l = 50 - 70 mm, caractérisée en ce que D représente un diamètre d'un corps de cavité de la cavité résonnante, L représente une longueur du corps de cavité, d représente un diamètre du trou perforant intermédiaire, et l représente une longueur du guide d'ondes de coupure (2) qui constitue la distance depuis une surface d'extrémité interne de la table ronde vers une surface d'extrémité externe de la structure de couvercle d'extrémité amovible.
     
    8. Cavité résonnante à plasma selon la revendication 4, ayant les paramètres de structure suivants : D = 100 ± 5 mm, L = 87 ± 2 mm, d = 55 ± 2 mm et l = 50 ± 5 mm, caractérisée en ce que D représente un diamètre d'un corps de cavité de la cavité résonnante, L représente une longueur du corps de cavité, d représente un diamètre du trou perforant intermédiaire, et l représente une longueur du guide d'ondes de coupure (2) qui constitue la distance depuis une surface d'extrémité interne de la table ronde vers une surface d'extrémité externe de la structure de couvercle d'extrémité amovible.
     
    9. Cavité résonnante à plasma selon la revendication 4, ayant les paramètres de structure suivants : D = 100 ± 5 mm, L = 87 ± 2 mm, d = 65 ± 2 mm et l = 50 ± 5 mm, caractérisée en ce que D représente un diamètre d'un corps de cavité de la cavité résonnante, L représente une longueur du corps de cavité, d représente un diamètre du trou perforant intermédiaire, et l représente une longueur du guide d'ondes de coupure (2) qui constitue la distance depuis une surface d'extrémité interne de la table ronde vers une surface d'extrémité externe de la structure de couvercle d'extrémité amovible.
     
    10. Cavité résonnante à plasma selon la revendication 4, ayant les paramètres de structure suivants : D = 100 ± 5 mm, L = 87 ± 2 mm, d = 70 ± 2 mm et l = 50 - 70 mm, caractérisée en ce que D représente un diamètre d'un corps de cavité de la cavité résonnante, L représente une longueur du corps de cavité, d représente un diamètre du trou perforant intermédiaire, et l représente une longueur du guide d'ondes de coupure (2) qui constitue la distance depuis une surface d'extrémité interne de la table ronde vers une surface d'extrémité externe de la structure de couvercle d'extrémité amovible.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description