(19)
(11)EP 2 565 425 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
30.09.2020 Bulletin 2020/40

(21)Application number: 12182066.6

(22)Date of filing:  28.08.2012
(51)International Patent Classification (IPC): 
H04B 7/15(2006.01)
B64D 31/06(2006.01)
B64C 19/00(2006.01)

(54)

Method and system for integrating engine control and flight control system

Verfahren und System zur Integration von Motorsteuerungs- und Flugsteuerungssystemen

Procédé et système d'intégration de commande de moteur et système de commande de vol


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.08.2011 US 201113221102

(43)Date of publication of application:
06.03.2013 Bulletin 2013/10

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • Mathews, Jr, Harry Kirk
    Niskayuna, NY New York 12309 (US)
  • Adibhatla, Sridhar
    Cincinnati, OH Ohio 45215 (US)
  • Bult, Jeffrey Russell
    Grand Rapids, MI Michigan 49512 (US)

(74)Representative: Openshaw & Co. 
8 Castle Street
Farnham, Surrey GU9 7HR
Farnham, Surrey GU9 7HR (GB)


(56)References cited: : 
EP-A2- 1 400 942
WO-A2-2008/144228
US-A- 5 044 155
EP-A2- 2 287 822
WO-A2-2009/102512
US-B1- 7 437 225
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] The field of the invention relates generally to flight control systems, and more specifically, to methods and systems for integrating engine control and a flight control system.

    [0002] At least some known aircraft include an engine control system, sometimes referred to as a full authority digital engine control (FADEC). The FADEC is a system that includes a digital computer and its related accessories that control all aspects of aircraft engine performance. The FADEC receives multiple current input variables of the current flight condition including, for example, but not limited to, air density, throttle lever position, engine temperatures, engine pressures, and current values of other engine parameters. The inputs are received and analyzed many times per second. Engine operating parameters such as fuel flow, stator vane position, bleed valve position, and others are computed from this data and applied as appropriate to provide optimum engine efficiency for a given current flight condition.

    [0003] The aircraft also typically include a flight control system, which may include a system typically referred to as a flight management system (FMS). The FMS is a specialized computer system that automates a wide variety of in-flight tasks, including the in-flight management of the flight plan. Using various sensors, such as, but not limited to, global positioning system (GPS), inertial navigation system (INS), and backed up by radio navigation to determine the aircraft's position, the FMS guides the aircraft along the flight plan. From the cockpit, the FMS is normally controlled through a Control Display Unit (CDU) which incorporates a small screen and keyboard or touch screen. The FMS transmits the flight plan for display on the EFIS, Navigation Display (ND) or Multifunction Display (MFD).

    [0004] The FADEC and FMS are separate system that in some cases may communicate current values of parameters. However, many parameters that reside in the FADEC that would be useful to the FMS and many parameters that reside in the FMS that would be useful to the FADEC are not communicated between the two separate systems.

    [0005] US5044155A discloses integration of engine functions and data communications between an aircraft propulsion module and an airframe enabled by the use of fiber optic links which multiplex information and control functions without risk of an electrical failure in one portion of the aircraft electronics system propagating to other portions of the aircraft electronic systems.

    BRIEF DESCRIPTION OF THE INVENTION



    [0006] In one aspect, there is provided an integrated aircraft flight control system according to claim 1.

    [0007] In another aspect, there is provided a method of operating an aircraft system according to claim 8.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] 

    FIGS. 1-3 show exemplary embodiments of the method and system described herein.

    FIG. 1 is a schematic block diagram of an integrated engine control and flight control system in accordance with an exemplary embodiment of the present invention;

    FIG. 2 is a flow chart of a method of operating an aircraft system in accordance with an exemplary embodiment of the present invention; and

    FIG. 3 is a flow chart of a method 300 of operating an aircraft system in accordance with another embodiment of the present invention.


    DETAILED DESCRIPTION OF THE INVENTION



    [0009] The following detailed description illustrates embodiments of the invention by way of example and not by way of limitation. It is contemplated that the invention has general application to analytical and methodical embodiments of system communication in industrial, commercial, and residential applications.

    [0010] As used herein, an element or step recited in the singular and preceded with the word "a" or "an" should be understood as not excluding plural elements or steps, unless such exclusion is explicitly recited. Furthermore, references to "one embodiment" of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.

    [0011] FIG. 1 is a schematic block diagram of an integrated engine control and flight control system 100 in accordance with an exemplary embodiment of the present invention. In the exemplary embodiment, integrated system 100 includes an engine control system 102 such as, but not limited to, a full authority electronic digital control (FADEC) system mounted proximate to an associated aircraft engine 104. Engine control system 102 includes a processor 106 and a memory 108 communicatively coupled to processor 106. Engine 104 includes a fan 110 and a core engine 112 in serial flow communication. In some embodiments, substantially all air flow through fan 110 goes through core engine 112. In various embodiments, engine 104 is a high bypass type engine and only a portion of the airflow entering fan 110 passes through core engine 112. Although described as a FADEC, in various embodiments, engine control system 102 may include other forms of engine controller capable of operating as described herein.

    [0012] A plurality of process sensors 114 are positioned about engine 104 to sense process parameters associated with engine 104. Such process parameters include for example, engine speed, fuel flow, damper and guide vane positions, stator vane clearance, as well as various temperatures of components in engine 104. Sensors 114 are communicatively coupled to engine control system 102. In addition, one or more actuators 116 are positioned about engine 104 and are operably coupled to components of engine 104 to effect the operation of those components. Actuators 116 are also communicatively coupled to engine control system 102. Sensors 114 and actuators 116 are used by engine control system 102 to determine operating conditions of engine 104, including but not limited to, a performance of engine 104 relative to a baseline or new operating condition. Engine control system 102 may then operate actuators 116 to account for deterioration and/or damage to engine 104 between overhauls. Engine control system 102 may also use sensors 114 and actuators 116 to store the determined engine condition for future reference, further processing, and/or reporting.

    [0013] System 100 also includes a flight control system 120 communicatively coupled to engine control system 102 through a communications channel 122. Flight control system 120 includes a processor 121 and a memory 123 communicatively coupled to processor 121. In the exemplary embodiment, communications channel 122 is a wired connection between engine control system 102 and flight control system 120. In various other embodiments, communications channel 122 may be a wireless communication medium. In the exemplary embodiment, flight control system 120 is located proximate a cockpit (not shown) of the aircraft and engine control system 102 is located proximate the engine to which it is associated. Flight control system 120 may be embodied in a single processor-based component or the functions of flight control system 120 may be carried out by a plurality of components configured to perform the functions described herein. Some of the components performing the functions of flight control system 120 may be located proximate the cockpit and others may be distributed inside the aircraft for convenience, safety, and/or optimal operational considerations. Although the flight control system is described herein as a flight management system (FMS), it is to be understood that the invention includes communication between an engine controller and any aircraft-mounted avionics function.

    [0014] Flight control system 120 is configured to interface with various other systems both onboard the aircraft and offboard the aircraft. For example, flight control system 120 may receive current aircraft status from a plurality of aircraft sensors 124 through a sensing system 126. Such sensors may include pitot tubes for determining airspeed, gyros, compasses, accelerometers, position sensors, altimeters, and various other sensors that may be able to detect a condition, status, or position of the aircraft. Flight control system 120 may also receive information from one or more onboard processing systems 128, which may be standalone systems or systems having functions distributed across several computer systems. Flight control system 120 and onboard processing systems 128 may communicate using a wired communications channel and/or network connection (e.g., Ethernet or an optical fiber), a wireless communication means, such as radio frequency (RF), e.g., FM radio and/or digital audio broadcasting, an Institute of Electrical and Electronics Engineers (IEEE®) 802.11 standard (e.g., 802.11(g) or 802.11(n)), the Worldwide Interoperability for Microwave Access (WIMAX®) standard, cellular phone technology (e.g., the Global Standard for Mobile communication (GSM)), a satellite communication link, and/or any other suitable communication means. As used herein, a wired communications channel includes channels that use fiber and other optical means for communications. Flight control system 120 may also receive information from one or more offboard processing systems 130, which may be standalone systems or systems having functions distributed across several computer systems and/or several sites. Offboard processing systems 130 and flight control system 120 are communicatively coupled using one or more wireless communications media including , but not limited to, radio frequency (RF), e.g., FM radio and/or digital audio broadcasting, an Institute of Electrical and Electronics Engineers (IEEE®) 802.11 standard (e.g., 802.11(g) or 802.11(n)), the Worldwide Interoperability for Microwave Access (WIMAX®) standard, cellular phone technology (e.g., the Global Standard for Mobile communication (GSM)), a satellite communication link, and/or any other suitable communication means.

    [0015] FIG. 2 is a flow chart of a method 200 of operating an aircraft system in accordance with an exemplary embodiment of the present invention. FIG. 3 is a flow chart of a method 300 of operating an aircraft system in accordance with another embodiment of the present invention. In the exemplary embodiment, method 200 includes receiving 202 flight information and trajectory intent information other than current values by an engine control system associated with an engine of the aircraft system from a flight control system associated with the aircraft system and operating 204 an engine associated with the engine control system using the received non-current information. Method 300 includes receiving 302 engine performance and health information other than current values by the flight control system from the engine control system and operating 304 the aircraft associated with the flight control system using the received non-current information. In various embodiments, the engine control system is a full authority digital engine control (FADEC) and the engine performance and health information includes an estimate of engine health and parameters used to estimate engine health. Engine control system 102 may evaluate current readings of various parameters of the aircraft engine and generate an estimate of the engine health. Either the estimate of engine health generated by engine control system 102 or the parameters used to generate the estimate of engine health are transmitted to flight control system 120 for further processing and/or action by flight control system 120. Specifically, the engine performance and health information may include an estimate of engine thrust capability.

    [0016] Additionally, the flight information and trajectory intent information transmitted from flight control system 120 to engine control system 102 may include at least one of planned future flight conditions of the aircraft and predicted future flight conditions of the aircraft. Such information would permit engine control system 102 to prepare the engine for maneuvers that would otherwise be limited or controlled more closely. For example, during a cruise phase of flight an active clearance control system (not shown) may permit a tip gap between a rotating blade tip on a rotor of the engine and a casing of the engine to be reduced. Reducing the tip gap reduces an amount of leakage past the blade tip, which improves a performance of the engine. If the aircraft needs to execute a step change in altitude, such as, an increase in altitude to maneuver over weather, head winds, turbulence, or precipitation, an increase in engine power to effect the change may cause the blade tips to rub the casing if remedial steps are not taken with sufficient lead time. In the casing of an active clearance control system, the casing may need a certain amount of time to change temperature, which in turn changes the blade tip gap. If the increase in engine power is undertaken before the casing has reached a proper temperature, a rub could result. Flight control system 120 can predict or plan for such step altitude changes and transmit such changes to engine control system 102 prior to the time the step change will start. Accordingly, engine control system 102 can effect the changes to the engine in enough time to permit the increase in power of the engine without causing a blade tip rub. Communication between engine control system 102 and flight control system 120 permits engine control system 102 to act on information provided by flight control system 120 to control the engine and permits flight control system 120 to control aircraft systems based on information provided by engine control system 102 to improve the performance of the entire aircraft system.

    [0017] The term processor, as used herein, refers to central processing units, microprocessors, microcontrollers, reduced instruction set circuits (RISC), application specific integrated circuits (ASIC), logic circuits, and any other circuit or processor capable of executing the functions described herein.

    [0018] As used herein, the terms "software" and "firmware" are interchangeable, and include any computer program stored in memory for execution by processor 106, including RAM memory, ROM memory, EPROM memory, EEPROM memory, and nonvolatile RAM (NVRAM) memory. The above memory types are exemplary only, and are thus not limiting as to the types of memory usable for storage of a computer program.

    [0019] As will be appreciated based on the foregoing specification, the above-described embodiments of the disclosure may be implemented using computer programming or engineering techniques including computer software, firmware, hardware or any combination or subset thereof, wherein the technical effect is communicating aircraft system information to an engine control system for changing the operation of the engine based on the aircraft system information. Moreover, information external to the aircraft may be communicated to the engine control system, such as weather and air traffic control information to permit controlling the engine operation based on the external information. Furthermore, engine health and maintenance requirements are communicated to the flight control systems to control an operation of the aircraft based on the engine information. Any such resulting program, having computer-readable code means, may be embodied or provided within one or more computer-readable media, thereby making a computer program product, i.e., an article of manufacture, according to the discussed embodiments of the disclosure. The computer readable media may be, for example, but is not limited to, a fixed (hard) drive, diskette, optical disk, magnetic tape, semiconductor memory such as read-only memory (ROM), and/or any transmitting/receiving medium such as the Internet or other communication network or link. The article of manufacture containing the computer code may be made and/or used by executing the code directly from one medium, by copying the code from one medium to another medium, or by transmitting the code over a network.

    [0020] The above-described embodiments of a method and system of communicating information between an engine control system and flight control system to modify the operation of the aircraft engine or aircraft systems based on the communicated information provides a cost-effective and reliable means improving the performance and operation of the aircraft system. More specifically, the methods and systems described herein facilitate modifying engine operation based on aircraft system information. In addition, the above-described methods and systems facilitate modifying operation of the aircraft based on information communicated to the flight control system from the engine control system. As a result, the methods and systems described herein facilitate operation of the aircraft system in a cost-effective and reliable manner.


    Claims

    1. An integrated aircraft flight control system (100) comprising:

    an engine control system (102) associated with an engine (104), said engine control system comprising a processor (106) and a memory (108) communicatively coupled to said processor, said engine control system configured to receive engine information from a plurality of sensors (114) associated with the engine and to control a current operation of the engine using the received engine information and to generate engine performance and health information;

    a flight control system (120) associated with the aircraft, said flight control system comprising a processor (121) and a memory (123) communicatively coupled to said processor, said flight control system configured to receive aircraft information from a plurality of aircraft sensors (124) associated with the aircraft and flight planning information from offboard the aircraft and to generate flight information and trajectory intent information, the flight information and trajectory intent information including at least one of planned future flight conditions of the aircraft and predicted future flight conditions of the aircraft; and

    a communications channel (122) communicatively coupled between said engine control system and said flight control system,

    wherein said engine control system is configured to transmit the generated engine performance and health information to said flight control system using the communications channel,

    wherein said flight control system is configured to transmit the generated flight information and trajectory intent information to said engine control system using the communications channel,

    wherein said engine control system (102) is configured to modify the operation of the engine (104) using the flight information and trajectory intent information generated by the flight control system, and

    wherein said flight control system (120) is configured to modify the operation of the aircraft using the engine performance and health information generated by the engine control system (102);

    said flight control system (120) is configured to predict or plan for a trajectory change and transmit such a change to said engine control system (102) prior to the time the trajectory change will start, such that said engine control system (102) can effect the change to the engine in enough time to permit engine control system (102) to prepare the engine for the trajectory change.


     
    2. An integrated aircraft flight control system (100) in accordance with Claim 1, wherein said engine control system (102) comprises a full authority digital engine control (FADEC).
     
    3. An integrated aircraft flight control system (100) in accordance with either of Claim 1 or 2, wherein said communications channel (122) comprises at least one of a two-way communications channel and a first one-way communications channel and a second one-way communications channel.
     
    4. An integrated aircraft flight control system (100) in accordance with any preceding Claim, wherein communications between said engine control system (102) and said flight control system (120) occurs autonomously from commands external to said integrated aircraft flight control system.
     
    5. An integrated aircraft flight control system (100) in accordance with any preceding Claim, wherein said integrated aircraft flight control system further comprises a separate flight control center (130) positioned offboard said aircraft and communicatively coupled to said flight control system (120), said flight control center is configured to receive at least one of the engine performance and health information generated by the engine control system (102) and the flight information and trajectory intent information generated by the flight control system (120).
     
    6. An integrated aircraft flight control system (100) in accordance with Claim 5, wherein said flight control center (130) is configured to:

    process the received at least one of the engine performance and health information generated by the engine control system (102) and the flight information and trajectory intent information generated by the flight control system (120); and

    transmit at least one of commands and data generated using the processed information to said flight control system.


     
    7. An integrated aircraft flight control system (100) in accordance with claim 1, wherein receiving at least one of planned future flight conditions of the aircraft and predicted future flight conditions of the aircraft comprises receiving an indication of a future change in altitude of the flight path
     
    8. A method (200, 300) of operating an aircraft system, said method comprising:

    receiving (202) flight information and trajectory intent information by an engine control system (102) associated with an engine (104) of the aircraft system from a flight control system (120) associated with the aircraft system, the flight information and trajectory intent information including at least one of planned future flight conditions of the aircraft and predicted future flight conditions of the aircraft;

    operating (204) an engine (104) associated with the engine control system (102) using the received flight information and trajectory intent information;

    receiving (302) engine performance and health information by the flight control system (120) from the engine control system (102);

    operating (304) the aircraft associated with the flight control system (120) using the received engine performance and health information;

    predicting or planning for a trajectory change at the flight control system (120) and transmitting such a change to said engine control system (102) prior to the time the trajectory change will start, such that said engine control system (102) can effect the change to the engine in enough time to permit engine control system (102) to prepare the engine for the trajectory change.


     
    9. A method (200, 300) in accordance with Claim 8, wherein receiving (302) engine performance and health information comprises receiving at least one of an estimate of engine health and parameters used to estimate engine health.
     
    10. A method (200, 300) in accordance with either of Claim 8 or 9, wherein receiving (302) engine performance and health information comprises receiving an estimate of engine thrust capability.
     
    11. A method (200, 300) in accordance with any of Claims 8 to 10, wherein the engine control system is a full authority digital engine control (FADEC).
     
    12. A method (200, 300) in accordance with any of Claims 8 to 11, wherein receiving at least one of planned future flight conditions of the aircraft and predicted future flight conditions of the aircraft comprises receiving an indication of a future change in altitude of the flight path.
     


    Ansprüche

    1. Integriertes Luftfahrzeugflugsteuersystem (100), das Folgendes umfasst:

    ein Triebwerkssteuersystem (102), das einem Triebwerk (104) zugehörig ist, wobei das Triebwerkssteuersystem einen Prozessor (106) und einen Speicher (108) umfasst, der mit dem Prozessor kommunikativ gekoppelt ist, umfasst, wobei das Triebwerkssteuersystem konfiguriert ist, um Triebwerkinformationen von mehreren Sensoren (114), die dem Triebwerk zugehörig sind, zu empfangen, und, um einen aktuellen Betrieb des Triebwerks unter Verwendung der empfangenen Triebwerkinformationen zu steuern und, um Triebwerksleistungs- und - zustandsinformationen zu erzeugen;

    ein Flugsteuersystem (120), das dem Luftfahrzeug zugehörig ist, wobei das Flugsteuersystem einen Prozessor (121) und einen Speicher (123) umfasst, der mit dem Prozessor kommunikativ gekoppelt ist, wobei das Flugsteuersystem konfiguriert ist, um Luftfahrzeuginformationen von mehreren Luftfahrzeugsensoren (124), die dem Luftfahrzeug zugehörig sind, und Flugplanungsinformationen von außerhalb des Luftfahrzeugs zu empfangen und, um Fluginformationen und Flugbahnabsichtsinformationen zu erzeugen, wobei die Fluginformationen und die Flugbahnabsichtsinformationen geplante zukünftige Flugbedingungen des Luftfahrzeugs und/oder vorhergesagte zukünftige Flugbedingungen des Luftfahrzeugs beinhalten; und

    einen Kommunikationskanal (122), der zwischen dem Triebwerkssteuersystem und dem Flugsteuersystem kommunikativ gekoppelt ist,

    wobei das Triebwerkssteuersystem konfiguriert ist, um die erzeugten Triebwerksleistungs- und -zustandsinformationen unter Verwendung des Kommunikationskanals an das Flugsteuersystem zu übertragen,

    wobei das Flugsteuersystem konfiguriert ist, um die erzeugten Fluginformationen und die Flugbahnabsichtsinformationen unter Verwendung des Kommunikationskanals an das Triebwerkssteuersystem zu übertragen,

    wobei das Triebwerkssteuersystem (102) konfiguriert ist, um den Betrieb des Triebwerks (104) unter Verwendung der Fluginformationen und der Flugbahnabsichtsinformationen, die durch das Flugsteuersystem erzeugt werden, zu modifizieren, und

    wobei das Flugsteuersystem (120) konfiguriert ist, um den Betrieb des Luftfahrzeugs unter Verwendung der Triebwerksleistungs- und -zustandsinformationen, die durch das Triebwerkssteuersystem (102) erzeugt werden, zu modifizieren;

    wobei das Flugsteuersystem (120) konfiguriert ist, um eine Flugbahnveränderung vorherzusagen oder zu planen und eine solche Veränderung an das Triebwerkssteuersystem (102) vor dem Zeitpunkt, zu dem die Flugbahnveränderung beginnt, derart zu übertragen, dass das Triebwerkssteuersystem (102) die Veränderung an dem Triebwerk in genügend Zeit bewirken kann, um dem Triebwerkssteuersystem (102) zu ermöglichen, das Triebwerk auf die Flugbahnveränderung vorzubereiten.


     
    2. Integriertes Luftfahrzeugflugsteuersystem (100) nach Anspruch 1, wobei das Triebwerkssteuersystem (102) eine digitale elektronische Triebwerkssteuerung (full authority digital engine control - FADEC) umfasst.
     
    3. Integriertes Luftfahrzeugflugsteuersystem (100) nach Anspruch 1 oder 2, wobei der Kommunikationskanal (122) einen Zweiwegkommunikationskanal und/oder einen ersten Einwegkommunikationskanal und einen zweiten Einwegkommunikationskanal umfasst.
     
    4. Integriertes Luftfahrzeugflugsteuersystem (100) nach einem der vorhergehenden Ansprüche, wobei die Kommunikation zwischen dem Triebwerkssteuersystem (102) und dem Flugsteuersystem (120) unabhängig von Befehlen außerhalb des integrierten Luftfahrzeugflugsteuersystems erfolgt.
     
    5. Integriertes Luftfahrzeugflugsteuersystem (100) nach einem der vorhergehenden Ansprüche, wobei das integrierte Luftfahrzeugflugsteuersystem ferner ein separates Flugsteuerzentrum (130) umfasst, das außerhalb des Luftfahrzeugs positioniert und mit dem Flugsteuersystem (120) kommunikativ gekoppelt ist, wobei das Flugsteuerzentrum konfiguriert ist, um Triebwerksleistungs- und -zustandsinformationen, die durch das Triebwerkssteuersystem (102) erzeugt werden, und/oder die Fluginformationen und die Flugbahnabsichtsinformationen, die durch das Flugsteuersystem (120) erzeugt werden, zu empfangen.
     
    6. Integriertes Luftfahrzeugflugsteuersystem (100) nach Anspruch 5, wobei das Flugsteuerzentrum (130) für Folgendes konfiguriert ist:

    Verarbeiten der empfangenen Triebwerksleistungs- und -zustandsinformationen, die durch das Triebwerkssteuersystem (102) erzeugt werden, und/oder der Fluginformationen und der Flugbahnabsichtsinformationen, die durch das Flugsteuersystem (120) erzeugt werden; und

    Übertragen von Befehlen und/oder Daten, die unter Verwendung der verarbeiteten Informationen erzeugt werden, an das Flugsteuersystem.


     
    7. Integriertes Luftfahrzeugflugsteuersystem (100) nach Anspruch 1, wobei das Empfangen geplanter zukünftiger Flugbedingungen des Luftfahrzeugs und/oder vorhergesagter zukünftiger Flugbedingungen des Luftfahrzeugs das Empfangen einer Anzeige einer zukünftigen Veränderung der Höhe des Flugwegs umfasst.
     
    8. Verfahren (200, 300) zum Betreiben eines Luftfahrzeugsystems, wobei das Verfahren Folgendes umfasst:

    Empfangen (202) von Fluginformationen und Flugbahnabsichtsinformationen durch ein Triebwerkssteuersystem (102), das einem Triebwerk (104) des Luftfahrzeugsystems zugehörig ist, von einem Flugsteuersystem (120), das dem Luftfahrzeugsystem zugehörig ist, wobei die Fluginformationen und die Flugbahnabsichtsinformationen geplante zukünftige Flugbedingungen des Luftfahrzeugs und/oder vorhergesagte zukünftige Flugbedingungen des Luftfahrzeugs beinhalten;

    Betreiben (204) eines Triebwerks (104), das dem Triebwerkssteuersystem (102) zugehörig ist, unter Verwendung der empfangenen Fluginformationen und Flugbahnabsichtsinformationen;

    Empfangen (302) von Triebwerksleistungs- und -zustandsinformationen durch das Flugsteuersystem (120) von dem Triebwerkssteuersystem (102);

    Betreiben (304) des Luftfahrzeugs, das dem Flugsteuersystem (120) zugehörig ist, unter Verwendung der empfangenen Triebwerksleistungs- und -zustandsinformationen;

    Vorhersagen oder Planen einer Flugbahnveränderung an dem Flugsteuersystem (120) und Übertragen einer solchen Veränderung an das Triebwerkssteuersystem (102) vor dem Zeitpunkt, zu dem die Flugbahnveränderung beginnt, derart, dass das Triebwerkssteuersystem (102) die Veränderung an dem Triebwerk in genügend Zeit bewirken kann, um dem Triebwerkssteuersystem (102) zu ermöglichen, das Triebwerk auf die Flugbahnveränderung vorzubereiten.


     
    9. Verfahren (200, 300) nach Anspruch 8, wobei das Empfangen (302) von Triebwerksleistungs- und -zustandsinformationen das Empfangen von einer Schätzung des Triebwerkszustands und/oder von Parametern die verwendet werden, um den Triebwerkszustand zu schätzen, umfasst.
     
    10. Verfahren (200, 300) entweder nach Anspruch 8 oder 9, wobei das Empfangen (302) von Triebwerksleistungs- und -zustandsinformationen das Empfangen einer Schätzung der Triebwerkschubfähigkeit umfasst.
     
    11. Verfahren (200, 300) nach einem der Ansprüche 8 bis 10, wobei das Triebwerkssteuersystem eine digitale elektronische Triebwerkssteuerung (FADEC) ist.
     
    12. Verfahren (200, 300) nach einem der Ansprüche 8 bis 11, wobei das Empfangen geplanter zukünftiger Flugbedingungen des Luftfahrzeugs und/oder vorhergesagter zukünftiger Flugbedingungen des Luftfahrzeugs das Empfangen einer Anzeige einer zukünftigen Veränderung der Höhe des Flugwegs umfasst.
     


    Revendications

    1. Système de commande de vol d'aéronef intégré (100) comprenant :

    un système de commande de moteur (102) associé à un moteur (104), ledit système de commande de moteur comprenant un processeur (106) et une mémoire (108) couplée en communication audit processeur, ledit système de commande de moteur étant configuré pour recevoir des informations de moteur à partir d'une pluralité de capteurs (114) associés au moteur et pour commander un fonctionnement actuel du moteur au moyen des informations de moteur reçues et pour générer des informations de performance et de santé du moteur ;

    un système de commande de vol (120) associé à l'aéronef, ledit système de commande de vol comprenant un processeur (121) et une mémoire (123) couplée en communication audit processeur, ledit système de commande de vol étant configuré pour recevoir des informations d'aéronef d'une pluralité de capteurs d'aéronef (124) associés à l'aéronef et des informations de planification de vol provenant de l'extérieur de l'aéronef et pour générer des informations de vol et des informations d'intention de trajectoire, les informations de vol et les informations d'intention de trajectoire comportant au moins une des conditions de vol futures prévues de l'aéronef et des conditions de vol futures prévues de l'aéronef ; et

    un canal de communication (122) couplé en communication entre ledit système de commande de moteur et ledit système de commande de vol,

    dans lequel ledit système de commande de moteur est configuré pour transmettre les informations de performance et de santé du moteur générées audit système de commande de vol au moyen du canal de communication,

    dans lequel ledit système de commande de vol est configuré pour transmettre les informations de vol générées et les informations d'intention de trajectoire audit système de commande de moteur au moyen du canal de communication,

    dans lequel ledit système de commande de moteur (102) est configuré pour modifier le fonctionnement du moteur (104) au moyen des informations de vol et des informations d'intention de trajectoire générées par le système de commande de vol, et

    dans lequel ledit système de commande de vol (120) est configuré pour modifier le fonctionnement de l'aéronef au moyen des informations de performance de moteur et des informations de santé générées par le système de commande de moteur (102) ;

    ledit système de commande de vol (120) est configuré pour prédire ou planifier un changement de trajectoire et transmettre un tel changement audit système de commande moteur (102) avant le moment où le changement de trajectoire commencera, de telle sorte que ledit système de commande de moteur (102) peut effectuer le changement au moteur en un temps suffisant pour permettre au système de commande de moteur (102) de préparer le moteur au changement de trajectoire.


     
    2. Système de commande de vol d'aéronef intégré (100) selon la revendication 1, dans lequel ledit système de commande de moteur (102) comprend une commande électronique numérique de moteur pleine autorité (FADEC).
     
    3. Système de commande de vol d'aéronef intégré (100) selon l'une ou l'autre de la revendication 1 ou 2, dans lequel ledit canal de communication (122) comprend un canal de communication bidirectionnel et/ou un premier canal de communication unidirectionnel et un second canal de communication unidirectionnel.
     
    4. Système de commande de vol d'aéronef intégré (100) selon l'une quelconque des revendications précédentes, dans lequel les communications entre ledit système de commande de moteur (102) et ledit système de commande de vol (120) se produisent de manière autonome à partir de commandes externes audit système de commande de vol d'aéronef intégré.
     
    5. Système de commande de vol d'aéronef intégré (100) selon l'une quelconque des revendications précédentes, dans lequel ledit système de commande de vol d'aéronef intégré comprend en outre un centre de commande de vol séparé (130) positionné à l'extérieur dudit aéronef et couplé en communication audit système de commande de vol (120), ledit le centre de commande de vol est configuré pour recevoir des informations de performance et/ou de santé du moteur générées par le système de commande de moteur (102) et les informations de vol et les informations d'intention de trajectoire générées par le système de commande de vol (120).
     
    6. Système de commande de vol d'aéronef intégré (100) selon la revendication 5, dans lequel ledit centre de commande de vol (130) est configuré pour :

    traiter les informations de performance du moteur et/ou de santé générées reçues par le système de commande de moteur (102) et les informations de vol et les informations d'intention de trajectoire générées par le système de commande de vol (120) ; et

    transmettre des ordres et/ou données générés au moyen des informations traitées audit système de commande de vol.


     
    7. Système de commande de vol d'aéronef intégré (100) selon la revendication 1, dans lequel la réception des conditions de vol futures prévues de l'aéronef et/ou des conditions de vol futures prévues de l'aéronef comprend la réception d'une indication d'un changement futur d'altitude de la trajectoire de vol.
     
    8. Procédé (200, 300) d'exploitation d'un système d'aéronef, ledit procédé comprenant :

    la réception (202) des informations de vol et des informations d'intention de trajectoire par un système de commande de moteur (102) associé à un moteur (104) du système d'aéronef à partir d'un système de commande de vol (120) associé au système d'aéronef, les informations de vol et les informations d'intention de trajectoire comportant des conditions de vol futures prévues de l'aéronef et/ou des conditions de vol futures prévues de l'aéronef ;

    l'exploitation (204) d'un moteur (104) associé au système de commande de moteur (102) au moyen des informations de vol et des informations d'intention de trajectoire reçues ;

    la réception (302) des informations de performance et des informations de santé du moteur par le système de commande de vol (120) provenant du système de commande de moteur (102) ;

    l'exploitation (304) de l'aéronef associé au système de commande de vol (120) au moyen des informations de performance et de santé du moteur reçues ;

    la prédiction ou planification d'un changement de trajectoire au niveau du système de commande de vol (120) et la transmission d'un tel changement audit système de commande de moteur (102) avant le moment où le changement de trajectoire commencera, de telle sorte que ledit système de commande de moteur (102) peut effectuer le changement au moteur en un temps suffisant pour permettre au système de commande de moteur (102) de préparer le moteur au changement de trajectoire.


     
    9. Procédé (200, 300) selon la revendication 8, dans lequel la réception (302) d'informations de performance et de santé du moteur comprend la réception d'une estimation de l'état du moteur et/ou des paramètres utilisés pour estimer l'état du moteur.
     
    10. Procédé (200, 300) selon l'une des revendications 8 ou 9, dans lequel la réception (302) d'informations de performance et de santé du moteur comprend la réception d'une estimation de la capacité de poussée du moteur.
     
    11. Procédé (200, 300) selon l'une quelconque des revendications 8 à 10, dans lequel le système de commande de moteur est une commande électronique numérique de moteur pleine autorité (FADEC).
     
    12. Procédé (200, 300) selon l'une quelconque des revendications 8 à 11, dans lequel la réception des conditions de vol futures prévues de l'aéronef et/ou des conditions de vol futures prévues de l'aéronef comprend la réception d'une indication d'un changement futur d'altitude de l'aéronef trajectoire de vol.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description