(19)
(11)EP 2 568 140 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.04.2017 Bulletin 2017/14

(21)Application number: 12184135.7

(22)Date of filing:  12.09.2012
(51)International Patent Classification (IPC): 
F01N 13/00(2010.01)
F01N 13/18(2010.01)
F01N 3/10(2006.01)
B01D 53/94(2006.01)

(54)

Exhaust gas aftertreatment device

Vorrichtung zur Abgasnachbehandlung

Dispositif de post-traitement des gaz d'échappement


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.09.2011 US 201161533642 P
12.09.2011 US 201161533643 P
12.09.2011 US 201161533645 P

(43)Date of publication of application:
13.03.2013 Bulletin 2013/11

(60)Divisional application:
17158802.3

(73)Proprietor: Cummins Emission Solutions Inc.
Columbus, IN 47201 (US)

(72)Inventors:
  • Lamps Michael
    McFarland, WI 53558 (US)
  • Ludenow, Scott
    Fitchburg, WI 53711 (US)
  • Ebbe, Kyle
    Platteville, WI 53818 (US)
  • Goss, James
    Madison, WI 53717 (US)
  • Nowicki, Robert
    Stoughton, WI 53589 (US)
  • Klein Pat
    Madison, WI 53718 (US)
  • Welp, Mike
    Oregon, WI 53575 (US)
  • Drost, Jason
    Edgerton, WI 53534 (US)
  • Hall, David
    Madison, WI 53717 (US)
  • Wadke, Aashish
    Sloughton, WI 53589 (US)
  • Zenger Jamie
    Cottage Grove, WI 53527 (US)
  • Steele Jonathan
    Madison, WI 53719 (US)

(74)Representative: Roberts, Peter David 
Marks & Clerk LLP 1 New York Street
Manchester M1 4HD
Manchester M1 4HD (GB)


(56)References cited: : 
EP-A1- 2 123 878
EP-A1- 2 192 284
JP-A- 2008 274 851
US-A1- 2011 099 978
EP-A1- 2 184 458
EP-A1- 2 202 390
US-A1- 2008 069 742
US-A1- 2011 120 085
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The technical field generally relates to internal combustion engine aftertreatment systems, and more particularly but not exclusively relates to integrating aftertreatment devices into a vehicle. Modem systems that include internal combustion engines often include an aftertreatment system to reduce emissions. Aftertreatment systems often include multiple components, including particulate filters, oxidation catalysts, NOx adsorbers, NOx reduction catalysts, three-way catalysts, four-way catalysts, and can further include multiple components of the same type at various locations along the aftertreatment system flowpath. The inclusion of an aftertreatment system introduces various system integration complications. The aftertreatment system occupies space that must be accounted for in the system design (e.g., in the engine compartment of a vehicle), and where multiple aftertreatment components are included there are multiple points of integration. The points of integration include sensor connections, flow point connections, injector connections, and any other operational interaction between parts of the aftertreatment system and the external system in which the aftertreatment system is installed.

    [0002] Multiple points of integration introduce further complications, including tracking specifications for each integration point, the stackup of multiple tolerance values creating greater variance in installation parameters such as total exhaust pipe length, and increased possibility of installing a component in the incorrect place (e.g. swapping two components or connectors) or in the incorrect position (e.g installing a component backwards). Therefore, further improvements in this area of technology are desirable.

    [0003] EP2192284 relates to an exhaust emission control device, according to the abstract of which in an exhaust emission control device, a selective reduction catalyst having a property capable of selectively reacting NOx with ammonia even in the presence of oxygen is incorporated as NOx reduction catalyst in an exhaust pipe and a particulate filter is arranged upstream of the catalyst. Arranged in front of the particulate filter is a burner for injection of fuel in moderate quantity for ignition and combustion. Interposed between the particulate filter and the selective reduction catalyst is an oxidation catalyst which conducts oxidation treatment of unburned HC in the exhaust gas and urges oxidation reaction of NO in the exhaust gas into NO2.

    [0004] EP2202390 relates to an exhaust emission control device, according to the abstract of which there is provided an exhaust emission control device in which only a casing for a particulate filter can be easily taken out of position with a casing for a selective reduction catalyst being left on a vehicle body in a reliably supported state. The exhaust emission control device has a particulate filter and a selective reduction catalyst housed in casings, and arranged side by side with entry ends of them are directed in one and the same direction, and an S-shaped communication passage which interconnects the casings and is intermediately provided with urea water addition means. The communication passage is intermediately provided with a separable portion for suitable separate-off, and the casing for the selective reduction catalyst is supported by a frame on a vehicle body independently of the casing for the particulate filter. The casing for the particulate filter is detachably mounted and supported on the vehicle body and on the casing for the selective reduction catalyst.

    [0005] EP2123878 relates to an exhaust emission control device, according to the abstract of which the object of the invention is to improve mountability on a vehicle by realizing a compact arrangement of a particulate filter and selective reduction catalyst while ensuring satisfactory reaction time for generation of ammonia from urea water. In an exhaust emission control device having particulate filter incorporated in an exhaust pipe, selective reduction catalyst capable of selectively reacting NOx with ammonia under the presence of oxygen being arranged downstream of the particulate filter, urea water as reducing agent being adapted to be added between the selective reduction catalyst and the particulate filter, the particulate filter is arranged in parallel with the selective reduction catalyst. An S-shaped communication passage is arranged for introduction of the exhaust gas from a rear end of the particulate filter to a front end of the adjacent selective reduction catalyst in a forward folded manner. A urea water addition injector is arranged midway of the communication passage.

    [0006] JP2008274851 relates to an exhaust emission control device, according to the abstract of which the exhaust emission control device has: a collecting unit constituted by installing a gas collecting chamber on the outlet side of a filter case for collecting exhaust gas coming out of the particulate filter while switching the direction in the substantially right-angled direction; the mixing pipe extracting the exhaust gas collected by the gas collecting chamber; and an NOx reducing unit constituted by installing a gas dispersion chamber on the inlet side of a catalyst case for dispersing the exhaust gas introduced by the mixing pipe while switching the direction in the substantially right-angled direction, and is constituted so that the mixing pipe is connected even to any surface of the obverse and reverse of a downstream side end part of the gas collecting chamber and an upstream side end part of the gas dispersion chamber, and various layouts are provided by only rearranging these members.

    [0007] US2011/120085 relates to an exhaust gas treatment device, according to the abstract of which there is provided an engaging groove with which a gasket is engaged is provided in each of a front side projecting portion and a rear side projecting portion formed in a filter accommodating cylinder to be positioned on an outer peripheral surface of each projecting portion. Therefore, when the gasket latches on each of the projecting portion to be fitted thereon from an outside, the gasket can be engaged with the engaging groove provided in each of the projecting portions. In consequence, at the time of mounting and removing the filter accommodating cylinder, the falling-off of the gasket can be prevented, and, for example, an inspection operation, a cleaning operation and the like of an accommodated particulate matter removing filter can be easily performed.

    [0008] US2008/069742 relates to infinitely variable aftertreatment systems and manufacturing process, according to the abstract of which, gas treatment systems are described that allow for modular development of gas treatment systems, for example exhaust gas aftertreatment systems, using generally standardized parts. A number of subsections are provided, including a treatment subsection containing an exhaust gas treatment device for treating exhaust gas. The treatment subsection is designed to be connectable to an inlet subsection, an outlet subsection, or other subsections in a manner that allows the positions, both longitudinally and rotationally, of the treatment subsection relative to adjacent subsections to be adjusted as required during assembly. This permits an infinite number of length and/or clocking configurations for the aftertreatment system to be manufactured.

    [0009] EP2184458A1 relates to an exhaust emission control device which can be mounted on a vehicle without causing relative twisting between a particulate filter and a selective reduction catalyst.

    SUMMARY



    [0010] One embodiment is a unique assembly packaging components in an aftertreatment system. Another embodiment is a unique integrated bracket apparatus for an aftertreatment system. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the following description and drawings.

    [0011] According to a first embodiment of the present invention there is provided a system for treating exhaust gas of an internal combustion engine, including a first aftertreatment component having a first central axis and a first axial extent, a second aftertreatment component having a second central axis and a second axial extent, and a third aftertreatment component having a third central axis and a third axial extent. The first, second, and third central axes are substantially parallel. The second axial extent and the third axial extent are shared, partially or fully, with the first axial extent. The system includes a first end cap at a first end, the first end cap defining a first fluid chamber that fluidly couples an outlet of the first aftertreatment component with an inlet of the second aftertreatment component, and a second end cap at a second end, the second end cap defining a second fluid chamber that fluidly couples an outlet of the second aftertreatment component with an inlet of the third aftertreatment component. The system includes a first bracket having a first mounting interface, wherein the first bracket joins the first aftertreatment component, the second aftertreatment component, and the third aftertreatment component at an axial position closer to the first end than to a center of the second axial extent. The first bracket defines a first cross-sectional shape sized so as to allow passage of the first aftertreatment component therethrough, a second cross-sectional shape sized so as to allow passage of the second aftertreatment component therethrough and a third cross-sectional shape sized so as to allow passage of the third aftertreatment component therethrough such that the first bracket encircles each of the first aftertreatment component, the second aftertreatment component and the third aftertreatment component.

    [0012] The first end cap may include the cross-sectional area of the first aftertreatment component and the cross-sectional area of the second aftertreatment component.

    [0013] The second end cap may include the cross-sectional area of the second aftertreatment component and the cross-sectional area of the third aftertreatment component.

    [0014] In one embodiment, the system may not include pipe elbows.

    [0015] The exemplary system may include a sensor table mounted on a housing defining the third aftertreatment component, the sensor table comprising a wiring harness interface.

    [0016] A reductant injector may be present and structured to inject reductant into the first fluid chamber.

    [0017] The exemplary system may further include a second bracket having a second mounting interface, where the second bracket joins the first aftertreatment component, the second aftertreatment component, and the third aftertreatment component at an axial position closer to the second end than to a center of the second axial extent.

    [0018] In certain embodiments, a band clamp may attach the first aftertreatment component to the second bracket.

    [0019] The first mounting interface and the second mounting interface may define a plane.

    [0020] In an exemplary embodiment, the first aftertreatment component may include a diesel oxidation catalyst in series with a diesel particulate filter, the second aftertreatment component includes a flow pipe, and the third aftertreatment component includes a selective catalytic reduction catalyst in series with an ammonia oxidation catalyst.

    [0021] The first aftertreatment component may further include a fluid inlet interface that projects from the first aftertreatment component at the second end of the first aftertreatment component, and the third aftertreatment component further includes a fluid outlet interface that projects from the third aftertreatment component at the first end of the third aftertreatment component.

    [0022] The exhaust fluid may flow through the first aftertreatment component and the third aftertreatment component in a first direction, and through the second aftertreatment component in a second direction.

    [0023] An aftertreatment subsystem including a plurality of interfaces is also disclosed. The interfaces include a first mounting interface, a second mounting interface, a fluid inlet interface, and a fluid outlet interface. The aftertreatment subsystem includes aftertreatment components, each aftertreatment component having a corresponding central axis and axial extent, the aftertreatment components having a first end and an opposing second end. The central axes for the plurality of aftertreatment components are within twenty degrees of parallel, and at least a portion of the axial extents for the plurality of aftertreatment components are mutually shared. The aftertreatment subsystem further includes an end cap(s) defining a fluid chamber that fluidly couples an outlet of an upstream aftertreatment component with an inlet of a downstream aftertreatment component. Each end cap is positioned at one of the first end and the second end of the upstream and downstream aftertreatment components. The fluid inlet interface is coupled to a first aftertreatment component and the fluid outlet interface is coupled to a last aftertreatment component.

    [0024] The aftertreatment subsystem further includes a first bracket that joins the aftertreatment components at an axial position closer to the first end than to a center of the axial extent of any one of the aftertreatment components, and a second bracket that joins the aftertreatment components at an axial position closer to the second end than to the center of the axial extent of any one of the aftertreatment components. The first bracket includes the first mounting interface and the second bracket includes the second mounting interface.

    [0025] The aftertreatment subsystem may include a reductant injector interface positioned one of the end caps, or on a housing of one of the aftertreatment components.

    [0026] The aftertreatment subsystem may include a wiring harness interface coupled to a housing of one of the aftertreatment components.

    [0027] The aftertreatment subsystem may include an installation specification having specification value(s) including: relative positions and attachment means specification of the first and second mounting interfaces, maximum dimensions of the joined aftertreatment components, position and connector type for the wiring harness interface, attachment means specification for the reductant injector, a size and connection type for the fluid inlet interface, and/or a size and connection type for the fluid outlet interface.

    [0028] The aftertreatment subsystem may not include any other interfaces beyond the first mounting interface, the second mounting interface, the fluid inlet interface, the fluid outlet interface, the reductant injector interface, and the wiring harness interface.

    [0029] An exhaust fluid may substantially reverse flow direction through each of the end cap(s).

    [0030] The first end may include a furthest extent of any of the aftertreatment components in a first axial direction, and the second end may include a furthest extent of any of the aftertreatment components in an opposite axial direction.

    [0031] The central axes for the plurality of aftertreatment components may be parallel.

    [0032] A method is also disclosed including providing an aftertreatment subsystem, including: interfaces including a first mounting interface, a second mounting interface, a fluid inlet interface, and a fluid outlet interface; aftertreatment components, each aftertreatment component having a corresponding central axis and axial extent, the aftertreatment components having a first end and an opposing second end. The central axes for the plurality of aftertreatment components are within twenty degrees of parallel. At least a portion of the axial extents for the aftertreatment components are mutually shared. End cap(s) define fluid chamber(s) that fluidly couple outlet(s) of upstream aftertreatment component(s) with inlet(s) of downstream aftertreatment component(s), where each end cap is positioned at the first end or the second end of the upstream and downstream aftertreatment components. The fluid inlet interface is coupled to a first aftertreatment component and the fluid outlet interface is coupled to a last aftertreatment component.

    [0033] The provided aftertreatment subsystem further includes a first bracket that joins the aftertreatment components at an axial position closer to the first end than to a center of the axial extent of any one of the plurality of aftertreatment components, a second bracket that joins the plurality of aftertreatment components at an axial position closer to the second end than to the center of the axial extent of any one of the plurality of aftertreatment components. The first bracket includes the first mounting interface and the second bracket includes the second mounting interface.

    [0034] The method further includes providing an installation specification. The installation specification includes specification value(s) selected from: relative positions and attachment means specification of the first and second mounting interfaces, maximum dimensions of the joined aftertreatment components, a size and connection type for the fluid inlet interface, and/or a size and connection type for the fluid outlet interface.

    [0035] The aftertreatment subsystem may further include a reductant injector interface positioned on one of the end caps, or positioned on a housing of one of the aftertreatment components.

    [0036] The aftertreatment subsystem may further include a wiring harness interface coupled to a housing of one of the plurality of aftertreatment components, and the installation specification further includes specification value(s) selected from: a position and connector type for the wiring harness interface, and an attachment means specification for the reductant injector.

    [0037] According to a second embodiment of the present invention there is provided a method for supplying an aftertreatment system, including providing an aftertreatment subsystem. The method further includes providing an installation specification, the installation specification including specification values comprising at least one of relative positions and attachment means specification of the first and second mounting interfaces, maximum dimensions of the joined aftertreatment components, a size and connection type for a fluid inlet interface of the aftertreatment system and a size and connection type for a fluid outlet interface of the aftertreatment system.

    [0038] The provided aftertreatment subsystem includes a first aftertreatment component having a first central axis and a first axial extent, a second aftertreatment component having a second central axis and a second axial extent, and a third aftertreatment component having a third central axis and a third axial extent, where the first, second, and third central axes are substantially parallel, and where at least a portion of the second axial extent and the third axial extent are shared with the first axial extent. The aftertreatment subsystem further includes a first end cap at a first end, the first end cap defining a first fluid chamber that fluidly couples an outlet of the first aftertreatment component with an inlet of the second aftertreatment component, and a second end cap at a second end, the second end cap defining a second fluid chamber that fluidly couples an outlet of the second aftertreatment component with an inlet of the third aftertreatment component. The aftertreatment subsystem further includes a first bracket having a first mounting interface, where the first bracket joins the first aftertreatment component, the second aftertreatment component, and the third aftertreatment component at an axial position closer to the first end than to a center of the second axial extent. The first bracket defines a first cross-sectional shape sized so as to allow passage of the first aftertreatment component therethrough, a second cross-sectional shape sized so as to allow passage of the second aftertreatment component therethrough and a third cross-sectional shape sized so as to allow passage of the third aftertreatment component therethrough such that the first bracket encircles each of the first aftertreatment component, the second aftertreatment component and the third aftertreatment component. The aftertreatment system further includes a second bracket having a second mounting interface, where the second bracket joins the first aftertreatment component, the second aftertreatment component, and the third aftertreatment component at an axial position closer to the second end than to a center of the second axial extent. An article of manufacture is also disclosed including a first bracket having a first mounting interface, the first bracket defining a first set of aftertreatment engagement features including at least a portion of each of a number of cross-sectional shapes. The article further includes a second bracket having a second mounting interface, the second bracket defining a second set of aftertreatment engagement features, the second set of engagement features including at least a portion of each of the number of cross-sectional shapes. The cross-sectional shapes are sized to allow passage of an aftertreatment component therethrough. The first bracket and second bracket are structured such that, when the first mounting interface is mounted on a first mounting surface and the second mounting interface is mounted on a second mounting surface, the cross-sectional shapes of the first bracket align with the cross-sectional shapes of the second bracket.

    [0039] The first mounting surface and the second mounting surface define a plane. The number of cross-sectional shapes include a first circle sized to allow passage of a selective-reduction catalyst housing, a second circle sized to allow passage of a diesel particulate filter housing, and a third circle sized to allow passage of a flow tube housing. The exemplary article includes the second bracket further having a receiving surface that extends around at least a portion of an edge of one of the cross-sectional shapes, in a perpendicular plane to the one of the cross-sectional shapes. Each of the first and second brackets further include means for attaching a lifting device. The first mounting surface and the second mounting surface define a plane.

    [0040] The exemplary article includes each of the first and second brackets further including means for enforcing directional installation of aftertreatment components. The exemplary article includes each of the cross-sectional shapes having a distinct size.

    [0041] Another exemplary embodiment (not being within the scope of the claimed invention) is a kit for installing an aftertreatment system package. The kit includes a first aftertreatment component having a first cross-sectional shape, a second aftertreatment component having a second cross-sectional shape, and a third aftertreatment component having a third cross-sectional shape. The kit includes a first bracket having a first mounting interface, where the first bracket defines a first set of aftertreatment engagement features.

    [0042] The first set of aftertreatment engagement features includes at least a portion of each of the first cross-sectional shape, the second cross-sectional shape, and the third cross-sectional shape. The kit includes a second bracket having a second mounting interface, where the second bracket defines a second set of aftertreatment engagement features. The second set of aftertreatment engagement features includes at least a portion of a each of the first cross-sectional shape, the second cross-sectional shape, and the third cross-sectional shape. The first bracket and second bracket are structured such that, when the first mounting interface is mounted on a first mounting surface and the second mounting interface is mounted on a second mounting surface, the cross-sectional shapes of the first bracket align with the cross-sectional shapes of the second bracket.

    [0043] The first mounting surface and the second mounting surface define a plane. The second bracket further includes a receiving surface that extends in a perpendicular plane to the second set of aftertreatment engagement features, and the first aftertreatment component engages the receiving surface with a plurality of roller bearings.

    [0044] The exemplary kit (not being within the scope of the claimed invention) includes the first aftertreatment component as a diesel particulate filter, the second aftertreatment component as a flow tube, which may be a decomposition tube, and the third particulate component is a selective oxidation catalyst. The first and second brackets further include means for attaching a lifting device. Each of the first and second brackets further include means for enforcing directional installation of aftertreatment components. The first cross-sectional shape, second cross-sectional shape, and third cross-sectional shape each have a distinct size. The kit further includes a first end cap that fluidly couples an outlet of the first aftertreatment component to an inlet of the second aftertreatment component, and a second end cap that fluidly couples an outlet of the second aftertreatment component to an inlet of the third aftertreatment component.

    [0045] A method is also disclosed including providing a first bracket having a first mounting interface, the first bracket defining a first set of aftertreatment engagement features including at least a portion of a each of the first cross-sectional shape, the second cross-sectional shape, and the third cross-sectional shape. The method further includes providing a second bracket having a second mounting interface, the second bracket defining a second set of aftertreatment engagement features including at least a portion of a each of the first cross-sectional shape, the second cross-sectional shape, and the third cross-sectional shape. The exemplary method further includes sizing the first cross-sectional shape, the second cross-sectional shape, and the third cross-sectional shape to distinct sizes.

    [0046] The method further includes positioning a first end of a first aftertreatment component in the first cross-sectional shape of the first bracket and a second end of the first aftertreatment component in the first cross-sectional shape of the second bracket. The method further includes positioning a first end of a second aftertreatment component in a second cross-sectional shape of the first bracket and a second end of the second aftertreatment component in the second cross-sectional shape of the second bracket. The method further includes positioning a first end of a third aftertreatment component in a third cross-sectional shape of the first bracket and a second end of the third aftertreatment component in the third cross-sectional shape of the second bracket. The method includes attaching the first mounting interface to a first mounting surface and attaching the second mounting interface to a second mounting surface.

    [0047] The method further includes attaching a first end cap that fluidly couples an outlet of the first aftertreatment component to an inlet of the second aftertreatment component, and attaching a second end cap that fluidly couples an outlet of the second aftertreatment component to an inlet of the third aftertreatment component. The method further includes providing the second bracket with a receiving surface that extends in a perpendicular plane to the second set of aftertreatment engagement features, where the first aftertreatment component engages the receiving surface with a plurality of roller bearings. The method further includes providing the second bracket further with a receiving surface that extends in a perpendicular plane to the second set of aftertreatment engagement features, and attaching the first aftertreatment component to the receiving surface with a band clamp.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0048] 

    Fig. 1 is a schematic illustration of a system having multiple aftertreatment components each having a central axis and an axial extent.

    Fig. 2 is a schematic illustration of a system for packaging aftertreatment components.

    Fig. 3A is an illustration of a disassembled aftertreatment component.

    Fig. 3B is an illustration of an assembled aftertreatment component.

    Fig. 4 is an illustration of an installation specification.

    Fig. 5 is a schematic diagram of exhaust gas flow through an aftertreatment system.

    Fig. 6 is a schematic flow diagram of a procedure for supplying an aftertreatment system.

    Fig. 7 is a schematic flow diagram of a procedure for servicing an aftertreatment system.

    Fig. 8 is a schematic illustration of an article of manufacture.

    Fig. 9 is a schematic cutaway drawing of a first bracket.

    Fig. 10 is a schematic drawing of the a first bracket.

    Fig. 11A is a schematic drawing of a second bracket.

    Fig. 11B is a schematic drawing of another embodiment of a second bracket.

    Fig. 12 is a schematic drawing of cross-sectional shapes of a first bracket aligned with cross-sectional shapes of a second bracket.

    Fig. 13 is a schematic drawing illustrating aftertreatment components each having a cross-sectional shape and a distinct size.

    Fig. 14 is a schematic illustration of an article of manufacture where a second bracket includes a receiving surface.

    Fig. 15 is a schematic illustration of a first aftertreatment component engaging the receiving surface with a roller bearing.

    Fig. 16 is a schematic diagram illustrating an article of manufacture including end caps.

    Fig. 17A is a schematic diagram illustrating an article of manufacture including a first end cap.

    Fig. 17B is a schematic diagram illustrating an article of manufacture including a second end cap.

    Fig. 18 is a schematic flow diagram of a procedure for installing an aftertreatment device with integrated mounting brackets.


    DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS



    [0049] For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, any alterations and further modifications in the illustrated embodiments, and any further applications of the principles of the invention as illustrated therein as would normally occur to one skilled in the art to which the invention relates are contemplated herein.

    [0050] Fig. 1 is an exploded schematic illustration of portions of a system 100 having multiple aftertreatment components each having a central axis and an axial extent. The system 100 for treating exhaust gas of an internal combustion engine includes a first aftertreatment component 202 having a first central axis 208 and a first axial extent 210, a second aftertreatment component 204 having a second central axis 212 and a second axial extent 214, and a third aftertreatment component 206 having a third central axis 216 and a third axial extent 218. The first, second, and third central axes 208, 212, 216 are substantially parallel. Substantially parallel as used herein includes any arrangement of components 202, 204, 206 that are generally aligned with each other, including arrangements wherein the central axes 208, 212, 216 are parallel. In certain embodiments, substantially parallel includes arrangements wherein all of the central axes 208, 212, 216 are within twenty degrees of each other, e.g. wherein the greatest misalignment of any two of the three central axes 208, 212, 216 when projected on a plane does not exceed twenty degrees. The flow through components 202, 204, 206 may not be exactly linear, and the central axes 208, 212, 216 may be defined as a flow-area average, center of mass average, and/or geometric average through the component 202, 204, 206.

    [0051] The second axial extent 214 and the third axial extent 218 are shared, partially or fully, with the first axial extent 210. Two axial extents are considered shared when, for example, a perpendicular projection line can be created from the first central axis 208 within the first axial extent 210 such that the projection line intersects the second central axis 212 within the second axial extent 214.

    [0052] The system 100 includes a first end cap 116 at a first end 228, the first end cap 116 defining a first fluid chamber that fluidly couples an outlet of the first aftertreatment component 220 with an inlet of the second aftertreatment component 222, and a second end cap 118 at a second end 230, the second end cap 118 defining a second fluid chamber that fluidly couples an outlet of the second aftertreatment component 224 with an inlet of the third aftertreatment component 226. For example, the first end cap 116 sealingly covers the outlet of the first aftertreatment component 220 and the inlet of the second aftertreatment component 222 such that fluid flowing out of the first aftertreatment component 202 flows into the second aftertreatment component 204.

    [0053] The first end cap 116 includes the cross-sectional area of the first aftertreatment component 202 and the cross-sectional area of the second aftertreatment component 204. Thus, the first end cap 116 entirely covers the outlet of the first aftertreatment component 220 and the inlet of the second aftertreatment component 222. The second end cap 118 includes the cross-sectional area of the second aftertreatment component 204 and the cross-sectional area of the third aftertreatment component 206. Thus, the second end cap 118 entirely covers the outlet of the second aftertreatment component 224 and the inlet of the third aftertreatment component 226. In certain embodiments, the system 100 does not include pipe elbows (not shown).

    [0054] Fig. 2 is a schematic illustration of a system 200 for packaging aftertreatment components. The system 200 includes an aftertreatment subsystem having aftertreatment components 202, 204, 206. Each aftertreatment component includes a corresponding central axis and axial extent (e.g., reference Fig. 1 and related text). Each aftertreatment component has a first end (e.g. towards first end 228) and an opposing second end (e.g. towards second end 230). The central axes for the plurality of aftertreatment components 202, 204, 206 are substantially parallel, and/or within twenty degrees of parallel, and at least a portion of the axial extents for the plurality of aftertreatment components 202, 204, 206 are mutually shared.

    [0055] The aftertreatment subsystem further includes a first end cap 116 and a second end cap 118, each end cap 116, 118 defining a fluid chamber that fluidly couples an outlet of an upstream aftertreatment component with an inlet of a downstream aftertreatment component. For example, the first aftertreatment component 202 is upstream of the second aftertreatment component 204, and the second aftertreatment component 204 is upstream of the third aftertreatment component 206. The first end cap 116 fluidly couples the outlet of the first aftertreatment component 202 with the inlet of the second aftertreatment component 204, and the second end cap 118 fluidly couples the outlet of the second aftertreatment component 204 to the inlet of the third aftertreatment component 206. Each end cap is positioned at one of the first end and the second end of the upstream and downstream aftertreatment components. In the illustration of Fig. 2, the first end cap 116 is positioned at the first end of the first aftertreatment component 202 and the second aftertreatment component 204, and the second end cap 118 is positioned at the second end of the second aftertreatment component 204 and the third aftertreatment component 206. The aftertreatment subsystem includes a fluid inlet interface 602 coupled to a first aftertreatment component 202 and a fluid outlet interface 604 coupled to a last aftertreatment component, which in the illustration of Fig. 2 is the third aftertreatment component 206.

    [0056] The exemplary system 200 further includes a first bracket 106 having a first mounting interface 122, where the first bracket 106 joins the first aftertreatment component 202, the second aftertreatment component 204, and the third aftertreatment component 206 at an axial position closer to the first end 228 than to a center of the second axial extent. In a further embodiment, the first bracket 106 joins the first aftertreatment component 202, the second aftertreatment component 204, and the third aftertreatment component 206 at a position near the first end 228. In a further embodiment, the second bracket 108 joins the first aftertreatment component 202, the second aftertreatment component 204, and the third aftertreatment component 206 at a position near the second end 230.

    [0057] The system 200 further includes a second bracket 108 having a second mounting interface 124, where the second bracket 108 joins the first aftertreatment component 202, the second aftertreatment component 204, and the third aftertreatment component 206 at an axial position closer to the second end 230 than to a center of the second axial extent. In certain embodiments, first mounting interface 122 and the second mounting interface 124 define a plane that is part of an application mounting interface 120. For example, the first mounting interface 122 and the second mounting interface 124 may be configured to attach to a vehicle rail, a mounting bracket, or other similar feature as part of an application. In certain embodiments, the application mounting interface 120 is not a plane; the application mounting interface 120 can be any mounting structure available on the application.

    [0058] The first bracket 106 and the second bracket 108 can be any appropriate materials known in the art, and in certain embodiments the first bracket 106 and the second bracket 108 are stamped metal. The vibration profile of the application at the application mounting interface 120, the temperature environment of the first bracket 106 and the second bracket 108, and the weight of the aftertreatment components 202, 204, 206 are among the factors determining appropriate materials for the brackets 106, 108.

    [0059] The illustration of Fig. 2 shows the second bracket 108 encircling each of the aftertreatment components 202, 204, 206. However, the aftertreatment components 202, 204, 206 may be joined by the brackets 106, 108 in any known configuration. For example and without limitation, the second bracket 106 in certain embodiments does not encircle the first aftertreatment component 202, but instead the second bracket 108 includes a protrusion and a band clamp (not shown) attaches the first aftertreatment component 202 to the second bracket 106 by encircling the first aftertreatment component and the protrusion.

    [0060] In a further embodiment, the aftertreatment subsystem includes a reductant injector interface 232 positioned one of the end caps 116, or on a housing of one of the aftertreatment components 202. The reductant injector interface 232 is structured to receive a reductant injector, which may be a reductant utilized by one or more aftertreatment components 202, 204, 206. In certain embodiments, the reductant injector interface 232 is structured to position a reductant injector at an upstream side of the second aftertreatment component 204, which maybe a decomposition tube, such that the reductant has a residence time in the second aftertreatment component 204 before reaching the third aftertreatment component 206. In a further embodiment, the aftertreatment subsystem includes a wiring harness interface 236 coupled to a housing of one of the aftertreatment components 202, 204, 206.

    [0061] Referencing Fig. 4, the aftertreatment subsystem further includes an installation specification 400 having specification value(s) including relative positions and attachment means specification of the first and second mounting interfaces 402, maximum dimensions of the joined aftertreatment components 404, position and connector type for the wiring harness interface 406, attachment means specification for the reductant injector 408, a size and connection type for the fluid inlet interface 410, and/or a size and connection type for the fluid outlet interface 412. In a still further embodiment, the aftertreatment subsystem does not include any other interfaces beyond the first mounting interface, the second mounting interface, the fluid inlet interface, the fluid outlet interface, the reductant injector interface, and the wiring harness interface. For example, the aftertreatment subsystem presented in the illustration 200 has simplified interfaces where the original equipment manufacturer (or other downstream user of the aftertreatment subsystem) does not have to interface with anything beyond the fluid inlet 602, fluid outlet 604, the wiring harness interface 236, the reductant injector interface 232, and the mounting interfaces 106, 108, despite the aftertreatment subsystem including multiple aftertreatment components 202, 204, 206.

    [0062] For example, the relative positions and attachment means specification of the first and second mounting interfaces 402 may include geometric position data (absolute or relative) of the first mounting interface 122 and the second mounting interface 124, and further includes the number and type of attachment means (e.g. bolt size). In another example, the maximum dimensions of the joined aftertreatment components 404 may include a maximum vertical, axial, and/or depth measurement for the aftertreatment subsystem including the aftertreatment components 202, 204, 206, end caps 116, 118, fluid inlet interface 602 and fluid outlet interface 604, and the brackets 106, 108. In another example, the position and connector type for the wiring harness interface 406 includes the pin, connector, and key information for the wiring harness interface 236. In another example, the attachment means specification for the reductant injector 408 includes boss size and threading, reductant line sizing and connection specifications, and/or any other information required to interface a reductant injector to the reductant injector interface 232, and/or to interface a reductant line to a reductant injector where the reductant injector is pre-assembled with the aftertreatment subsystem.

    [0063] Referencing Fig. 2, the exemplary system 200 includes a sensor table 234 mounted on a housing 110 defining the third aftertreatment component 206. The sensor table 234 includes the wiring harness interface 236, which may be connected to an electronic controller (not shown) that reads values from various sensors on the aftertreatment subsystem. The sensor table 234 further includes inputs from the various sensors on the aftertreatment subsystem, including sensors to detect temperatures, pressures, and/or flow rates from various positions in the aftertreatment subsystem. A reductant injector connected to the reductant injector interface 232 may be present and structured to inject reductant into the first fluid chamber defined in the first end cap 116.

    [0064] Fig. 3A is an illustration of a disassembled aftertreatment component 202. In the illustration of Fig. 3A, the aftertreatment component includes a first sub-component 310 and a second sub-component 308. The sub-components 310 are joined with a second band clamp 304, and attached to the aftertreatment subsystem with a first band clamp 302 and a third band clamp 306. In certain embodiments, the second sub-component 308 is removable by loosening the second band clamp 304 and the third band clamp 306, allowing the second sub-component 308 to be removed from the aftertreatment subsystem without removing other parts of the aftertreatment subsystem. In one example, the first aftertreatment component 202 includes a diesel oxidation catalyst 310 positioned upstream of a particulate filter 308, and the particulate filter 308 is conveniently removable for cleaning and/or replacement. Any of the aftertreatment components 202, 204, 206 may include sub-components, and the arrangement of sub-components may be any arrangement understood in the art. Fig. 3B is an illustration of the first aftertreatment component 202 as the component 202 may be assembled and positioned in the aftertreatment subsystem.

    [0065] Fig. 5 is a schematic diagram 500 of exhaust gas flow through an aftertreatment subsystem. The exhaust flow 502 enters the fluid inlet interface 602, and flows through the first aftertreatment component 202 in a first direction 504. The exhaust flow substantially reverses flow direction 510 through the first end cap 116 and flows through the second aftertreatment component 204 in a second direction 506. The exhaust flow substantially reverses flow direction 512 through the second end cap 118, and flows through the third aftertreatment component 206 in the first direction 504. The exhaust flow exits 508 the aftertreatment subsystem through the fluid outlet interface 604.

    [0066] In an exemplary embodiment, the first aftertreatment component 202 includes a diesel oxidation catalyst in series with a diesel particulate filter, the second aftertreatment component 204 includes a flow pipe, and the third aftertreatment component 206 includes a selective catalytic reduction catalyst in series with an ammonia oxidation catalyst. The first aftertreatment component 202 further includes the fluid inlet interface 602 that projects from the first aftertreatment component 202 at the second end 230 of the first aftertreatment component 202, and the third aftertreatment component 206 further includes a fluid outlet interface 604 that projects from the third aftertreatment component 206 at the first end 228 of the third aftertreatment component 206. The first end 228 includes a furthest extent of any of the aftertreatment components 202, 204, 206 in a first axial direction, and the second end 230 includes a furthest extent of any of the aftertreatment components 202, 204, 206 in an opposite axial direction. The first end 228 and second end 230 may further include a furthest extent of any component of the aftertreatment subsystem, including the end caps 116, 118 and/or the reductant injector interface 232.

    [0067] In the illustration of Fig. 8, the first aftertreatment component 112 includes a fluid inlet interface 602 that receives an exhaust gas from an internal combustion engine. The first aftertreatment 112 component includes a particulate filter that removes particulate matter from the exhaust gas. The second aftertreatment component 114 includes a flow tube providing residence time to exhaust gas, for example allowing reductant from an injector 232 time at exhaust temperature to vaporize and decompose. The third aftertreatment component 110 includes a NOx treatment catalyst that utilizes the reductant to remove NOx from the exhaust gas. The third aftertreatment component 110 further includes a fluid outlet interface 604 that provides treated exhaust gas to a downstream component, for example an exhaust stack (not shown). The selection and arrangement of aftertreatment components 110, 112, 114 are exemplary only, and any aftertreatment components and arrangement known in the art are contemplated herein.

    [0068] The article 100 further includes a second bracket 104 having a second mounting interface 108, the second bracket 104 defining a second set of aftertreatment engagement features. Referencing Fig. 11A, the second bracket 104 includes at least a portion of the first cross-sectional shape 1102, the second cross-sectional shape 1104, and the third cross-sectional shape 1106. In the illustration of Fig. 11A, the second bracket 104 includes only a portion of the third cross-sectional shape 1106, although any or all of the cross-sectional shapes may be only partially present. The cross-sectional shapes 1102, 1104, 1106 are sized to allow passage of an aftertreatment component therethrough. Fig. 11B illustrates an alternate embodiment of the second bracket 104, wherein each cross-sectional shape 1102, 1104, 1106 is defined in the second bracket 104 in the entirety.

    [0069] The first bracket 102 and second bracket 104 are structured such that, when the first mounting interface 106 is mounted on a first mounting surface 122 and the second mounting interface 108 is mounted on a second mounting surface 124, the cross-sectional shapes 1002, 1004, 1006 of the first bracket align with the cross-sectional shapes 1102, 1104, 1106 of the second bracket. In a further embodiment, the first mounting surface 122 and the second mounting surface 124 define a plane 120, for example a rail of a vehicle. In certain embodiments, the mounting surfaces 122, 124 may be separate surfaces, for example one surface 122 being on a vehicle rail and another surface 124 being on a vehicle bulkhead. The described surfaces are non-limiting examples. Referencing Fig. 12, the cross-sectional shapes, in certain embodiments, include a first circle sized 1102 to allow passage of a selective-reduction catalyst housing, a second circle 1106 sized to allow passage of a diesel particulate filter housing, and a third circle 1104 sized to allow passage of a flow tube housing.

    [0070] Referencing Fig. 11A, an exemplary second bracket 104 includes a receiving surface 1108 that extends around at least a portion of an edge of the third cross-sectional shape 1106, in a perpendicular plane to the cross-sectional shape 1106. In a further embodiment, each of the first and second brackets further include means for attaching a lifting device. In a further embodiment, the first mounting surface and the second mounting surface define a plane. Referencing Fig. 14, in certain embodiments the first aftertreatment component 112 engages the receiving surface 1108 with a plurality of roller bearings 1402. The roller bearings 1402 allow easy removal of the aftertreatment component 112 by sliding in the direction 1404. In certain embodiments, the roller bearings 1402 are spaced around the aftertreatment component 112 to ensure proper positioning and stability of the aftertreatment component 112. In an exemplary embodiment, the first aftertreatment component 112 includes a particulate filter which is periodically removed for cleaning, inspection, repair, and/or replacement. The first aftertreatment component 112 may be fixed into the first bracket 102 and second bracket 104 by attachment to an end cap 116, by attachment to a bracket 102, 104 by a band clamp, and/or by other attachment means understood in the art.

    [0071] Referencing Fig. 13, an article is shown having each of the first and second brackets 102, 104 further including means for enforcing directional installation of one or more of the aftertreatment components 110, 112, 114. The illustration of Fig. 13 includes the fluid inlet interface 602 and fluid outlet interface 604 ensuring the first aftertreatment component 112 and third aftertreatment component 110 are installed in the proper flow direction. Further, the cross-sectional shapes 1002, 1004, 1006 have distinct sizes such that the first aftertreatment component 112, second aftertreatment component 114, and third aftertreatment component 110 are installed into the correct cross-sectional shapes 1002, 1004, 1006 and 1102, 1104, 1106. Other means for enforcing directional installation of aftertreatment components include keying notches and/or markings (not shown) on the aftertreatment components and/or cross-sectional shapes, and/or distinct shapes for each of the cross-sectional shapes 1002, 1004, 1006 and 1102, 1104, 1106.

    [0072] Referencing Fig. 16, end caps 116, 118 are illustrated. The first end cap 116 defines a fluid chamber that fluidly couples an outlet of the first aftertreatment component 112 to an inlet of the second aftertreatment component 114. The second end cap 118 defines a fluid chamber that fluidly couples an outlet of the second aftertreatment component 114 to an inlet of the third aftertreatment component 110. In certain embodiments, the end caps 116, 118 define a cross-sectional area covering the connected aftertreatment components, for example as illustrated in Fig. 16. In certain embodiments, the end caps 116, 118 define a cross-sectional area greater than the connected aftertreatment components, such as the entire cross-sectional area of all included aftertreatment components (e.g three or more). Referencing Fig. 17A, the first end cap 116 includes the cross-sectional area of three aftertreatment components, and includes a septum 802 (or divider) that enforces flow between the first aftertreatment component 112 and the second aftertreatment component 114 when installed on the article 100. Referencing Fig. 17B, the second end cap 118 includes the cross-sectional area of three aftertreatment components, and includes a septum 804 (or divider) that enforces flow between the second aftertreatment component 114 and the third aftertreatment component 110 when installed on the article 100.

    [0073] In certain embodiments, a kit for installing an aftertreatment system package includes a first aftertreatment component 112 having a first cross-sectional shape, a second aftertreatment component 114 having a second cross-sectional shape, and a third aftertreatment component 110 having a third cross-sectional shape. The kit includes a first bracket 102 having a first mounting interface 106, where the first bracket 102 defines a first set of aftertreatment engagement features 1002, 1004, 1006.

    [0074] The first set of aftertreatment engagement features 1002, 1004, 1006 includes at least a portion of each of the first cross-sectional shape, the second cross-sectional shape, and the third cross-sectional shape. The kit includes a second bracket 104 having a second mounting interface 108, where the second bracket 104 defines a second set of aftertreatment engagement features 1102, 1104, 1106. The second set of aftertreatment engagement features 1102, 1104, 1106 includes at least a portion of a each of the first cross-sectional shape, the second cross-sectional shape, and the third cross-sectional shape. The first bracket 102 and second bracket 104 are structured such that, when the first mounting interface 106 is mounted on a first mounting surface 122 and the second mounting interface 108 is mounted on a second mounting surface 124, the cross-sectional shapes of the first bracket 1002, 1004, 1006 align with the cross-sectional shapes of the second bracket 1102, 1104, 1106. In a further embodiment, the first mounting surface 122 and the second mounting surface 124 define a plane 120.

    [0075] The exemplary kit includes the first aftertreatment component 112 as a diesel particulate filter, the second aftertreatment component 114 as a flow tube, which may be a decomposition tube, and the third aftertreatment component 110 as a selective catalytic reduction component. The first and second brackets 102, 104 further include means for attaching a lifting device. In certain embodiments, the means for attaching a lifting device comprise a number of lift points 1008, 1010, 1110, 1112. Other means for attaching a lifting device include lift points near a center of gravity for the aftertreatment subsystem including the brackets 102, 104 and the aftertreatment components, and/or lift points distributed around the center of gravity for the aftertreatment subsystem. The lift points may comprise attachable holes as shown in Figs. 8-14 and Figs. 17A and 17B, but may also be notches, hooks, protrusions, or other features that facilitate attachment of a lifting device.

    [0076] Each of the first and second brackets 102, 104 further include means for enforcing directional installation of aftertreatment components. In certain embodiments, the first cross-sectional shape, second cross-sectional shape, and third cross-sectional shape each have a distinct size. The exemplary kit further includes a first end cap 116 that fluidly couples an outlet of the first aftertreatment component 112 to an inlet of the second aftertreatment component 114, and a second end cap 118 that fluidly couples an outlet of the second aftertreatment component 114 to an inlet of the third aftertreatment component 110.

    [0077] The schematic flow diagrams of Figs. 6 and 7 illustrate exemplary procedures for integrating aftertreatment manifold devices (or end caps 116, 118). Operations illustrated are understood to be exemplary only, and operations may be combined or divided, and added or removed, as well as re-ordered in whole or part, unless stated explicitly to the contrary herein.

    [0078] Fig. 6 is a schematic flow diagram of a procedure 600 for supplying an aftertreatment system. The procedure 600 includes providing an aftertreatment subsystem, including: interfaces including a first mounting interface, a second mounting interface, a fluid inlet interface, and a fluid outlet interface; aftertreatment components, each aftertreatment component having a corresponding central axis and axial extent, the aftertreatment components having a first end and an opposing second end.

    [0079] The central axes for the plurality of aftertreatment components are within twenty degrees of parallel. At least a portion of the axial extents for the aftertreatment components are mutually shared. End cap(s) define fluid chamber(s) that fluidly couple outlet(s) of upstream aftertreatment component(s) with inlet(s) of downstream aftertreatment component(s), where each end cap is positioned at the first end or the second end of the upstream and downstream aftertreatment components. The fluid inlet interface is coupled to a first aftertreatment component and the fluid outlet interface is coupled to a last aftertreatment component.

    [0080] The provided aftertreatment subsystem further includes a first bracket that joins the aftertreatment components at an axial position closer to the first end than to a center of the axial extent of any one of the plurality of aftertreatment components, a second bracket that joins the plurality of aftertreatment components at an axial position closer to the second end than to the center of the axial extent of any one of the plurality of aftertreatment components. The first bracket includes the first mounting interface and the second bracket includes the second mounting interface.

    [0081] The procedure 600 further includes an operation 604 to provide an installation specification. The installation specification includes specification value(s) selected from: relative positions and attachment means specification of the first and second mounting interfaces, maximum dimensions of the joined aftertreatment components, a size and connection type for the fluid inlet interface, and/or a size and connection type for the fluid outlet interface.

    [0082] In a further embodiment, the aftertreatment subsystem further includes a reductant injector interface positioned on one of the end caps, or positioned on a housing of one of the aftertreatment components. The aftertreatment subsystem further includes a wiring harness interface coupled to a housing of one of the plurality of aftertreatment components, and the installation specification further includes specification value(s) selected from: a position and connector type for the wiring harness interface, and an attachment means specification for the reductant injector.

    [0083] Fig. 7 is a schematic flow diagram of a procedure 700 for servicing an aftertreatment subsystem. The procedure 700 includes an operation 702 to provide an aftertreatment subsystem and an operation 704 to loosen a second band clamp and a third band clamp. The procedure 700 further includes an operation 706 to remove a particulate filter from the aftertreatment subsystem and an operation 708 to replace the particulate filter.

    [0084] Fig. 8 is a schematic illustration of an article 100 of manufacture. The article 100 includes a first bracket 102 having a first mounting interface 106, the first bracket 102 defining a first set of aftertreatment engagement features including at least a portion of each of a number of cross-sectional shapes. Referencing Fig. 10, the first bracket 102 includes a first cross-sectional shape 1002, a second cross-sectional shape 1004, and a third cross-sectional shape 1006. The cross-sectional shapes 1002, 1004, 1006 are sized to allow passage of an aftertreatment component therethrough. In the illustrations of Figs. 8 and 10, the first cross-sectional shape 1002 is sized to allow passage of a third aftertreatment component 110, the second cross-sectional shape 1004 is sized to allow passage of a second aftertreatment component 114, and the third cross-sectional shape 1006 is sized to allow passage of a first aftertreatment component 112. The first bracket 102 in Fig. 10 is illustrated defining the entire cross-sectional shape for each aftertreatment component 110, 112, 114, but the first bracket 102 may include only a portion of each cross-sectional shape (e.g. refer to Fig. 11 A and referencing text with respect to an embodiment of the second bracket 104). Referencing Fig. 9, a schematic cutaway drawing of a first bracket.102 is shown. The aftertreatment components 110, 112, 114 are inserted in the first bracket 102.

    [0085] The schematic flow diagrams of Fig. 18 illustrate one example of operations for installing an aftertreatment device with integrated mounting brackets. Operations illustrated are understood to be exemplary only, and operations may be combined or divided, and added or removed, as well as re-ordered in whole or part, unless stated explicitly to the contrary herein.

    [0086] Fig. 18 is a schematic flow diagram of a procedure 1800 for installing an aftertreatment device with integrated mounting brackets. The procedure 1800 includes an operation 1802 to size a first cross-sectional shape corresponding to a first aftertreatment device, a second cross-sectional shape corresponding to a second aftertreatment device, and a third cross-sectional shape corresponding to a third aftertreatment device to distinct sizes. The procedure 1800 further includes an operation 1804 to provide a first bracket having a first mounting interface, the first bracket defining a first set of aftertreatment engagement features including at least a portion of a each of the first cross-sectional shape, the second cross-sectional shape, and the third cross-sectional shape. The procedure 1800 further includes an operation 1806 to provide a second bracket having a second mounting interface, the second bracket defining a second set of aftertreatment engagement features including at least a portion of a each of the first cross-sectional shape, the second cross-sectional shape, and the third cross-sectional shape. The operation 1806 to provide the second bracket further includes providing the second bracket with a receiving surface that extends in a perpendicular plane to the second set of aftertreatment engagement features,

    [0087] The procedure 1800 further includes an operation 1808 to position a first end of a first aftertreatment component in the first cross-sectional shape of the first bracket and a second end of the first aftertreatment component in the first cross-sectional shape of the second bracket. In certain embodiments, the operation 1808 to position the first aftertreatment component further includes attaching the first aftertreatment component to the receiving surface by engaging the receiving surface with roller bearings and/or a band clamp.

    [0088] The procedure 1800 further includes an operation 1810 to position a first end of a second aftertreatment component in a second cross-sectional shape of the first bracket and a second end of the second aftertreatment component in the second cross-sectional shape of the second bracket. The procedure 1800 further includes an operation 1812 to position a first end of a third aftertreatment component in a third cross-sectional shape of the first bracket and a second end of the third aftertreatment component in the third cross-sectional shape of the second bracket.

    [0089] The procedure 1800 further includes an operation 1814 to attach a first end cap that fluidly couples an outlet of the first aftertreatment component to an inlet of the second aftertreatment component, and to attach a second end cap that fluidly couples an outlet of the second aftertreatment component to an inlet of the third aftertreatment component. The procedure 1800 further includes an operation 1816 to attach the first mounting interface to a first mounting surface and to attach the second mounting interface to a second mounting surface.

    [0090] As is evident from the figures and text presented above, a variety of embodiments according to the present invention are contemplated.

    [0091] While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only certain exemplary embodiments have been shown and described and that all changes and modifications that come within the scope of the invention as defined by the claims are desired to be protected. In reading the claims, it is intended that when words such as "a," "an," "at least one," or "at least one portion" are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. When the language "at least a portion" and/or "a portion" is used the item can include a portion and/or the entire item unless specifically stated to the contrary.


    Claims

    1. A system (100, 200) for treating exhaust gas of an internal combustion engine, comprising:

    a first aftertreatment component (202) having a first central axis and a first axial extent, a second aftertreatment component (204) having a second central axis and a second axial extent, and a third aftertreatment component (206) having a third central axis and a third axial extent;

    wherein the first, second, and third central axes are substantially parallel;

    wherein at least a portion of the second axial extent and the third axial extent are shared with the first axial extent;

    a first end cap (116) at a first end, the first end cap (116) defining a first fluid chamber that fluidly couples an outlet of the first aftertreatment component (202) with an inlet of the second aftertreatment component (204);

    a second end cap (118) at a second end, the second end cap (118) defining a second fluid chamber that fluidly couples an outlet of the second aftertreatment component (204) with an inlet of the third aftertreatment component (206); and

    a first bracket (106) having a first mounting interface (122), wherein the first bracket (106) joins the first aftertreatment component (202), the second aftertreatment component (204), and the third aftertreatment component (206) at an axial position closer to the first end than to a center of the second axial extent;

    characterised by

    the first bracket (106) defining a first cross-sectional shape sized so as to allow passage of the first aftertreatment component (202) therethrough, a second cross-sectional shape sized so as to allow passage of the second aftertreatment component (204) therethrough and a third cross-sectional shape sized so as to allow passage of the third aftertreatment component (206) therethrough such that the first bracket (106) encircles each of the first aftertreatment component (202), the second aftertreatment component (204) and the third aftertreatment component (206).


     
    2. The system (100, 200) of claim 1, wherein the first end cap (116) comprises the cross-sectional area of the first aftertreatment component (202) and the cross-sectional area of the second aftertreatment component (204).
     
    3. The system (100, 200) of claim 1 or claim 2, wherein the second end cap (118) comprises the cross-sectional area of the second aftertreatment component (204) and the cross-sectional area of the third aftertreatment component (206).
     
    4. The system (100, 200) of any preceding claim, wherein the system (100, 200) does not include pipe elbows.
     
    5. The system (100, 200) of any preceding claim, further comprising a sensor table mounted on a housing defining the third aftertreatment component (206), the sensor table comprising a wiring harness interface.
     
    6. The system (100, 200) of any preceding claim, further comprising a reductant injector structured to inject reductant into the first fluid chamber.
     
    7. The system (100, 200) of any preceding claim, wherein the system (100, 200) further comprises a second bracket (108) having a second mounting interface (124), wherein the second bracket (108) joins the first aftertreatment component (202), the second aftertreatment component (204), and the third aftertreatment component (206) at an axial position closer to the second end than to a center of the second axial extent
     
    8. The system (100, 200) of claim 7, wherein a band clamp attaches the first aftertreatment component (202) to the second bracket (108).
     
    9. The system (100, 200) of claim 7 or claim 8, wherein the first mounting interface (122) and the second mounting interface (124) define a plane.
     
    10. The system (100, 200) of any preceding claim, wherein the first aftertreatment component (202) comprises a diesel oxidation catalyst in series with a diesel particulate filter, wherein the second aftertreatment component (204) comprises a flow pipe, and wherein the third aftertreatment component (206) comprises a selective catalytic reduction catalyst in series with an ammonia oxidation catalyst.
     
    11. The system (100, 200) of any preceding claim,
    wherein the first aftertreatment component (202) further comprises a fluid inlet interface that projects from the first aftertreatment component (202) at the second end of the first aftertreatment component (202), and wherein the third aftertreatment component (206) further comprises a fluid outlet interface that projects from the third aftertreatment component (206) at the first end of the third aftertreatment component (206)
     
    12. The system (100, 200) of any preceding claim, wherein an exhaust fluid flows through the first aftertreatment component (202) and the third aftertreatment component (206) in a first direction, and wherein the exhaust fluid flows through the second aftertreatment component (204) in a second direction.
     
    13. The system (100, 200) of any one of claims 10 to 12, further comprising
    an installation specification comprising at least one specification value selected from the specification values consisting of: relative positions and attachment means specification of the first and second mounting interfaces (122, 124), maximum dimensions of the joined aftertreatment components, position and connector type for the wiring harness interface, attachment means specification for the reductant injector, a size and connection type for the fluid inlet interface, and a size and connection type for the fluid outlet interface.
     
    14. The system (100, 200) of any one of claims 10 to 13, wherein the system (100, 200) further comprises a reductant injector interface (232) positioned on one of the end caps (116) or on a housing of one of the aftertreatment components (202), and wherein the system does not include any other interfaces beyond the first mounting interface (122), the second mounting interface (124), the fluid inlet interface (602), the fluid outlet interface (604), the reductant injector interface (232), and the wiring harness interface.
     
    15. A method for supplying an aftertreatment system (100, 200), comprising:

    providing an aftertreatment subsystem comprising:

    a first aftertreatment component (202) having a first central axis and a first axial extent, a second aftertreatment component (204) having a second central axis and a second axial extent, and a third aftertreatment component (206) having a third central axis and a third axial extent, wherein the first, second, and third central axes are substantially parallel, and wherein at least a portion of the second axial extent and the third axial extent are shared with the first axial extent;

    a first end cap (116) at a first end, the first end cap (116) defining a first fluid chamber that fluidly couples an outlet of the first aftertreatment component (202) with an inlet of the second aftertreatment component (204);

    a second end cap (118) at a second end, the second end cap (118) defining a second fluid chamber that fluidly couples an outlet of the second aftertreatment component (204) with an inlet of the third aftertreatment component (206);

    a first bracket (106) having a first mounting interface (122), wherein the first bracket (106) joins the first aftertreatment component (202), the second aftertreatment component (204), and the third aftertreatment component (206) at an axial position closer to the first end than to a center of the second axial extent, the first bracket (106) defining a first cross-sectional shape sized so as to allow passage of the first aftertreatment component (202) therethrough, a second cross-sectional shape sized so as to allow passage of the second aftertreatment component (204) therethrough and a third cross-sectional shape sized so as to allow passage of the third aftertreatment component (206) therethrough such that the first bracket (106) encircles each of the first aftertreatment component (202), the second aftertreatment component (204) and the third aftertreatment component (206);

    a second bracket (108) having a second mounting interface (124), wherein the second bracket (108) joins the first aftertreatment component (202), the second aftertreatment component (204), and the third aftertreatment component (206) at an axial position closer to the second end than to a center of the second axial extent; and

    providing an installation specification, the installation specification including specification values comprising at least one of relative positions and attachment means specification of the first and second mounting interfaces, maximum dimensions of the joined aftertreatment components, a size and connection type for a fluid inlet interface of the aftertreatment system and a size and connection type for a fluid outlet interface of the aftertreatment system.


     


    Ansprüche

    1. System (100, 200) zur Abgasbehandlung eines Verbrennungsmotors, das Folgendes umfasst:

    eine erste Nachbehandlungskomponente (202), die eine erste Mittelachse umfasst und ein erstes axiales Ausmaß, eine zweite Nachbehandlungskomponente (204), die eine zweite Mittelachse umfasst und ein zweites axiales Ausmaß, und eine dritte Nachbehandlungskomponente (206), die eine dritte Mittelachse umfasst und eine drittes axiales Ausmaß;

    wobei die erste, zweite und dritte Mittelachse im Wesentlichen parallel sind;

    wobei mindestens ein Abschnitt des zweiten axialen Ausmaßes und des dritten axialen Ausmaßes mit dem ersten axialen Ausmaß geteilt sind;

    eine erste Endkappe (116) an einem ersten Ende, wobei die erste Endkappe (116) eine erste Fluidkammer definiert, die einen Auslass der ersten Nachbehandlungskomponente (202) mit einem Einlass der zweiten Nachbehandlungskomponente (204) fluidisch verbindet;

    eine zweite Endkappe (118) an einem zweiten Ende, wobei die zweite Endkappe (118) eine zweite Fluidkammer definiert, die fluidisch einen Auslass der zweiten Nachbehandlungskomponente (204) mit einem Einlass der dritten Nachbehandlungskomponente (206) verbindet; und

    eine erste Halterung (106), die eine erste Montageschnittstelle (122) umfasst, wobei die erste Halterung (106) die erste Nachbehandlungskomponente (202), die zweite Nachbehandlungskomponente (204) und die dritte Nachbehandlungskomponente (206) in einer axialen Position verbindet, die näher am ersten Ende als an einer Mitte des zweiten axialen Ausmaßes liegt;

    dadurch gekennzeichnet, dass:

    die erste Halterung (106) eine erste Querschnittsform in einer Größe bildet, die ein Hindurchführen der ersten Nachbehandlungskomponente (202) hierdurch ermöglicht, eine zweite Querschnittsform in einer Größe bildet, die ein Hindurchführen der zweiten Nachbehandlungskomponente (204) hierdurch ermöglicht und eine dritte Querschnittsform in einer Größe bildet, die ein Hindurchführen der dritten Nachbehandlungskomponente (206) hierdurch ermöglicht, in der Weise, dass die erste Halterung (106) jeweils die erste Nachbehandlungskomponente (202), die zweite Nachbehandlungskomponente (204) und die dritte Nachbehandlungskomponente (206) umschließt.


     
    2. System (100, 200) nach Anspruch 1, wobei die erste Endkappe (116) die Querschnittsfläche der ersten Nachbehandlungskomponente (202) und die Querschnittsfläche der zweiten Nachbehandlungskomponente (204) umfasst.
     
    3. System (100, 200) nach Anspruch 1 oder 2, wobei die zweite Endkappe (118) die Querschnittsfläche der zweiten Nachbehandlungskomponente (204) und die Querschnittsfläche der dritten Nachbehandlungskomponente (206) umfasst.
     
    4. System (100, 200) nach einem der vorherigen Ansprüche, wobei das System (100, 200) keine Rohrbögen umfasst.
     
    5. System (100, 200) nach einem der vorherigen Ansprüche, das weiterhin einen auf einem Gehäuse montierten Sensortisch umfasst, der die dritte Nachbehandlungskomponente (206) definiert, wobei der Sensortisch eine Kabelbaumschnittstelle umfasst.
     
    6. System (100, 200) nach einem der vorherigen Ansprüche, das weiterhin einen Reduktionsmitteleinspritzer umfasst, der strukturiert ist, um Reduktionsmittel in die erste Fluidkammer einzuspritzen.
     
    7. System (100, 200) nach einem der vorherigen Ansprüche, wobei das System (100, 200) weiterhin eine zweite Halterung (108) umfasst, die eine zweite Montageschnittstelle (124) umfasst, wobei die zweite Halterung (108) die erste Nachbehandlungskomponente (202), die zweite Nachbehandlungskomponente (204) und die dritte Nachbehandlungskomponente (206) in einer axialen Position verbindet, die näher am zweiten Ende als an einer Mitte des zweiten axialen Ausmaßes liegt.
     
    8. System (100, 200) nach Anspruch 7, wobei eine Bandklemme die erste Nachbehandlungskomponente (202) an der zweiten Halterung (108) befestigt.
     
    9. System (100, 200) nach Anspruch 7 oder 8, wobei die erste Montageschnittstelle (122) und die zweite Montageschnittstelle (124) eine Ebene definieren.
     
    10. System (100, 200) nach einem der vorherigen Ansprüche, wobei die erste Nachbehandlungskomponente (202) einen Dieseloxidationskatalysator in Serie mit einem Dieselpartikelfilter umfasst, wobei die zweite Nachbehandlungskomponente (204) einen Vorlauf umfasst, und wobei die dritte Nachbehandlungskomponente (206) einen selektiven katalytischen Reduktionskatalysator in Serie mit einem Ammoniakoxidationskatalysator umfasst.
     
    11. System (100, 200) nach einem der vorherigen Ansprüche,
    wobei die erste Nachbehandlungskomponente (202) weiterhin eine Fluideinlassschnittstelle umfasst, die aus der ersten Nachbehandlungskomponente (202) an dem zweiten Ende der ersten Nachbehandlungskomponente (202) ragt, und wobei die dritte Nachbehandlungskomponente (206) weiterhin eine Fluidauslassschnittstelle umfasst, die aus der dritten Nachbehandlungskomponente (206) an dem ersten Ende der dritten Nachbehandlungskomponente (206) ragt.
     
    12. System (100, 200) nach einem der vorherigen Ansprüche, wobei ein Abgasfluid die erste Nachbehandlungskomponente (202) und die dritte Nachbehandlungskomponente (206) in einer ersten Richtung durchströmt, und wobei das Abgasfluid die zweite Nachbehandlungskomponente (204) in einer zweiten Richtung durchströmt.
     
    13. System (100, 200) nach einem der Ansprüche 10 bis 12, das weiterhin eine Einbauspezifikation umfasst, welche mindestens einen Spezifikationswert umfasst, der aus folgenden Spezifikationswerten gewählt wird: relative Positionen und Befestigungsmittelspezifikation der ersten und zweiten Montageschnittstelle (122, 124), maximale Abmessungen der verbundenen Nachbehandlungskomponenten, Position und Anschlussart der Kabelbaumschnittstelle, Befestigungsmittelspezifikation des Reduktionsmitteleinspritzers, eine Größen- und Anschlussart der Fluideinlassschnittstelle und eine Größen- und Anschlussart der Fluidauslassschnittstelle.
     
    14. System (100, 200) nach einem der Ansprüche 10 bis 13, wobei das System (100, 200) weiterhin eine Reduktionsmitteleinspritzerschnittstelle (232) umfasst, welche auf einer der Endkappen (116) oder auf einem Gehäuse einer der Nachbehandlungskomponenten (202) positioniert ist, und wobei das System keine weiteren Schnittstellen als die erste Montageschnittstelle (122), die zweite Montageschnittstelle (124), die Fluideinlassschnittstelle (602), die Fluidauslassschnittstelle (604), die Reduktionsmitteleinspritzerschnittstelle (232) und die Kabelbaumschnittstelle umfasst.
     
    15. Verfahren zur Bereitstellung eines Nachbehandlungssystems (100, 200), das Folgendes umfasst:

    Bereitstellung eines Nachbehandlungsteilsystems, das Folgendes umfasst:

    eine erste Nachbehandlungskomponente (202), die eine erste Mittelachse umfasst und ein erstes axiales Ausmaß, eine zweite Nachbehandlungskomponente (204), die eine zweite Mittelachse umfasst und ein zweites axiales Ausmaß, und eine dritte Nachbehandlungskomponente (206), die eine dritte Mittelachse und ein drittes axiales Ausmaß umfasst, wobei die erste, zweite und dritte Mittelachse im Wesentlichen parallel sind, und wobei mindestens ein Abschnitt des zweiten axialen Ausmaßes und des dritten axialen Ausmaßes mit dem ersten axialen Ausmaß geteilt sind;

    eine erste Endkappe (116) an einem ersten Ende, wobei die erste Endkappe (116) eine erste Fluidkammer definiert, die einen Auslass der ersten Nachbehandlungskomponente (202) mit einem Einlass der zweiten Nachbehandlungskomponente (204) fluidisch verbindet;

    eine zweite Endkappe (118) an einem zweiten Ende, wobei die zweite Endkappe (118) eine zweite Fluidkammer definiert, die einen Auslass der zweiten Nachbehandlungskomponente (204) mit einem Einlass der dritten Nachbehandlungskomponente (206) fluidisch verbindet;

    eine erste Halterung (106), die eine erste Montageschnittstelle (122) umfasst, wobei die erste Halterung (106) die erste Nachbehandlungskomponente (202), die zweite Nachbehandlungskomponente (204) und die dritte Nachbehandlungskomponente (206) in einer axialen Position verbindet, die näher am ersten Ende als an einer Mitte des zweiten axialen Ausmaßes liegt, wobei die erste Halterung (106) eine erste Querschnittsform in einer Größe definiert, die ein Hindurchführen der ersten Nachbehandlungskomponente (202) hierdurch ermöglicht, eine zweite Querschnittsform in einer Größe definiert, die ein Hindurchführen der zweiten Nachbehandlungskomponente (204) hierdurch ermöglicht und eine dritte Querschnittsform in einer Größe definiert, die ein Hindurchführen der dritten Nachbehandlungskomponente (206) hierdurch ermöglicht, in der Weise, dass die erste Halterung (106) jeweils die erste Nachbehandlungskomponente (202), die zweite Nachbehandlungskomponente (204) und die dritte Nachbehandlungskomponente (206) umschließt;

    eine zweite Halterung (108), die eine zweite Montageschnittstelle (124) umfasst, wobei die zweite Halterung (108) die erste Nachbehandlungskomponente (202), die zweite Nachbehandlungskomponente (204) und die dritte Nachbehandlungskomponente (206) in einer axialen Position verbindet, die näher am zweiten Ende als an einer Mitte des zweiten axialen Ausmaßes liegt; und

    Bereitstellung einer Einbauspezifikation, wobei die Einbauspezifikation Spezifikationswerte umfasst, die mindestens einen der folgenden Werte umfassen: relative Positionen und Befestigungsmittelspezifikation der ersten und der zweiten Montageschnittstelle, maximale Abmessungen der verbundenen Nachbehandlungskomponenten, Größen- und Anschlussart der Fluideinlassschnittstelle des Nachbehandlungssystems und eine Größen- und Anschlussart der Fluidauslassschnittstelle des Nachbehandlungssystems.


     


    Revendications

    1. Système (100, 200) permettant de traiter le gaz d'échappement d'un moteur à combustion interne, comprenant :

    un premier composant de post-traitement (202) présentant un premier axe central et une première étendue axiale, un deuxième composant de post-traitement (204) présentant un deuxième axe central et une deuxième étendue axiale, et un troisième composant de post-traitement (206) présentant un troisième axe central et une troisième étendue axiale ;

    dans lequel les premier, deuxième, et troisième axes centraux sont essentiellement parallèles ;

    dans lequel au moins une partie de la deuxième étendue axiale et de la troisième étendue axiale sont partagées avec la première étendue axiale ;

    un premier obturateur d'extrémité (116) au niveau d'une première extrémité, le premier obturateur d'extrémité (116) définissant une première chambre de fluide qui couple de manière fluidique une sortie du premier composant de post-traitement (202) avec une entrée du deuxième composant de post-traitement (204) ;

    un deuxième obturateur d'extrémité (118) au niveau d'une deuxième extrémité, le deuxième obturateur d'extrémité (118) définissant une deuxième chambre de fluide qui couple de manière fluidique une sortie du deuxième composant de post-traitement (204) avec une entrée du troisième composant de post-traitement (206) ; et

    une première monture (106) présentant une première interface de montage (122), dans lequel la première monture (106) réunit le premier composant de post-traitement (202), le deuxième composant de post-traitement (204), et le troisième composant de post-traitement (206) au niveau d'une position axiale plus proche de la première extrémité que d'un centre de la deuxième étendue axiale ;

    caractérisé en ce que

    la première monture (106) définit une première forme transversale dimensionnée de manière à permettre un passage du premier composant de post-traitement (202) à travers celle-ci, une deuxième forme transversale dimensionnée de manière à permettre un passage du deuxième composant de post-traitement (204) à travers celle-ci et une troisième forme transversale dimensionnée de manière à permettre un passage du troisième composant de post-traitement (206) à travers celle-ci de telle manière que la première monture (106) encercle chacun parmi le premier composant de post-traitement (202), le deuxième composant de post-traitement (204) et le troisième composant de post-traitement (206).


     
    2. Système (100, 200) selon la revendication 1, dans lequel le premier obturateur d'extrémité (116) comprend la surface transversale du premier composant de post-traitement (202) et la surface transversale du deuxième composant de post-traitement (204).
     
    3. Système (100, 200) selon la revendication 1 ou 2, dans lequel le deuxième obturateur d'extrémité (118) comprend la surface transversale du deuxième composant de post-traitement (204) et la surface transversale du troisième composant de post-traitement (206).
     
    4. Système (100, 200) selon l'une quelconque des revendications précédentes, dans lequel le système (100, 200) ne comprend pas de coudes de conduite.
     
    5. Système (100, 200) selon l'une quelconque des revendications précédentes, comprenant en outre une tablette de détection montée sur un logement définissant le troisième composant de post-traitement (206), la tablette de détection comprenant une interface de faisceau de câblage.
     
    6. Système (100, 200) selon l'une quelconque des revendications précédentes, comprenant en outre un injecteur d'agent réducteur structuré pour injecter un agent réducteur dans la première chambre de fluide.
     
    7. Système (100, 200) selon l'une quelconque des revendications précédentes, dans lequel le système (100, 200) comprend en outre une deuxième monture (108) présentant une deuxième interface de montage (124), dans lequel la deuxième monture (108) réunit le premier composant de post-traitement (202), le deuxième composant de post-traitement (204), et le troisième composant de post-traitement (206) au niveau d'une position axiale plus proche de la deuxième extrémité que d'un centre de la deuxième étendue axiale.
     
    8. Système (100, 200) selon la revendication 7, dans lequel un collier de serrage fixe le premier composant de post-traitement (202) sur la deuxième monture (108).
     
    9. Système (100, 200) selon la revendication 7 ou 8, dans lequel la première interface de montage (122) et la deuxième interface de montage (124) définissent un plan.
     
    10. Système (100, 200) selon l'une quelconque des revendications précédentes, dans lequel le premier composant de post-traitement (202) comprend un catalyseur d'oxydation diesel en série avec un filtre à particules diesel, dans lequel le deuxième composant de post-traitement (204) comprend une conduite d'écoulement, et dans lequel le troisième composant de post-traitement (206) comprend un catalyseur de réduction catalytique sélective en série avec un catalyseur d'oxydation de l'ammoniac.
     
    11. Système (100, 200) selon l'une quelconque des revendications précédentes, dans lequel le premier composant de post-traitement (202) comprend en outre une interface d'entrée de fluide qui fait saillie à partir du premier composant de post-traitement (202) au niveau de la deuxième extrémité du premier composant de post-traitement (202), et dans lequel le troisième composant de post-traitement (206) comprend en outre une interface de sortie de fluide qui fait saillie à partir du troisième composant de post-traitement (206) au niveau de la première extrémité du troisième composant de post-traitement (206).
     
    12. Système (100, 200) selon l'une quelconque des revendications précédentes, dans lequel un fluide d'échappement circule à travers le premier composant de post-traitement (202) et le troisième composant de post-traitement (206) dans une première direction, et dans lequel le fluide d'échappement circule à travers le deuxième composant de post-traitement (204) dans une deuxième direction.
     
    13. Système (100, 200) selon l'une quelconque des revendications 10 à 12, comprenant en outre une spécification d'installation comprenant au moins une valeur de spécification sélectionnée parmi les valeurs de spécification constituées de : positions relatives et spécification du moyen de fixation des première et deuxième interfaces de montage (122, 124), dimensions maximales des composants de post-traitement réunis, position et type de connecteur de l'interface de faisceau de câblage, spécification du moyen de fixation pour l'injecteur d'agent réducteur, taille et type de raccordement pour l'interface d'entrée de fluide, et taille et type de raccordement pour l'interface de sortie de fluide.
     
    14. Système (100, 200) selon l'une quelconque des revendications 10 à 13, dans lequel le système (100, 200) comprend en outre une interface d'injecteur d'agent réducteur (232) positionnée sur un des obturateurs d'extrémité (116) ou sur un logement de l'un des composants de post-traitement (202), et dans lequel le système ne comprend aucune autre interface au-delà de la première interface de montage (122), de la deuxième interface de montage (124), de l'interface d'entrée de fluide (602), de l'interface de sortie de fluide (604), de l'interface d'injecteur d'agent réducteur (232), et de l'interface de faisceau de câblage.
     
    15. Procédé de fourniture d'un système de post-traitement (100, 200), comprenant les étapes consistant à :

    fournir un sous-système de post-traitement comprenant :

    un premier composant de post-traitement (202) présentant un premier axe central et une première étendue axiale, un deuxième composant de post-traitement (204) présentant un deuxième axe central et une deuxième étendue axiale, et un troisième composant de post-traitement (206) présentant un troisième axe central et une troisième étendue axiale, dans lequel les premier, deuxième, et troisième axes centraux sont essentiellement parallèles, et dans lequel au moins une partie de la deuxième étendue axiale et de la troisième étendue axiale sont partagées avec la première étendue axiale ;

    un premier obturateur d'extrémité (116) au niveau d'une première extrémité, le premier obturateur d'extrémité (116) définissant une première chambre de fluide qui couple de manière fluidique une sortie du premier composant de post-traitement (202) avec une entrée du deuxième composant de post-traitement (204) ;

    un deuxième obturateur d'extrémité (118) au niveau d'une deuxième extrémité, le deuxième obturateur d'extrémité (118) définissant une deuxième chambre de fluide qui couple de manière fluidique une sortie du deuxième composant de post-traitement (204) avec une entrée du troisième composant de post-traitement (206) ;

    une première monture (106) présentant une première interface de montage (122), dans lequel la première monture (106) réunit le premier composant de post-traitement (202), le deuxième composant de post-traitement (204), et le troisième composant de post-traitement (206) au niveau d'une position axiale plus proche de la première extrémité que d'un centre de la deuxième étendue axiale, la première monture (106) définissant une première forme transversale dimensionnée de manière à permettre un passage du premier composant de post-traitement (202) à travers celle-ci, une deuxième forme transversale dimensionnée de manière à permettre un passage du deuxième composant de post-traitement (204) à travers celle-ci et une troisième forme transversale dimensionnée de manière à permettre un passage du troisième composant de post-traitement (206) à travers celle-ci de telle manière que la première monture (106) encercle chacun parmi le premier composant de post-traitement (202), le deuxième composant de post-traitement (204) et le troisième composant de post-traitement (206) ;

    une deuxième monture (108) présentant une deuxième interface de montage (124), dans lequel la deuxième monture (108) réunit le premier composant de post-traitement (202), le deuxième composant de post-traitement (204), et le troisième composant de post-traitement (206) au niveau d'une position axiale plus proche de la deuxième extrémité que d'un centre de la deuxième étendue axiale ; et

    fournir une spécification d'installation, la spécification d'installation comprenant des valeurs de spécification comprenant au moins une parmi des positions relatives et une spécification du moyen de fixation des première et deuxième interfaces de montage, des dimensions maximales des composants de post-traitement réunis, une taille et un type de raccordement pour une interface d'entrée de fluide du système de post-traitement et une taille et un type de raccordement pour une interface de sortie de fluide du système de post-traitement.


     




    Drawing



































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description