(19)
(11)EP 2 570 633 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
01.07.2020 Bulletin 2020/27

(21)Application number: 12184052.4

(22)Date of filing:  12.09.2012
(51)International Patent Classification (IPC): 
F01D 3/00(2006.01)
F02C 7/12(2006.01)
F01D 11/02(2006.01)
F16J 15/44(2006.01)
F01D 5/08(2006.01)
F02C 9/18(2006.01)
F02C 7/28(2006.01)

(54)

THRUST BEARING SYSTEM WITH INVERTED NON-CONTACTING DYNAMIC SEALS FOR GAS TURBINE ENGINE

SCHUBLAGERSYSTEM MIT UMGEKEHRTEN, KONTAKTLOSEN DYNAMISCHEN DICHTUNGEN FÜR GASTURBINENTRIEBWERKE

SYSTÈME DE PALIER DE BUTÉE AVEC JOINTS INVERSÉS, DYNAMIQUES ET SANS CONTACT POUR MOTEUR À TURBINE À GAZ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 16.09.2011 US 201113234338

(43)Date of publication of application:
20.03.2013 Bulletin 2013/12

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventor:
  • Caprario, Joseph T.
    Cromwell, CT Connecticut 06416 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 1 602 802
EP-A2- 1 736 635
GB-A- 622 369
US-A- 4 653 267
US-A- 4 730 977
EP-A2- 1 420 145
WO-A1-2012/088499
GB-A- 2 092 243
US-A- 4 697 981
US-A1- 2008 265 513
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure relates to a turbine engine, and more particularly to a seal system therefor.

    BACKGROUND ART



    [0002] A gas turbine engine includes a secondary or cooling flow system that sheathes a relatively high temperature core flow that passes through a combustor section of the gas turbine engine. The secondary flow system provides thermal control of stationary and rotary engine components to obtain the highest overall cooling effectiveness with the lowest possible penalty on the thermodynamic cycle performance.

    [0003] Aerodynamic forces applied to or generated by the engine spools are directed towards or away from a thrust bearing which reacts the thrust of the associated spool. The sum of these forces is the net thrust load. One aspect to configuration of the secondary flow system is arrangement, orientation and sizing of secondary cavities of the secondary flow system so that the net thrust load is below the allowable load limit for the thrust bearing.

    [0004] US 4 653 267 A1 discloses a gas turbine engine that comprises a low pressure spool, a high pressure spool and first, second and third labyrinth seals disposed adjacent to the high pressure spool. The first seal is positioned radially inboard of a high pressure compressor vane, the second seal is positioned radially inboard of a high pressure turbine vane and the third seal is located between the high pressure compressor and the high pressure turbine.

    [0005] EP 1 420 145 A2 discloses a prior art sealing arrangement.

    [0006] GB 2 092 243 A discloses a prior art non-contacting gas seal.

    [0007] US 2008/0265513 A1 discloses a prior art non-contact seal for a gas turbine engine.

    SUMMARY



    [0008] According to a first aspect of the present invention, there is provided a gas turbine engine as set forth in claim 1.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] Various features will become apparent to those skilled in the art from the following detailed description of the disclosed limiting and non-limiting embodiments. The drawings that accompany the detailed description can be briefly described as follows:

    Figure 1 is a schematic cross-sectional view of a gas turbine engine;

    Figure 2 is a schematic cross-sectional view of a high spool of the gas turbine engine according to embodiments of the present invention.

    Figure 3 is a schematic view of high pressure and low pressure areas on the high spool;

    Figure 4 is a schematic view of the loads on the high spool;

    Figure 5 is a schematic view of a rotary seal; and

    Figure 6 is a schematic view of a RELATED ART rotary seal.


    DETAILED DESCRIPTION



    [0010] Figure 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features, or, may not include the fan section 22 such as that for industrial gas turbine engines. The fan section 22 drives air along a bypass flowpath while the compressor section 24 drives air along a core flowpath for compression and communication into the combustor section 26 then expansion through the turbine section 28. Although depicted as a turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines, such as three-spool architectures.

    [0011] The engine 20 generally includes a low spool 30 and a high spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.

    [0012] The low spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 may be connected to the fan 42 directly or through a geared architecture 48 (a geared turbofan engine enabling a high flow bypass ratio) to drive the fan 42 at a lower speed than the low spool 30 which in one disclosed non-limiting embodiment includes a gear reduction ratio of greater than 2.5:1. The high spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. A combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. The inner shaft 40 and the outer shaft 50 are concentric and rotate about the engine central longitudinal axis A that is collinear with their longitudinal axes.

    [0013] The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The turbines 54, 46 rotationally drive the respective low spool 30 and high spool 32 in response to the expansion.

    [0014] The engine static structure 36 is generally defined by a core case 60 and a fan case 62. The fan case 62 is at least partially supported relative to the core case 60 by a multiple of Fan Exit Guide Vanes (FEGVs) 64. The core case 60 is often referred to as the engine backbone and supports the rotational componentry therein.

    [0015] With reference to Figure 2, the high pressure compressor 52 and the high pressure turbine 54 of the high spool 32 are defined about the engine central longitudinal axis A. A high pressure compressor rotor hub 66 and a high pressure turbine rotor hub 68 are mounted to the outer shaft 50 to rotate as a unit with respect to the engine static structure 36 that may include an inner diffuser case 70. It should be understood that alternative or additional structure may be utilized to define the high spool 32.

    [0016] The high pressure compressor 52 includes alternate rows of rotary airfoils or blades 72 mounted to disks 74 that alternate with vanes 76 supported within the core case 60. The high pressure turbine 54 includes alternate rows of rotary airfoils or blades 78 mounted to disks 80 that alternate with vanes 82F, 82A (two shown) also supported within the core case 60. In the disclosed, non-limiting embodiment, a multi-stage high pressure compressor 52 and a two stage high pressure turbine 54 are schematically illustrated; however, any number of stages will benefit herefrom.

    [0017] The high spool 32 includes a multiple of rotor seals 84A, 86, 84B, 84C. The rotor seal 84A is located generally aft of the high pressure compressor 52 radially inward of an aft most compressor vane 76A. The rotor seal 86 is located between the high pressure compressor 52 and the high pressure turbine 54 generally between the outer shaft 50 and the inner diffuser case 70. The rotor seal 84B is located generally forward of the high pressure turbine 54 radially inward of the forward most turbine vane 82F while the exemplary rotor seal 84C is located generally aft of a high pressure rotor 80 and radially inward of the aft most high turbine vane 82A.

    [0018] The multiple of rotor seals 84A-84C and rotor seal 86 generally define secondary flow cavities C1, C3, T1 and rim cavities C2, T2, T3 (Figure 3; illustrated schematically) of a secondary flow system within the gas turbine engine 20. The secondary flow cavities C1, C3, T1 receive a secondary flow that operates to cool rotational components, stationary components and also provide secondary functions and system operations within the engine 20. As defined herein, the secondary flow is any flow different than the relatively high temperature core flow which communicates through the combustor section 26.

    [0019] One of the technical challenges in turbine engine design is control of the thrust loads on a thrust bearing 92 of the high spool 32 (Figure 4). The thrust bearing may be located forward and/or aft of the respective spool to react thrust forces generated thereby. The various aerodynamic loads B (illustrated schematically by high pressure low pressure arrows) generated by the high pressure compressor 52 and the high pressure turbine 54 by their respective blades 72, 78 and the pressures within the secondary flow and rim cavities C1, C3, T1, C2, T2, T3 generate forces that are directed towards or away from the thrust bearing 92. The sum of these forces is the net thrust load. One aspect to configuration of the secondary flow system is control of the thrust load so that the thrust load is below the allowable load limit for the thrust bearing 92. A lower load on the thrust bearing 92 increases operational life.

    [0020] In the disclosed, non-limiting embodiment, the net thrust load is forward. An increase in annulus area in the secondary flow cavities C1, C3, T1 facilitates aft loading to decrease the forward net thrust load. Conversely, a decrease in annulus area in cavities C2, T2, T3 facilitates aft loading to decrease the forward net thrust load.

    [0021] The forward thrust load is readily lowered by location of the rotor seals 84A-84C in a radially outward position with respect to the engine central longitudinal axis A while radially locating the seal 86 radially inward with respect to the engine central longitudinal axis A. The rotor seals 84A-84C and rotor seal 86 facilitates maximization of the radial displacement between rotor seals 84A-84C and rotor seal 86. The maximization of the radial displacement thereby maximizes the annulus area in the secondary flow cavities C1, C3, T1 as compared to, for example, conventional knife edge seals. The relationship of non-contacting dynamic seals maximizes thrust balance potential and facilitates engine efficiency gains without a decrease in thrust bearing life.

    [0022] In one disclosed non-limiting embodiment, the rotor seals 84A-84C are non-contacting dynamic low leakage seals that seal adjacent to an outer diameter through hydrodynamic principles in which a static component seals against a rotating component. The rotor seals 84A-84C each include a floating shoe 88 which is radially outboard of a main body 90 (Figure 5). The floating shoe 88 is operably designed such that as the rotating component such as rotor disk 74, 80 adjacent thereto rotates, a hydrodynamic film separates the floating shoe 88 from the rotating component. That is, the floating shoe 88 is the radially outermost component of the annular rotor seal seals 84A-84C. Such a configuration advantageously facilitates an annular size increase of the secondary flow cavities. In another embodiment, sealing is accomplished using hydrostatic principles where the floating shoes are separated from the rotating component by a balance of mechanical and pressure forces.

    [0023] In the disclosed non-limiting embodiment, the rotor seal 86 is a conventional non-contacting dynamic seal with a floating shoe 88' radially inboard of the main body 90' (Figure 6; RELATED ART) such as that manufactured by ATGI of Stuart, Florida USA.

    [0024] It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom.

    [0025] The foregoing description is exemplary rather than defined by the limitations within. Various non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be understood that within the scope of the appended claims, the disclosure may be practiced other than as specifically described. For that reason the appended claims should be studied to determine true scope and content.


    Claims

    1. A gas turbine engine (20) comprising:

    a high spool (32) including a thrust bearing (92) configured to react thrust forces generated by the high spool (32);

    a first non-contacting dynamic seal (84A) that seals on an outer diameter with respect to said high spool (32), the seal comprising a first floating shoe (88) adjacent to the high spool (32) and radially outboard of a first static main body (90);

    a second non-contacting dynamic seal (84B) that seals on the outer diameter, the seal (84B) comprising a second floating shoe (88) adjacent to the high spool (32) and radially outboard of a second static main body (90); and

    a third non-contacting dynamic seal (86) that seals on an inner diameter with respect to said high spool (32), the seal comprising a third floating shoe (88') adjacent to the high spool (32) and radially inboard of a third static main body (90'), wherein the third seal (86) and the first seal (84A) define a first secondary flow cavity (C1), the third seal (86) and the second seal (84B) define a second secondary flow cavity (T1), said first seal (84A) is positioned aft of a high pressure compressor (52) of said high spool, and said third seal (86) is positioned radially between an outer shaft (50) of said high spool (32) and an inner diffuser case (70), said first seal (84A) is positioned radially inboard of an aft most high pressure compressor vane (76A), said second seal (84B) is positioned forward of a high pressure turbine (54) of the high spool (32) and radially inboard of a forward most high pressure turbine vane (82F), said third seal (86) is located between the high pressure compressor and the high pressure turbine, and the first, second and third seals (84A, 84B, 86) are configured to seal between rotating and static components.


     
    2. The gas turbine engine as recited in claim 1, further comprising a low spool (30) along an axis (A) of said high spool (32).
     
    3. The gas turbine engine as recited in claim 2, further comprising a geared architecture driven by said low spool (30).
     
    4. The gas turbine engine as recited in claim 2 or 3, wherein said gas turbine engine (20) is a high bypass engine.
     


    Ansprüche

    1. Gasturbinentriebwerk (20), umfassend:

    eine Hochdruckwelle (32), die ein Schublager (92) beinhaltet, das dazu konfiguriert ist, Schubkräfte aufzunehmen, die von der Hochdruckwelle (32) erzeugt werden;

    eine erste kontaktlose dynamische Dichtung (84A), die an einem Außendurchmesser in Bezug auf die Hochdruckwelle (32) abdichtet, wobei die Dichtung eine erste Gleitbacke (88) angrenzend an die Hochdruckwelle (32) und radial auswärts eines ersten statischen Hauptkörpers (90) umfasst;

    eine zweite kontaktlose dynamische Dichtung (84B), die an dem Außendurchmesser abdichtet, wobei die Dichtung (84B) eine zweite Gleitbacke (88) angrenzend an die Hochdruckwelle (32) und radial auswärts eines zweiten statischen Hauptkörpers (90) umfasst; und

    eine dritte kontaktlose dynamische Dichtung (86), die an einem Innendurchmesser in Bezug auf die Hochdruckwelle (32) abdichtet, wobei die Dichtung eine dritte Gleitbacke (88') angrenzend an die Hochdruckwelle (32) und radial einwärts eines dritten statischen Hauptkörpers (90') umfasst, wobei die dritte Dichtung (86) und die erste Dichtung (84A) einen ersten sekundären Strömungshohlraum (C1) definieren, die dritte Dichtung (86) und die zweite Dichtung (84B) einen zweiten sekundären Strömungshohlraum (T1) definieren, wobei die erste Dichtung (84A) hinter einem Hochdruckverdichter (52) der Hochdruckspule angeordnet ist und die dritte Dichtung (86) radial zwischen einem Außenschaft (50) der Hochdruckwelle (32) und einem inneren Diffusorgehäuse (70) angeordnet ist, wobei die erste Dichtung (84A) radial einwärts einer hintersten Hochdruckverdichterschaufel (76A) angeordnet ist, wobei die zweite Dichtung (84B) vor einer Hochdruckturbine (54) der Hochdruckwelle (32) und radial einwärts einer vordersten Hochdruckturbinenschaufel (82F) angeordnet ist, wobei die dritte Dichtung (86) zwischen dem Hochdruckverdichter und der Hochdruckturbine angeordnet ist, und wobei die erste, die zweite und die dritte Dichtung (84A, 84B, 86) dazu konfiguriert sind, zwischen rotierenden und statischen Komponenten abzudichten.


     
    2. Gasturbinentriebwerk nach Anspruch 1, ferner umfassend eine Niederdruckwelle (30) entlang einer Achse (A) der Hochdruckwelle (32) .
     
    3. Gasturbinentriebwerk nach Anspruch 2, ferner umfassend eine Getriebearchitektur, die von der Niederdruckwelle (30) angetrieben wird.
     
    4. Gasturbinentriebwerk nach Anspruch 2 oder 3, wobei das Gasturbinentriebwerk (20) ein Triebwerk mit hohem Nebenstromverhältnis ist.
     


    Revendications

    1. Moteur à turbine à gaz (20) comprenant :

    une bobine supérieure (32) comprenant un palier de butée (92) conçu pour réagir à des forces de butée générées par la bobine supérieure (32) ;

    un premier joint dynamique sans contact (84A) qui assure l'étanchéité sur un diamètre extérieur par rapport à ladite bobine supérieure (32), le joint comprenant un premier patin flottant (88) adjacent à la bobine supérieure (32) et radialement à l'extérieur d'un premier corps principal statique (90) ;

    un deuxième joint dynamique sans contact (84B) qui assure l'étanchéité sur le diamètre extérieur, le joint (84B) comprenant un deuxième patin flottant (88) adjacent à la bobine supérieure (32) et radialement à l'extérieur d'un deuxième corps principal statique (90) ; et

    un troisième joint dynamique sans contact (86) qui assure l'étanchéité sur un diamètre intérieur par rapport à ladite bobine supérieure (32), le joint comprenant un troisième patin flottant (88') adjacent à la bobine supérieure (32) et radialement à l'intérieur d'un troisième corps principal statique (90'), dans lequel le troisième joint (86) et le premier joint (84A) définissent une première cavité d'écoulement secondaire (C1), le troisième joint (86) et le deuxième joint (84B) définissent une seconde cavité d'écoulement secondaire (T1), ledit premier joint (84A) est positionné à l'arrière d'un compresseur haute pression (52) de ladite bobine supérieure, et ledit troisième joint (86) est positionné radialement entre un arbre extérieur (50) de ladite bobine supérieure (32) et un carter de diffuseur intérieur (70), ledit premier joint (84A) est positionné radialement à l'intérieur d'une aube de compresseur haute pression (76A) la plus en arrière, ledit deuxième joint (84B) est positionné en avant d'une turbine haute pression (54) de la bobine supérieure (32) et radialement à l'intérieur d'une aube de turbine haute pression (82F) la plus en avant, ledit troisième joint (86) est situé entre le compresseur haute pression et la turbine haute pression, et les premier, deuxième et troisième joints (84A, 84B, 86) sont conçus pour assurer l'étanchéité entre des composants rotatifs et des composants statiques.


     
    2. Moteur à turbine à gaz selon la revendication 1, comprenant en outre une bobine inférieure (30) le long d'un axe (A) de ladite bobine supérieure (32).
     
    3. Moteur à turbine à gaz selon la revendication 2, comprenant en outre une architecture à engrenages entraînée par ladite bobine inférieure (30).
     
    4. Moteur à turbine à gaz selon la revendication 2 ou 3, dans lequel ledit moteur à turbine à gaz (20) est un moteur à taux de dilution élevé.
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description