(19)
(11)EP 2 577 724 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 11790513.3

(22)Date of filing:  03.06.2011
(51)International Patent Classification (IPC): 
H05K 3/46(2006.01)
H05K 3/40(2006.01)
(86)International application number:
PCT/US2011/039171
(87)International publication number:
WO 2011/153499 (08.12.2011 Gazette  2011/49)

(54)

METHOD OF MANUFACTURING PRINTED CIRCUIT BOARD

VERFAHREN ZUR HERSTELLUNG EINER LEITERPLATTE

PROCÉDÉ DE FABRICATION D'UNE CARTE DE CIRCUIT IMPRIMÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 03.06.2010 US 351253 P

(43)Date of publication of application:
10.04.2013 Bulletin 2013/15

(73)Proprietor: VIASYSTEMS TECHNOLOGIES CORP., L.L.C.
St. Louis, MO 63105 (US)

(72)Inventors:
  • KUMAR, Rajesh
    Anaheim CA 92806 (US)
  • DREYER, Monte, P.
    Rancho Santa Margarita, CA 92688 (US)
  • TAYLOR, Michael, J.
    Longmont, CO 80502-1808 (US)

(74)Representative: Greaves Brewster LLP 
Copa House Station Road
Cheddar, Somerset BS27 3AH
Cheddar, Somerset BS27 3AH (GB)


(56)References cited: : 
EP-A2- 0 624 904
JP-A- 2005 116 811
US-A1- 2007 246 254
US-A1- 2008 251 495
JP-A- S4 989 159
US-A1- 2001 029 065
US-A1- 2008 079 120
US-A1- 2010 044 845
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] The present invention relates generally to printed circuit boards and methods of manufacturing the same, and more particularly, to printed circuit boards having circuit layers laminated with blind and internal micro via(s) and methods of manufacturing the same.

    [0002] Most electronic systems include printed circuit boards with high density electronic interconnections. A printed circuit board (PCB) may include one or more circuit cores, substrates, or carriers. In one fabrication scheme for the printed circuit board having the one or more circuit carriers, electronic circuitries (e.g., pads, electronic interconnects, etc.) are fabricated onto opposite sides of an individual circuit carrier to form a pair of circuit layers. These circuit layer pairs of the circuit board may then be physically and electronically joined to form the printed circuit board by fabricating an adhesive (or a prepreg or a bond ply), stacking the circuit layer pairs and the adhesives in a press, curing the resulting circuit board structure, drilling through-holes, and then plating the through-holes with a copper material to interconnect the circuit layer pairs.

    [0003] The curing process is used to cure the adhesives to provide for permanent physical bonding of the circuit board structure. However, the adhesives generally shrink significantly during the curing process. The shrinkage combined with the later through-hole drilling and plating processes can cause considerable stress into the overall structure, leading to damage or unreliable interconnection or bonding between the circuit layers. Thus, there is a need for material and associated processes which can compensate for this shrinkage and can provide for a more stress-free and reliable electronic interconnection between the circuit layer pairs.

    [0004] In addition, the plating of the through-holes (or vias) with the copper material requires an additional, expensive, and time consuming process sequence that is difficult to implement with a quick turnaround. FIG. 1 is a flowchart of a sequential lamination process for manufacturing a printed circuit board having stacked vias including expensive and time consuming sequential lamination and plating steps. Thus, there is a need to provide for a printed circuit board and a method of manufacturing the same that can be quickly and easily fabricated and/or ensure alignment of the interconnections (or through-holes or micro vias) on the printed circuit board by reducing iterations of key processes to thereby reduce manufacturing time and cost.

    [0005] EP0624904 relates to a multi-layer wiring board having at least one stacking block with an insulating hard substrate, a grounding layer being provided in the insulating hard substrate. A plurality of wiring layers are provided over upper and lower major surfaces of the insulating hard substrate. A plurality of through holes are provided in the insulating hard substrate for connecting wiring layers on the top and bottom surfaces of the substrate. A base block has an insulating base board, and at least one wiring layer provided over one major surface of the insulating base board. Connections electrically and mechanically connect the at least one stacking block and the base block. The stacking block and the base block may be simultaneously manufactured in parallel with others. The stacking block and the base block may be adhered to each other by an adhesive layer. Each electrical connection between the stacking block and the base block may be achieved with bumps and pads.

    [0006] US2010/044845 relates to a circuit substrate comprising a function element with an electrode terminal, a base member containing the function element therein and having at least one layer of a conductive wiring formed on its front side face and rear side face respectively, and a via connecting the electrode terminal with the conductive wiring formed on the base member, wherein the conductive wiring formed on either one of the front side face and the rear side face of the base member is arranged such that a surface exposed outside from the base member is in the same plane with or inside a surface of the base member on which the conductive wiring is formed.

    [0007] JP2005116811 discloses a first wiring board having signal wiring of a first cross section and having power/ground layers on both surfaces, and a pair of second wiring boards each having high density signal wiring with a second cross section smaller than the first cross section and having a power/ground layer on the side opposite to the surface of installation are separately prepared. The first wiring board is sandwiched between the two second wiring boards so that the power/ground layers of the first wiring board and the power/ground layers of the second wiring boards are bonded to each other by using adhesive insulating sheets having conductive through vias at specified positions.

    SUMMARY OF THE INVENTION



    [0008] The present invention relates to a method of manufacturing a printed circuit board as defined in claim 1. Preferred features of the invention are set out in the dependent claims.

    [0009] Aspects of embodiments of the invention relate and are directed to a method of manufacturing printed circuit boards using blind and internal micro vias to couple subassemblies. Described herein is a method of manufacturing a printed circuit including attaching a plurality of metal layer carriers to form a first subassembly including at least one copper foil pad on a first surface, applying an encapsulation material onto the first surface of the first subassembly, curing the encapsulation material and the first subassembly; applying a lamination adhesive to a surface of the cured encapsulation material, forming at least one via in the lamination adhesive and the cured encapsulation material to expose the at least one copper foil pad, attaching a plurality of metal layer carriers to form a second subassembly, and attaching the first subassembly and the second subassembly.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] 

    FIG. 1 is a flowchart of a sequential lamination process for manufacturing a printed circuit board having stacked vias including sequential lamination and plating steps.

    FIGs. 2a-2f illustrate a process for attaching subassemblies to form a multi-layer printed circuit board using internal micro vias positioned in encapsulation and adhesive layers in accordance with one embodiment of the present invention.

    FIG. 2g is a cross sectional view of the finalized multi-layer printed circuit board of FIGs. 2a-2f in accordance with one embodiment of the present invention.

    FIG. 3 is a cross sectional view of a multi-layer printed circuit board having three subassemblies attached using the process of FIGs. 2a-2f in accordance with one embodiment of the present invention.

    FIGs. 4a-4j illustrate an alternative process for attaching subassemblies to form a multi-layer printed circuit board using internal micro vias positioned in an adhesive layer.

    FIG. 5 is a cross sectional expanded view of a subassembly to subassembly attachment including two blind vias coupled by adhesive and conductive paste to form a thin via in accordance with the process of FIGs. 4a-4j.

    FIG. 6 is a cross sectional expanded view of another subassembly to subassembly attachment including stacked vias on each subassembly coupled by adhesive and conductive paste to form a via.

    FIG. 7 is a cross sectional expanded view of another subassembly to subassembly attachment using a conductive paste micro via located between two mechanically drilled vias having enlarged surface areas.


    DETAILED DESCRIPTION OF THE INVENTION



    [0011] In the following detailed description, certain exemplary embodiments of the present invention are shown and described, by way of illustration. As those skilled in the art would recognize, the described exemplary embodiments may be modified in various ways, all without departing from the scope of the present invention. Accordingly, the drawings and description are to be regarded as illustrative in nature, rather than restrictive. There may be parts shown in the drawings, or parts not shown in the drawings, that are not discussed in the specification as they are not essential to a complete understanding of the invention. Like reference numerals designate like elements.

    [0012] FIG. 1 is a flowchart of a sequential lamination process for manufacturing a printed circuit board having stacked vias including sequential lamination and plating steps.

    [0013] FIGs. 2a-2f show a process for manufacturing a printed circuit board including attaching laminated subassemblies using internal micro vias positioned in encapsulation and adhesive layers in accordance with one embodiment of the present invention.

    [0014] In FIG. 2a, the process begins when a laminated subassembly 100 having four layers and copper pads (e.g., foil) 102 on both sides is provided. The laminated subassembly 100 further includes two plated or filled through hole vias 104. The layers of the subassembly can be made of metal, ceramic, or insulating material (e.g., FR4, LCP, Thermount, BT, GPY, such as Teflon, thermally conducting carbon (stablecor), halogen free, etc., where GPY is a laminate that does not fit in the FR4 category, such as polyimide, aziridine cured epoxy, bismalimide, and other electrical grades of laminate). The present invention, however, is not thereby limited. In other embodiments, other suitable substrate and conductive layer materials can be used. In the embodiment shown in FIG. 2a, the subassembly layers have a thickness ranging from about 3 to 4 mils. However, in other embodiments, the subassembly layers and other components can have other suitable dimensions.

    [0015] In several embodiments, the laminated subassembly 100 can be manufactured using the process described in FIG. 1. In other embodiments, the subassembly can be a single lamination subassembly having multiple single metal layer carriers and stacked micro vias. Aspects of single lamination processes for manufacturing circuit boards are further described in U.S. Pat. No. 7,523,545, U.S. Prov. Pat. Appl. No. 61/189171, and U.S. Pat. Appl. No. 12/772,086 the entire content of each of which is incorporated herein by reference.

    [0016] In the embodiment illustrated in FIG. 2a, the laminated subassembly 100 includes four metal layers. In other embodiments, the laminated subassembly can include more than or less than three metal layer carriers. In the embodiment illustrated in FIG. 2a, the laminated subassembly includes two through hole vias. In other embodiments, the laminated subassembly can have more then or less than two vias. In other embodiments, the through hole vias can be replaced with stacked micro vias, buried vias, and/or blind vias.

    [0017] In FIG. 2b, the process applies an encapsulation material 106 to a top surface of the laminated subassembly 100 and cures it. In several embodiments, the encapsulation material is a dielectric material. In several embodiments, the curing is achieved by heating the subassembly and encapsulation material thereon at a pre-selected temperature for a pre- selected duration.

    [0018] The encapsulation material can be any suitable non-cured insulating material, including, without limitation, FR4, LCP, Thermount, BT, GPY, such as Teflon, thermally conducting carbon (stablecor), halogen free, etc., where GPY is a laminate that does not fit in the FR4 category, such as polyimide, aziridine cured epoxy, bismalimide, and other electrical grades of laminate.

    [0019] In FIG. 2c, the process applies a laminate adhesive 108 to a top surface of the cured encapsulation material 106.

    [0020] In FIG. 2d, the process forms holes 110 for micro vias by drilling through the laminate adhesive 108 and encapsulation material 106 up to a top surface of the copper pads 102. Each of the micro vias can be formed by laser drilling (and/or mechanical drilling) holes with a diameter ranging from about 4 to 10 mils. In other embodiments, other suitable techniques for forming via holes can be used. In addition, other via sizes can be used.

    [0021] In FIG. 2e, the holes 110 are filled with conductive paste thereby forming micro vias 112. In some embodiments, the micro vias are filled with copper instead of conductive paste. In one embodiment, conductive paste is used when the via holes are laser drilled and copper is used when the holes are mechanically drilled.

    [0022] In FIG. 2f, a second laminated subassembly 200 having copper pads 202 on both sides is provided and brought in proximity to the first laminated subassembly 100.

    [0023] FIG. 2g is a cross sectional view of the finalized multi-layer printed circuit board of FIGs. 2a-2f in accordance with one embodiment of the present invention. In FIG. 2g, the first and second subassemblies (100, 200) are brought together and attached. In some applications it can be difficult to connect and manufacture boards having high aspect ratio vias. By attaching the laminated subassemblies using the process described above, the method of attachment and manufacturing is made much easier. In the embodiment illustrated in FIG. 2g, the process of FIGs. 2b-2e is performed on the top surface of the first laminated subassembly 100. In other embodiments, the process of FIGs. 2b-2e is performed on both the top and bottom surfaces of the laminated subassembly 100 to allow for attachment of more than one second subassembly 200 to the first subassembly 100.

    [0024] FIG. 3 is a cross sectional view of a multi-layer printed circuit board 300 including three subassemblies attached using the process of FIGs. 2a-2f in accordance with one embodiment of the present invention. In other embodiments, more than three subassemblies can be attached using the processes of FIGs. 2a-2f. The PCB 300 includes three subassemblies having multiple copper pads 302 and through hole vias 304. The subassemblies are attached by internal micro vias 312 embedded in the encapsulation layers (306-1, 306-2) and adhesive layers (308-1, 308-2). In the embodiment illustrated in FIG. 3, the subassembly to subassembly attachment is implemented using a micro via filled with a conductive paste. In other embodiments, the subassembly to subassembly attachment can be implemented using a solid copper plated micro via or solid copper through hole via.

    [0025] FIGs. 4a-4j illustrate an alternative process for attaching subassemblies to form a multi-layer printed circuit board using internal micro vias.

    [0026] In FIG. 4a, the process begins when a laminated subassembly 400 having four layers and copper pads (e.g., foil) 402 on both sides is provided. The laminated subassembly 400 further includes two plated or filled blind vias 404 coupled to another two plated or filled blind vias 405. The layers of the subassembly can be made of metal, ceramic, or insulating material (e.g., FR4, LCP, Thermount, BT, GPY, such as Teflon, thermally conducting carbon (stablecor), halogen free, etc., where GPY is a laminate that does not fit in the FR4 category, such as polyimide, aziridine cured epoxy, bismalimide, and other electrical grades of laminate). Alternatively, other suitable substrate and conductive layer materials can be used. In the process described in FIG. 4a, the subassembly layers have a thickness ranging from about 3 to 4 mils. Alternatively, the subassembly layers and other components can have other suitable dimensions.

    [0027] The laminated subassembly 400 can be manufactured using the process described in FIG. 1. Alternatively, the subassembly can be a single lamination subassembly having multiple single metal layer carriers and stacked micro vias. Aspects of single lamination processes for manufacturing circuit boards are further described in the above referenced patents and patent applications.

    [0028] In the process illustrated in FIG. 4a, the laminated subassembly 400 includes four metal layers. Alternatively, the laminated subassembly can include more than or less than three metal layer carriers. In the process illustrated in FIG. 4a, the laminated subassembly includes four blind vias. Alternatively, the laminated subassembly can have more then or less than four vias. Alternatively, the blind vias can be replaced with through hole, buried vias, and/or stacked vias.

    [0029] In FIG. 4b, the process applies an encapsulation material 406 to a top surface of the laminated subassembly 400 and cures it. In this process, the encapsulation material may be a dielectric material.The curingmay be achieved by heating the subassembly and encapsulation material thereon at a pre-selected temperature for a pre-selected duration.

    [0030] The encapsulation material can be any suitable non-cured insulating material, including, without limitation, FR4, LCP, Theiinount, BT, GPY, such as Teflon, thermally conducting carbon (stablecor), halogen free, etc., where GPY is a laminate that does not fit in the FR4 category, such as polyimide, aziridine cured epoxy, bismalimide, and other electrical grades of laminate.

    [0031] In FIG. 4c, the process forms holes 410 for micro vias (or vias) by drilling through the encapsulation material 406 up to a top surface of the copper pads 402. Each of the micro vias can be formed by laser drilling (and/or mechanical drilling) holes with a diameter ranging from about 4 to 10 mils. Alternatively, other suitable techniques for forming via holes can be used. In addition, other via sizes can be used.

    [0032] In FIG. 4d, the holes 410 are filled with copper thereby forming solid copper micro vias 412. The micro vias 412 may be filled with conductive paste instead of copper. Conductive paste may be used when the via holes are laser drilled and copper is used when the holes are mechanically drilled.

    [0033] In FIG. 4e, the process images, develops, plates copper, adds resist and strips the resist to form a conductive pattern on the encapsulation layer 406 and on vias 412. The conductive pattern includes capture pads 414 positioned on top of vias 412.

    [0034] In FIG. 4f, the process applies a laminate adhesive 416 to a top surface of the cured encapsulation material 406 and the capture pads 414.

    [0035] In FIG. 4g, the process forms holes 418 for thin micro vias by drilling through the laminate adhesive 416 up to a top surface of the capture pads 414. Each of the thin micro vias can be formed by laser drilling (and/or mechanical drilling) holes with a diameter ranging from about 1 to 3 mils. Alternatively, other suitable techniques for forming via holes can be used. In addition, other via sizes can be used.

    [0036] In FIG. 4h, the holes 418 are filled with conductive paste thereby forming micro vias 420.

    [0037] In FIG. 4i, a second laminated subassembly 400-2 having substantially similar features on one surface thereof to the first subassembly 400 of FIG. 4e, including two blind solid copper micro vias with conductive pads positioned thereon, is formed and aligned such that the thin conductive paste filled micro vias of the first laminated assembly 400 and corresponding conductive pads of the second laminated assembly 400-2 will be physically and electrically coupled when they are brought together for attachment, and secured by the laminate adhesive 416.

    [0038] FIG. 4j is a cross sectional view of the finalized multi-layer printed circuit board of FIGs. 4a-4i. In FIG. 4j, the first and second subassemblies (400, 400-2) are brought together and attached. In some applications it can be difficult to connect and manufacture boards having high aspect ratio vias. In some applications, complex via structures can be too difficult to manufacture using traditional manufacturing methods. By attaching the laminated subassemblies using the process described above, the method of attachment and manufacturing is made much easier. In addition, the conductive paste or conductive ink micro via between the laminated subassemblies is very thin (e.g., 3 to 5 mils). While not bound by any particular theory, the thin micro via or joint can provide good high frequency conductivity. The electrical conductivity of the joint may not be as good as a highly conductive metal such as copper. However, because the joint is thin, it can provide the good conductivity for signals having high frequency characteristics (e.g., radio frequency type signals and the like). In addition, the thin copper paste joint can provide minimal disruption to the electrical current flowing therethrough.

    [0039] In the process illustrated in FIGs. 4a-4j, the process is performed on the top surface of the first laminated subassembly 400. Alternatively, the process of FIGs. 4a-4j may be performed on both the top and bottom surfaces of the laminated subassembly 400 to allow for attachment of more than one second subassembly 400-2 to the first subassembly 400.

    [0040] The conductive paste or conductive ink can include a mixture of copper and tin. Alternatively, other suitable conductive materials can be used for the conductive paste.

    [0041] FIG. 5 is a cross sectional expanded view of a subassembly to subassembly attachment 500 including two blind vias (512-1, 512-2) coupled by adhesive (not shown) and conductive paste 520 to form a thin via in accordance with the process of FIGs. 4a-4j. Each of the blind vias (512-1, 512-2) includes conductive pads (502-1, 502-2) on outer surfaces thereof and conductive pads (514-1, 514-2) on inner surfaces thereof. The conductive paste structure 520 forms a thin micro via within the adhesive (see FIG. 4j), which can have the desirable properties discussed above.

    [0042] FIG. 6 is a cross sectional expanded view of another subassembly to subassembly attachment 600 including stacked vias (602, 604) on each subassembly coupled by adhesive (not shown) and a conductive paste via 606 . As compared to the subassembly attachment of FIG. 5, the conductive paste via 606 is substantially taller (e.g., z-axis length). This taller form of the conductive paste via can be easier to manufacture and provides good control of the impedance between board layers.

    [0043] FIG. 7 is a cross sectional expanded view of another subassembly to subassembly attachment 700 using a conductive paste micro via 702 located between two mechanically drilled vias (704, 706) having enlarged surface areas (708, 710).

    [0044] While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as examples of specific embodiments thereof. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims.


    Claims

    1. A method of manufacturing a printed circuit board comprising:

    (a) attaching a plurality of metal layer carriers to form a first subassembly (100) comprising at least one first copper foil pad (102) on a first surface;

    (b) applying a first encapsulation material (106) onto the first surface of the first subassembly (100);

    (c) curing the first encapsulation material (106) on the first subassembly (100);

    (d) applying a first lamination adhesive (108) to a surface of the cured first encapsulation material (106);

    (e) forming at least one first via (110) in the first lamination adhesive (108) and the cured first encapsulation material (106) to expose the at least one first copper foil pad (102);

    (f) filling the at least one first via with a conductive material;

    (g) attaching a plurality of metal layer carriers to form a second subassembly (200) comprising a first surface and at least one second copper foil pad (202) on a second surface opposite to the first surface; and

    (h) attaching the first subassembly (100) and the second subassembly (200) using the first lamination adhesive (108) such that the at least one first and second copper foil pads (102,202) are electrically connected through the conductive material, wherein the method does not comprise the steps of

    (i) applying a second encapsulation material onto the second surface of the second subassembly;

    (ii) curing the second encapsulation material on the second subassembly; and

    (iii) applying a second lamination adhesive to a surface of the cured second encapsulation material.


     
    2. The method of claim 1, further comprising:

    attaching a plurality of metal layer carriers to form a third subassembly (300) comprising at least one third copper foil pad (312) on a first surface;

    applying a third encapsulation material (306-1) onto the first surface of the third subassembly (300);

    curing the third encapsulation material (306-1) on the third subassembly;

    applying a third lamination adhesive (308-1) to a surface of the cured third encapsulation material (306-1);

    forming at least one second via in the third lamination adhesive and the third cured encapsulation material (306-1) to expose the at least one third copper foil pad of the third subassembly (300);

    filling the at least one second via with the conductive material; and

    attaching the third subassembly (300) and the first subassembly (100) using the third lamination adhesive (308-1), wherein the first subassembly comprises at least one fourth copper foil pad on a second surface opposite to the first surface of the first subassembly, and the at least one fourth copper foil pad and the at least one third copper foil pad are electrically connected through the conductive material of the at least one second via.


     
    3. The method of claim 1, wherein the forming at least one first via (110) in the lamination adhesive (108) and the cured first encapsulation material (106) to expose the at least one first copper foil pad (102) comprises:

    drilling at least one hole in the first lamination adhesive (108) and the cured first encapsulation material (106);

    filling the at least one hole with a conductive paste.


     
    4. The method of claim 1, wherein the attaching the first subassembly (100) and the second subassembly (200) comprises:

    aligning the at least one first via (110) with the at least one second copper foil pad (202) on the second subassembly (200);

    attaching the first subassembly (100) and the second subassembly (200) using the first lamination adhesive (108).


     
    5. The method of claim 1, wherein the at least one first via (110) is a micro via.
     


    Ansprüche

    1. Verfahren zur Herstellung einer Leiterplatte, umfassend:

    (a) Befestigen einer Vielzahl von Metallschichtträgern, um eine erste Baugruppe (100), umfassend wenigstens ein erstes Kupferfolien-Pad (102) auf einer ersten Oberfläche, zu bilden,

    (b) Aufbringen eines ersten Verkapselungsmaterials (106) auf die erste Oberfläche der ersten Baugruppe (100),

    (c) Aushärten des ersten Verkapselungsmaterials (106) auf der ersten Baugruppe (100),

    (d) Aufbringen eines ersten Laminationsklebemittels (108) auf eine Oberfläche des ausgehärteten ersten Verkapselungsmaterials (106),

    (e) Bilden wenigstens eines ersten Kontaktlochs (110) in dem ersten Laminationsklebemittel (108) und dem ausgehärteten ersten Verkapselungsmaterial (106), um das wenigstens eine erste Kupferfolien-Pad (102) freizulegen,

    (f) Füllen des wenigstens einen ersten Kontaktlochs mit einem leitenden Material,

    (g) Befestigen einer Vielzahl von Metallschichtträgern, um eine zweite Baugruppe (200), umfassend eine erste Oberfläche und wenigstens ein zweites Kupferfolien-Pad (202) auf einer der ersten Oberfläche gegenüberliegenden zweiten Oberfläche, zu bilden, und

    (h) Befestigen der ersten Baugruppe (100) und der zweiten Baugruppe (200) unter Verwendung des ersten Laminationsklebemittels (108), sodass das wenigstens eine erste und zweite Kupferfolien-Pad (102, 202) über das leitfähige Material elektrisch verbunden werden, wobei das Verfahren nicht die Schritte umfasst:

    (i) Aufbringen eines zweiten Verkapselungsmaterials auf die zweite Oberfläche der zweiten Baugruppe,

    (ii) Aushärten des zweiten Verkapselungsmaterials auf der zweiten Baugruppe und

    (iii) Aufbringen eines zweiten Laminationsklebemittels auf eine Oberfläche des ausgehärteten zweiten Verkapselungsmaterials.


     
    2. Verfahren nach Anspruch 1, weiter umfassend:
    Befestigen einer Vielzahl von Metallschichtträgern, um eine dritte Baugruppe (300), umfassend wenigstens ein drittes Kupferfolien-Pad (312) auf einer ersten Oberfläche, zu bilden,

    Aufbringen eines dritten Verkapselungsmaterials (306-1) auf die erste Oberfläche der dritten Baugruppe (300),

    Aushärten des dritten Verkapselungsmaterials (306-1) auf der dritten Baugruppe, Aufbringen eines dritten Laminationsklebemittels (308-1) auf eine Oberfläche des ausgehärteten dritten Verkapselungsmaterials (306-1),

    Bilden wenigstens eines zweiten Kontaktlochs in dem dritten Laminationsklebemittel und dem dritten ausgehärteten Verkapselungsmaterial (306-1), um das wenigstens eine dritte Kupferfolien-Pad der dritten Baugruppe (300) freizulegen,

    Füllen des wenigstens einen zweiten Kontaktlochs mit einem leitfähigen Material und

    Befestigen der dritten Baugruppe (300) und der ersten Baugruppe (100) unter Verwendung des dritten Laminationsklebemittels (308-1), wobei die erste Baugruppe wenigstens ein viertes Kupferfolien-Pad auf einer der ersten Oberfläche der ersten Baugruppe gegenüberliegenden zweiten Oberfläche umfasst und das wenigstens eine vierte Kupferfolien-Pad und das wenigstens eine dritte Kupferfolien-Pad über das leitfähige Material des wenigstens einen zweiten Kontaktlochs elektrisch verbunden werden.


     
    3. Verfahren nach Anspruch 1, worin das Einbringen wenigstens eines ersten Kontaktlochs (110) in das Laminationsklebemittel (108) und das ausgehärtete erste Verkapselungsmaterial (106), um das wenigstens eine erste Kupferfolien-Pad (102) freizulegen, umfasst:

    Bohren wenigstens eines Lochs in das erste Laminationsklebemittel (108) und das ausgehärtete erste Verkapselungsmaterial (106),

    Füllen des wenigstens einen Lochs mit einer leitfähigen Paste.


     
    4. Verfahren nach Anspruch 1, worin das Befestigen der ersten Baugruppe (100) und der zweiten Baugruppe (200) umfasst:

    Ausrichten des wenigstens einen ersten Kontaktlochs (110) mit dem wenigstens einen zweiten Kupferfolien-Pad (202) auf der zweiten Baugruppe (200),

    Befestigen der ersten Baugruppe (100) und der zweiten Baugruppe (200) unter Verwendung des ersten Laminationsklebemittels (108).


     
    5. Verfahren nach Anspruch 1, worin das wenigstens eine erste Kontaktloch (110) ein Mikrokontaktloch ist.
     


    Revendications

    1. Procédé de fabrication d'une carte de circuit imprimé comprenant :

    (a) la fixation d'une pluralité de supports de couche métallique pour former un premier sous-ensemble (100) comprenant au moins une première plage en feuille de cuivre (102) sur une première surface ;

    (b) l'application d'un premier matériau d'encapsulation (106) sur la première surface du premier sous-ensemble (100) ;

    (c) le durcissement du premier matériau d'encapsulation (106) sur le premier sous-ensemble (100) ;

    (d) l'application d'un premier adhésif de stratification (108) sur une surface du premier matériau d'encapsulation durci (106) ;

    (e) la formation d'au moins un premier trou d'interconnexion (110) dans le premier adhésif de stratification (108) et dans le premier matériau d'encapsulation durci (106) pour exposer la au moins une première plage en feuille de cuivre (102) ;

    (f) le remplissage du au moins un premier trou d'interconnexion avec un matériau conducteur ;

    (g) la fixation d'une pluralité de supports de couche métallique pour former un deuxième sous-ensemble (200) comprenant une première surface et au moins une deuxième plage en feuille de cuivre (202) sur une seconde surface opposée à la première surface ; et

    (h) la fixation du premier sous-ensemble (100) et du deuxième sous-ensemble (200) à l'aide du premier adhésif de stratification (108) de sorte que les au moins première et deuxième plages en feuille de cuivre (102, 202) soient raccordées électriquement par le matériau conducteur, ledit procédé ne comprenant pas les étapes de

    (i) application d'un deuxième matériau d'encapsulation sur la seconde surface du deuxième sous-ensemble ;

    (ii) durcissement du deuxième matériau d'encapsulation sur le deuxième sous-ensemble ; et

    (iii) application d'un deuxième adhésif de stratification sur une surface du deuxième matériau d'encapsulation durci.


     
    2. Procédé selon la revendication 1, comprenant en outre :

    la fixation d'une pluralité de supports de couche métallique pour former un troisième sous-ensemble (300) comprenant au moins une troisième plage en feuille de cuivre (312) sur une première surface ;

    l'application d'un troisième matériau d'encapsulation (306-1) sur la première surface du troisième sous-ensemble (300) ;

    le durcissement du troisième matériau d'encapsulation (306-1) sur le troisième sous-ensemble ;

    l'application d'un troisième adhésif de stratification (308-1) sur une surface du troisième matériau d'encapsulation durci (306-1) ;

    la formation d'au moins un second trou d'interconnexion dans le troisième adhésif de stratification et dans le troisième matériau d'encapsulation durci (306-1) pour exposer la au moins une troisième plage en feuille de cuivre du troisième sous-ensemble (300) ;

    le remplissage du au moins un second trou d'interconnexion avec le matériau conducteur ;

    et la fixation du troisième sous-ensemble (300) et du premier sous-ensemble (100) à l'aide du troisième adhésif de stratification (308-1), ledit premier sous-ensemble comprenant au moins une quatrième plage en feuille de cuivre sur une seconde surface opposée à la première surface du premier sous-ensemble, et ladite au moins une quatrième plage en feuille de cuivre et ladite au moins une troisième plage en feuille de cuivre étant connectées électriquement par le matériau conducteur du au moins un second trou d'interconnexion.


     
    3. Procédé selon la revendication 1, ladite formation d'au moins un premier trou d'interconnexion (110) dans l'adhésif de stratification (108) et le premier matériau d'encapsulation durci (106) pour exposer ladite au moins une première plage en feuille de cuivre (102) comprenant :

    le perçage d'au moins un trou dans le premier adhésif de stratification (108) et le premier matériau d'encapsulation durci (106) ;

    le remplissage du au moins un trou avec une pâte conductrice.


     
    4. Procédé selon la revendication 1, ladite fixation du premier sous-ensemble (100) et du deuxième sous-ensemble (200) comprenant :

    l'alignement du au moins un premier trou d'interconnexion (110) avec la au moins une deuxième plage en feuille de cuivre (202) sur le deuxième sous-ensemble (200) ;

    la fixation du premier sous-ensemble (100) et du deuxième sous-ensemble (200) à l'aide du premier adhésif de stratification (108).


     
    5. Procédé selon la revendication 1, ledit au moins un premier trou d'interconnexion (110) étant un micro-trou d'interconnexion.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description