(19)
(11)EP 2 579 701 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.03.2015 Bulletin 2015/10

(21)Application number: 11726071.1

(22)Date of filing:  09.06.2011
(51)Int. Cl.: 
A01D 41/12  (2006.01)
A01D 41/127  (2006.01)
A01D 43/08  (2006.01)
(86)International application number:
PCT/EP2011/002838
(87)International publication number:
WO 2011/154142 (15.12.2011 Gazette  2011/50)

(54)

AUTOMATIC GRAIN TRANSFER CONTROL SYSTEM BASED ON REAL TIME MODELING OF A FILL LEVEL FOR REGIONS OF THE RECEIVING CONTAINER

AUTOMATISIERTES ERNTEGUT-ÜBERLADESYSTEM BASIEREND AUF ECHTZEITMODELLIERUNG DES FÜLLSTANDES VON BEHÄLTERBEREICHEN

SYSTÈME DE COMMANDE DE TRANSFERT DE GRAIN AUTOMATIQUE BASÉ SUR UNE MODÉLISATION EN TEMPS RÉEL D'UN NIVEAU DE REMPLISSAGE POUR DES RÉGIONS DU CONTENEUR DE RÉCEPTION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.06.2010 US 797142

(43)Date of publication of application:
17.04.2013 Bulletin 2013/16

(73)Proprietor: CNH Industrial Belgium nv
8210 Zedelgem (BE)

(72)Inventors:
  • PIGHI, Osman
    10020 Riva Presso Chieri (TO) (IT)
  • PAQUET, Bert, J., F.
    8200 Brugge (BE)

(74)Representative: CNH Industrial IP Department 
CNH Belgium NV Patent Department Leon Claeysstraat 3A
8210 Zedelgem
8210 Zedelgem (BE)


(56)References cited: : 
EP-A1- 0 760 202
EP-A2- 2 044 826
DE-A1-102008 002 006
EP-A1- 2 057 884
DE-A1-102007 009 666
JP-A- 2008 182 945
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a grain transfer control system for transferring a flow of grain from a work machine to a receiving container, and more particularly to a system including real time modeling of a fill level profile for regions of the receiving container based on known or estimated rates of the flow of grain and positions of an unloading system discharge nozzle relative to the regions of the receiving container as a function of time, the grain transfer control system automatically adjusting relative positions of the discharge nozzle and the receiving container to effect a generally even fill of the receiving container.

    Background Art



    [0002] Harvesting operations in a large field typically involve unloading grain from a harvester, such as a combine, to a receiving container, such as a tractor pulled grain cart, bin, or the like. Relevant information that should be considered during the unloading process includes, but is not limited to, crop type; weather conditions; topographical conditions; relative positions of the receiving container, the combine, and the discharge nozzle of the unloading system; grain level in the container from which the grain is being transferred, e.g., the grain tank of the combine; and fill status of the grain cart/receiving container, etc. During the unloading process, the combine operator and the tractor operator work together to fill the receiving container to capacity while minimizing loss of grain. In some instances, the receiving container is stationary and the combine operator approaches the receiving container several times during harvesting of a field and positions the combine and discharge nozzle relative to the receiving container to unload the grain into the receiving container and achieve a generally even fill without spillage.

    [0003] To monitor the unloading process, the combine operator and the tractor operator, if the receiving container is mobile, must observe and adjust the flow of grain by adjusting the relative position and angle of the discharge nozzle and the receiving container to achieve an even fill the receiving container and prevent grain spillage. This situation is problematic because both operators typically must look backward towards the unloading tube while driving forward when unloading on the go. The combine operator cannot continuously monitor the field and machine conditions, resulting in a risk of deviation from the desired travel path or swath, collision with unexpected obstacles in front of the combine, and/or missing alarms or warnings displayed inside the combine. The tractor operator must also take care to maintain a safe distance from the header of the combine to prevent damage to either machine. In addition, neither operator is situated to readily view the inside of the receiving container so visually monitoring the fill level of the container is typically not possible.

    [0004] Achieving an even fill of a stationary receiving container is problematic because of the increasing size of the receiving containers, which can typically hold several times the capacity of the combine grain tank. As a result, the combine operator approaches a partially full receiving container without the capability to view the fill level of various regions inside the receiving container. Achieving an even fill level becomes even more difficult to accomplish if the combine and the tractor pulling the receiving container are moving, and the difficulty increases further if the terrain is uneven and/or sloped, and/or a strong, gusting, and/or direction changing wind is present. The increased operator workload presented by any of these conditions which takes attention away from the forward field of view and the displays inside the combine and/or tractor and the inability to visually monitor the fill level of the receiving container makes a capacity fill of the receiving container without spillage difficult.

    [0005] EP 2 044 826 A2 describes a leader location-determining receiver which determines a leader location of a lead vehicle. A follower location-determining receiver determines a follower location of a follower vehicle, which has a container for storing a material. A data processor or position module calculates an observed relative position between the lead vehicle and the follower vehicle (405). Target relative positions are established between the lead vehicle and the follower vehicle. A data processor or selector selects a preferential one of the established target positions. A data processor or adjuster adjusts the observed relative position of the follower vehicle to achieve the selected preferential one of the established target positions.

    [0006] Thus, what is sought is a grain transfer control system which provides one or more of the capabilities, and overcomes one or more of the shortcomings and limitations, set forth above.

    Summary of the Invention



    [0007] What is disclosed is a grain transfer control system which provides one or more of the capabilities, and overcomes one or more of the shortcomings and limitations, set forth above.

    [0008] According to a preferred embodiment of the present invention a grain transfer system for automatically controlling the transfer of grain from a grain tank of a harvesting machine to a receiving container while the work machine and the receiving container are situated in generally side by side relative positions is provided. The work machine, such as a combine, includes an unloading system configured to direct a flow of grain from the grain tank to the receiving container through a discharge nozzle at a known flow rate in a well known manner.

    [0009] The grain transfer system of the present invention provides a sensing system including a reading device mounted near or on the nozzle and a first data device disposed in or in predetermined relation to a first region of the receiving container through an nth data device disposed in or in predetermined relation to an nth region of the receiving container, respectively. The first data device includes at least information representative of a location of the first region of the receiving container, and the nth data device includes at least information representative of a location of the nth region of the receiving container, respectively. The reading device is configured to acquire information from the first data device through the nth data device, Based on that information, the sensing system is configured to determine positions of the nozzle relative to the first region through the nth region as a function of time.

    [0010] The system further provides a modeling system including a processor configured to communicate with the sensing system and to model a real time fill level profile for at least one region of the receiving container. The fill level is modeled as a function of the positions of the nozzle as a function of time and the known flow rates of grain.

    [0011] The modeled fill level profile may be provided to a display system configured to display information representative of the fill level profile in real time for at least an operator of the work machine. If the combine is unloading on the go, the modeled fill level profile may be provided to an operator of a vehicle transporting the receiving container.

    [0012] A controller communicates with the modeling system and is configured to automatically provide a control indication for adjusting the position of the nozzle relative to the first region through the nth region for directing the flow of grain to each of the n regions, respectively, for achieving a generally even fill of the receiving container.

    [0013] According to preferred aspect of the invention, the reading device comprises a radio frequency transceiver and the first through the nth data devices comprise radio frequency transponders. The transceiver is configured to interrogate the first through the nth transponders and receive the stored information from the first transponder through the nth transponder, respectively. The transponders are configured responsively output the information stored thereon when interrogated by the transceiver.

    [0014] According to another aspect of the present invention, the first data device through the nth data device further includes information representative of at least one of: a total capacity of the receiving container; date and time of harvesting; field locations and conditions; and information representative of the grain.

    [0015] A feature of the invention includes the capability to model a fill level profile for at least one region of the receiving container, in real time, based on the positions of the nozzle as a function of time and a known ncludes sensed, estimated, derived, etc.) flow rate of grain during the time the nozzle is delivering grain to the at least one region. During the unloading process, the modeled fill level profile is continuously updated.

    [0016] In one preferred embodiment of the invention, the controller is configured to automatically control at least one of the work machine, the receiving vehicle, and/or the unloading tube/discharge nozzle for adjusting the relative position of the work machine and the receiving vehicle and/or the position of the nozzle relative to the first region through the nth region of the receiving container.

    [0017] In another preferred embodiment, the controller is configured to automatically provide the control indication to the operator of the work machine and/or the operator of the receiving vehicle to enable adjusting the relative position of the work machine and the receiving container, and/or the position of the nozzle relative to the n regions of the receiving container.

    [0018] According to another aspect of the invention, the controller is configured to automatically provide a control indication to the work machine operator, and the work machine operator provides control inputs to the work machine, the receiving vehicle, and the unloading tube/discharge nozzle.

    [0019] Another feature of the invention is the capability to automatically stop the flow of grain when the nozzle position would cause the flow of grain to be delivered outside the receiving container or to a region having a modeled fill level profile indicating that the region is full.

    Brief Description of the Drawings



    [0020] The advantages of this invention will be apparent upon consideration of the following detailed disclosure of the invention, especially when taken in conjunction with the accompanying drawings wherein:

    Fig. 1 is a top view of a representative work machine, such as a combine, having an unloading tube nozzle positioned over one of a plurality of regions of a receiving container for an unloading operation according to the grain transfer control system of the present invention;

    Fig. 2 is a top level block diagram of various components of the grain transfer control system of the present invention;

    Fig. 3 is a representative plot of the unloading tube nozzle position as a function of time;

    Fig. 4 is a representative plot known or estimated flow rates of grain from the unloading tube nozzle;

    Fig. 5 is a representative real time fill level profile for at least one of the regions of a receiving container as modeled by the invention;

    Fig. 6 is a high level flow diagram depicting an embodiment of steps for creating the real time fill level profile of at least one the regions of the receiving container;

    Fig. 7 is a representative display for use by an operator of the combine or a receiving vehicle depicting a real time model of a lateral fill level profile for the receiving container;

    Fig. 8 is a representative display for use by the operator of the combine or the receiving vehicle depicting a real time model of an aerial fill level profile for the receiving container;

    Fig. 9 is a partial side view of the unloading tube nozzle positioned over the receiving container depicting a variation in grain flow trajectories based on various orientations of the nozzle;

    Fig. 10 is representative arrangement of data devices and definition of regions according to the present invention;

    Fig. 11 is another representative arrangement of data devices and definition of regions according to the present invention;

    Fig. 12 is yet another representative arrangement of data devices and definition of regions according to the present invention; and

    Fig. 13 is yet another representative arrangement of data devices and definition of regions according to the present invention.


    Detailed Description of the Invention



    [0021] Referring now to the drawings, wherein like numbers refer to like items, Fig. 1 depicts a representative agricultural harvesting work machine, which is shown here as a combine 20, including an unloading system 24 of well-known construction and operation. A cylindrical shaped unloading tube 26 including a discharge nozzle 28 is shown in a deployed or unloading position for unloading crop material from a container 30 on the combine 30 into an accompanying container, which here is illustrated by a conventional grain receiving container 22, situated in a generally side by side relationship with combine 20, in the well-known manner. This is intended to be representative of a wide variety of unloading operations, wherein a known rate of flow of grain from combine 20 is to be directed into a receiving container, such as receiving container 22, periodically during operation of combine 20. When not in use, unloading tube 26 is stored in a position extending rearwardly (not shown) from combine 20, also in the well known manner.

    [0022] As shown in Figs. 1 and 2, a grain transfer control system 32 according to the present invention includes a sensing system 34 including a reading device 36 and a first data device 38 disposed in or in a predetermined relation to a first region 40 of receiving container 22 through an nth data device 42 disposed in or in a predetermined relation to an nth region 44 of receiving container 22, respectively. First data device 38 includes at least information representative of a location of first region 40 of receiving container 22, and nth data device 42 includes at least information representative of a location of nth region 44 of receiving container 22, respectively. Reading device 36 is mounted on or near nozzle 28 and configured to for acquire information from first data device 38 through nth data device 42. Based on this information, sensing system 34 is configured to determine the positions of nozzle 28 relative to first region 40 through nth region 44 as a function of time.

    [0023] According to a preferred embodiment of the invention, sensing system 34 utilizes radio frequency identification technology, and preferred apparatus for reading device 36 includes a radio frequency transceiver, and preferred apparatus for first through nth data devices 38, 42 include radio frequency transponders, respectively. In operation, the transceiver is configured to automatically interrogate the first through the nth transponders, and receive the stored information from the first through nth transponders, respectively. The first through nth transponders are configured to automatically responsively output the information representative of the location of first through nth regions 38, 42, respectively, when interrogated.

    [0024] According to an aspect of the invention at least one of first data device 38 through nth data device 42 further includes information representative of at least one of: a total capacity of receiving container 22; date and time of harvesting; field locations and conditions; information representative of the grain, which may include seed type, chemicals applied, growing conditions, and moisture content;, and the like.

    [0025] A representative example of nozzle position versus time is shown graphically as a plot 46 of Fig. 3. In addition to the nozzle positions as a function of time, the known flow rates of grain from the nozzle at each nozzle position are utilized by grain transfer system 32. As used in this description, the known flow rate of grain comprises sensed, estimated, derived, or otherwise determined flow rates of grain. A representative example of flow rates at various times during the unloading operation is shown graphically as a plot 48 of Fig. 4.

    [0026] Turning also to Figs. 3-5, a modeling system 50 including a processor is configured to communicate with sensing system 34 and model a real time fill level profile for at least one region of receiving container 22. A representative example of such modeled fill level profile is shown as profile 52 of Fig. 5. With reference to Figs. 3-5, during example time period T, nozzle 28 is directing a flow of grain into the xth region of receiving container 22 at a flow rate F. At the end of time T, modeling system 50 displays a modeled fill level L in the xth region which corresponds to the sum of the grain in the xth region prior to time T and the grain deposited in the xth region during time T.

    [0027] A flow diagram shown in Fig. 6 includes a portion of a representative routine 100 that may be implemented by modeling system 50. When the unloading process begins, the position of nozzle 28 relative to first region 40 through nth region 44 is determined, and the region into which nozzle 28 is unloading is referenced as Ri at block 102. Nozzle 28 positions may, for example, be determined by communication with sensing system 34. If nozzle 28 is positioned over a region that modeling system 50 has determined is full or if nozzle 28 is not positioned over any region, the unloading process is stopped to prevent spillage as seen at decision block 104. Otherwise modeling system 50 updates the model of the fill level profile (e.g. profile 52) by increasing the fill level for region Ri as seen at block 106. The increased fill level of region Ri is compared to the known maximum capacity of region Ri at block 108. If the modeled fill level profile indicates region Ri is not full, the unloading process continues. However, if the modeled profile indicates region Ri is full, modeling system 50 looks to the modeled fill level profile for the other regions at block 112. If at least one region is not full, modeling system 50 provides an indication to adjust the relative positions of nozzle 28 and receiving container 22 at block 114. If the modeled fill level profile indicates all regions of receiving container 22 are full, the unloading process is stopped to prevent spillage due to overfilling.

    [0028] According to an aspect of the invention, a display system 54 is configured to display information representative of the modeled fill level profile in real time for an operator of combine 20 and/or an operator of a receiving vehicle, such as a tractor, (not shown) controlling movement of receiving container 22. Figs. 7-8 represent modeled fill level profiles and the current position of nozzle 28 for receiving container 22 divided into 8 regions denoted R1-R8. Fig. 7 depicts a modeled lateral fill level profile 56 of regions R1-R3 of receiving container 22. Region R3 has a maximum fill level denoted 62 and is presently filled to a fill level denoted 60. Similarly, region R3 has a maximum fill level denoted 70 and is presently filled at a fill level denoted 68. Finally, region R2 has a maximum fill level denoted 66 and is presently filled at a fill level denoted 64. It is important to note that maximum fill level 66 of region R2 is larger than that of regions R1 and R3 because region R2 is a larger region of receiving container 22. Modeled lateral fill level profiles of regions R4-R8 can also be displayed as requested by the operator(s). An aerial fill level profile 58 for receiving container 22 shown in Fig. 8 presents a top view of the modeled fill level profile of regions R1-R8. Fill level of the regions may be indicated by color on the display of profile 58. For example, as a region fills, the color may change from green when empty, to blue to yellow, and to red, when full.

    [0029] A controller 72 is configured to communicate with modeling system 50 and automatically provide a control indication 74 for adjusting the position of nozzle 28 relative to first region 40 through nth region 44 for directing the flow of grain to each of the n regions, respectively, for achieving a generally even fill of receiving container 22. Control indication 74 may adjust the position of nozzle 28 over the regions of receiving container 22 by providing an indication for adjusting one or more of the relative position of combine 20 and receiving container 22; the position of unloading tube 26 over receiving container 22; and the orientation of nozzle 28 over receiving container 22.

    [0030] With regard to Fig. 2, control indication 74 may direct a combine control system 76 to adjust position or speed of combine 22. If combine 22 is unloading on the go, control indication 74 may direct a receiving vehicle or tractor control system 78 to adjust position or speed to adjust the position of receiving container 22 relative to combine 22. If unloading system 24 allows independent adjustment of unloading tube 26 and/or nozzle 28, control indication 74 may direct an unloading tube/nozzle control system 80 to adjust the position of unloading tube 26 and/or orientation of nozzle 28. Fig. 9 depicts a representative variation in grain flow trajectories 82 based on adjustments in orientation of nozzle 28 in one direction. Control indication 74 may include indications to one or more combinations of control systems 76, 78, 80 for maximum flexibility. For example, control indication 74 may provide indications to combine control system 76 and tractor control system 78 to close the lateral distance between combine 22 and receiving container 22. Alternately, or in addition, control indication 74 may provide an indication to unloading tube/nozzle control system 80 to orient nozzle 28 to effectively close the lateral distance between nozzle 28 and receiving container 22. Control indication 74 can develop or learn rules for governing selection of appropriate indications or the rules or indications can be predetermined or inputted, for example, based on a particular machine configuration and/or other conditions or parameters for a particular application.

    [0031] According to another aspect of the invention, control indication 74 may be provided to the operator of combine 22 and/or the operator of the receiving vehicle for operator controlled inputs. According to yet another aspect of the invention, the operator of combine 20 may receive control indication 74 and provide operator input to combine 20, tractor control system 78, and unloading tube/nozzle control system 80.

    [0032] Figs. 1 and 8 depict representative sensing system 34 arrangements of data devices and associated regions. Figs. 10- 13 depict possible alternate arrangements of data devices, denoted by open dots, and definitions of associated regions, delineated by dotted lines. These examples are not exhaustive, and configurations may be customized for a particular unloading situation.

    [0033] While the foregoing discussion has most specifically addressed the unloading of grain from a combine to a receiving container, it should also be understood and appreciated that the present invention is not limited to such types of vehicles and to grain unloading, but may be advantageously employed with various work machines for coordinating the transfer therebetween of various, generally crop, materials.

    [0034] In light of all the foregoing, it should thus be apparent to those skilled in the art that there has been shown and described a grain transfer control system based on real time modeling of a fill level profile of the receiving container for providing a more even fill level during a grain transfer operation. However, it should also be apparent that, within the scope of the invention as defined by the accompanying claims, many changes are possible and contemplated, including in the details, materials, and arrangements of parts and the sequences of operation which have been described and illustrated to explain the nature of the invention. Thus, while the foregoing description and discussion addresses certain preferred embodiments or elements of the invention, it should further be understood that concepts of the invention, as based upon the foregoing description and discussion, may be readily incorporated into or employed in other embodiments and constructions without departing from said scope of the invention.


    Claims

    1. A grain transfer system for automatically controlling the transfer of grain from a harvesting machine (20) to a receiving container (22) while the harvesting machine and the receiving container are situated in generally side by side relative positions, comprising:

    an unloading system (24) including an unloading tube (26) having a discharge nozzle (28), the unloading system (24) configured and operable for directing a flow of grain from the harvesting machine (20) to the receiving container (22) through the discharge nozzle (28) at a known flow rate,

    characterised in that the grain transfer system further comprises:

    a sensing system (34) including a reading device (36) mounted near or on the nozzle (28) and a first data device (38) disposed in or in predetermined relation to a first region (40) of the receiving container (22) through an nth data device (42) disposed in or in predetermined relation to an nth region (44) of the receiving container (22), respectively, the first data device (38) including at least information representative of a location of the first region (40) of the receiving container (22) and the nth data device (42) including at least information representative of a location of the nth region (44) of the receiving container (22), respectively, the reading device (36) being configured to acquire information from the first data device (38) through the nth data device (42), the sensing system (34) being configured to determine positions of the nozzle (28) relative to the first region (40) through the nth region (44) as a function of time;

    a modeling system (50) including a processor configured to communicate with the sensing system (34) and to model a real time fill level profile (52) for at least one region (40, 44) of the receiving container (22) as a function of the positions (46) of the nozzle (28) as a function of time and the known flow rates (48) of grain;

    a display system (54) configured to display information representative of the modeled fill level profile (52) in real time; and

    a controller (72) in communication with the modeling system (50) and configured to automatically provide a control indication (74) for adjusting the position of the nozzle (28) relative to the first region (40) through the nth region (44) for directing the flow of grain to each of the n regions, respectively, for achieving a generally even fill of the receiving container (22).


     
    2. A grain transfer system according to claim 1, wherein the modeling system (50) is configured to automatically receive the known flow rates (48) and the positions (46) of the nozzle (28) as a function of time and to model the fill level profile (52) for at least one of the first region (40) through the nth region (44) based on the known flow rates during time intervals when the nozzle (28) is directing the flow of grain to the first region (40) through the nth region (44), respectively, and to update the fill level profile (52) as the flow of grain is delivered to the receiving container (22).
     
    3. A grain transfer system according to claim 2, comprising a device for monitoring the transfer of grain from the harvesting machine (20) and generating a signal indicative of the flow rate (48) of the grain.
     
    4. A grain transfer system according to any of the preceding claims, wherein the display system (54) is configured to display information representative of the modeled fill level profile (52) for at least an operator of the harvesting machine (20)
     
    5. A grain transfer system according to any of the preceding claims, wherein at least one of the first data device (38) through the nth data device (42) further includes information representative of at least one of: a total capacity of the receiving container (22); date and time of harvesting; field locations and conditions; and information representative of the grain.
     
    6. A grain transfer system according to any of the preceding claims, wherein the reading device (36) comprises a radio frequency transceiver and the first through the nth data devices (38, 42) comprise radio frequency transponders, the transceiver being configured for interrogating the first through the nth transponders and receiving the stored information from the first transponder through the nth transponder, respectively, and the transponders being configured to responsively output the information stored thereon when interrogated by the transceiver.
     
    7. A grain transfer system according to any of the preceding claims, wherein the controller (72) is further configured to provide the control indication (74) to the operator of the harvesting machine (20) to enable adjusting the relative position of the harvesting machine (20) and the receiving container (22).
     
    8. A grain transfer system according to any of the preceding claims, wherein the controller (72) is further configured to automatically control the harvesting machine (20) to adjust the relative position of the harvesting machine (20) and the receiving container (22).
     
    9. A grain transfer system according to any of the preceding claims, wherein a receiving vehicle controls movement of the receiving container (22).
     
    10. A grain transfer system according to claim 9, wherein the controller (72) is further configured to automatically control the receiving vehicle to adjust the relative position of the harvesting machine (20) and the receiving container (22).
     
    11. A grain transfer system according to claim 9 or 10, wherein the display system (54) is configured to display information representative of the modeled fill level profile (52) for the operator of the receiving vehicle.
     
    12. A grain transfer system according to any of the claims 9 to 11, wherein the controller (72) is further configured to automatically provide a control indication (74) to an operator of the receiving vehicle to enable adjusting the relative position of the harvesting machine (20) and the receiving container (22).
     
    13. A grain transfer system according to any of the claims 9 to 12, wherein the system is configured to allow the operator of the harvesting machine (20) to control movement of the receiving vehicle for adjusting the relative position therebetween.
     
    14. A grain transfer system according to any of the preceding claims, wherein the unloading tube (26) is movable relative to the harvesting machine (20).
     
    15. A grain transfer system according to claim 14, wherein the operator of the harvesting machine (20) controls the position of the unloading tube (26) relative to the harvesting machine (20) for adjusting the position of the nozzle (28) relative to the first region (40) through the nth region (44), respectively.
     
    16. A grain transfer system according to claim 14, when depending of claim 9, wherein the operator of the receiving vehicle controls the position of the unloading tube (26) relative to the harvesting machine (20) for adjusting the position of the nozzle (28) relative to the first region (40) through the nth region (44), respectively.
     
    17. A grain transfer system according to any of the preceding claims, wherein the controller (72) is further configured to automatically stop the flow of grain when the position of the nozzle (28) would cause the flow of grain to be delivered outside the receiving container (22) or to a region having a modeled fill level profile (52) indicating that the region is full.
     
    18. A grain transfer system according to any of the preceding claims, wherein the controller (72) is further configured to automatically adjust the position of the nozzle (28) relative to the first region (40) through the nth region (44), respectively and to automatically adjust the relative position of the harvesting machine (20) and the receiving container (22).
     
    19. A grain transfer system according to any of the preceding claims, wherein the unloading system (24) is operable to transfer grain from a grain tank (30) of the harvesting machine (20).
     


    Ansprüche

    1. Getreide-Überführungssystem zur automatischen Steuerung der Überführung von Getreide von einer Erntemaschine (20) zu einem Aufnahmebehälter (22), während sich die Erntemaschine und der Aufnahmebehälter allgemein in Relativpositionen Seite an Seite befinden, mit:

    einem Entladesystem (24), das ein Entladerohr (26) mit einer Entlademündung (28) einschließt, wobei das Entladesystem (24) zum Lenken einer Getreideströmung von der Erntemaschine (20) zu dem Aufnahmebehälter (22) über die Entlademündung (28) mit einer bekannten Strömungsrate konfiguriert und betreibbar ist,

    dadurch gekennzeichnet, dass das Getreide-Überführungssystem weiterhin Folgendes umfasst:

    ein Sensorsystem (34), das ein in der Nähe der oder auf der Entlademündung (28) befestigtes Lesegerät (36) und eine jeweilige erste Dateneinrichtung (38), die in oder in einer vorgegebenen Beziehung zu einem ersten Bereich (40) des Aufnahmebehälters (22) angeordnet ist, bis zu einem n-ten Datengerät (42) einschließt ist, das in oder in einer vorgegebenen Beziehung zu einem n-ten Bereich (44) des Aufnahmebehälters (22) angeordnet ist, wobei das erste Datengerät (38) zumindest Informationen einschließt, die für einen Ort des ersten Bereiches (40) des Aufnahmebehälters (22) repräsentativ sind, und das n-te Datengerät (42) zumindest Informationen einschließt, die für einen Ort des n-ten Bereichs (44) des Aufnahmebehälters (22) repräsentativ sind, wobei das Lesegerät (36) so konfiguriert ist, dass es Informationen von dem jeweiligen ersten Datengerät (38) bis zum n-ten Datengerät (42) erfasst, wobei das Sensorsystem (34) so konfiguriert ist, dass es Positionen der Entlademündung (28) bezüglich des ersten Bereiches (40) bis zum n-th Bereich (44) als Funktion der Zeit bestimmt;

    ein Modelliersystem (50), das einen Prozessor einschließt, der zur Kommunikation mit dem Sensorsystem (34) und zur Modellierung eines Echtzeit-Füllpegel-Profils (52) für zumindest einen Bereich (40, 44) des Aufnahmebehälters (22) als eine Funktion der Positionen (46) der Entlademündung (28) als eine Funktion der Zeit und der bekannten Strömungsraten (48) des Getreides zu modellieren;

    ein Anzeigesystem (54), das zur Anzeige von Informationen konfiguriert ist, die das modellierte Füllpegel-Profil (52) in Echtzeit darstellen; und

    eine Steuereinrichtung (72) in Kommunikation mit dem Modelliersystem (50), die so konfiguriert ist, dass sie automatisch eine Steueranzeige (74) zur Einstellung der Position der Entlademündung (28) gegenüber dem jeweiligen ersten Bereich (40) bis zum n-ten Bereich (44) zum Lenken der Getreideströmung an jeden der n Bereiche liefert, um eine allgemein gleichförmige Füllung des Aufnahmebehälters (22) zu erreichen.


     
    2. Getreide-Überführungssystem nach Anspruch 1, bei dem das Modelliersystem (50) zum automatischen Empfang der bekannten Strömungsraten (48) und der Positionen (46) der Entlademündung (28) als eine Funktion der Zeit und zum Modellieren des Füllpegel-Profils (52) für zumindest einen von dem ersten Bereich (40) bis zum n-ten Bereich (44) auf der Grundlage der bekannten Strömungsraten während Zeitintervallen, zu denen die Entlademündung (28) die Getreideströmung auf den jeweiligen ersten Bereich (40) bis n-ten Bereich (44) lenkt, und zur Aktualisierung des Füllpegel-Profils (52) konfiguriert ist, während die Getreideströmung an den Aufnahmebehälter (22) geliefert wird.
     
    3. Getreide-Überführungssystem nach Anspruch 2, mit einer Vorrichtung zur Überwachung der Überführung von Getreide von der Erntemaschine (20) und zur Erzeugung eines Signals, das die Strömungsrate (48) des Getreides anzeigt.
     
    4. Getreide-Überführungssystem nach einem der vorhergehenden Ansprüche, bei dem das Anzeigesystem (54) so konfiguriert ist, dass es Informationen, die das modellierte Füllpegel-Profil (52) darstellen, zumindest einem Betreiber der Erntemaschine (20) anzeigt.
     
    5. Getreide-Überführungssystem nach einem der vorhergehenden Ansprüche, bei dem zumindest eines von dem ersten Datengerät (38) bis zum n-ten Datengerät (42) weiterhin Informationen einschließt, die zumindest eines von Folgendem darstellen: eine Gesamtkapazität des Aufnahmebehälters (22), das Datum und die Zeit der Ernte; Feld-Orte und Bedingungen; und Informationen bezüglich des Getreides.
     
    6. Getreide-Überführungssystem nach einem der vorhergehenden Ansprüche, bei dem das Lesegerät (36) einen Hochfrequenz-Sendeempfänger umfasst und die ersten bis n-ten Datengeräte (38, 42) Funkfrequenz-Transponder umfassen, wobei der Sendeempfänger zur Abfrage des jeweiligen ersten bis n-ten Transponders und zum Empfang der gespeicherten Information von dem jeweiligen ersten Transponder bis zum n-ten Transponder konfiguriert ist, und die Transponder so konfiguriert sind, dass sie als Antwort in ihnen gespeicherte Information ausgeben, wenn sie von dem Sendeempfänger abgefragt werden.
     
    7. Getreide-Überführungssystem nach einem der vorhergehenden Ansprüche, bei der die Steuereinrichtung (72) weiterhin so konfiguriert ist, dass sie die Steueranzeige (74) an den Betreiber der Erntemaschine (20) liefert, um eine Einstellung der Relativpositionen der Erntemaschine (20) und des Aufnahmebehälters (22) zu ermöglichen.
     
    8. Getreide-Überführungssystem nach einem der vorhergehenden Ansprüche, bei dem die Steuereinrichtung (72) weiterhin so konfiguriert ist, dass sie die Erntemaschine (20) automatisch steuert, um die Relativposition der Erntemaschine (20) und des Aufnahmebehälters (22) einzustellen.
     
    9. Getreide-Überführungssystem nach einem der vorhergehenden Ansprüche, bei dem das aufnehmende Fahrzeug die Bewegung des Aufnahmebehälters (22) steuert.
     
    10. Getreide-Überführungssystem nach Anspruch 9, bei dem die Steuereinrichtung (72) weiterhin so konfiguriert ist, dass sie automatisch das Aufnahmefahrzeug so steuert, dass die Relativpositionen der Erntemaschine (20) und des Aufnahmebehälters (22) eingestellt werden.
     
    11. Getreide-Überführungssystem nach Anspruch 9 oder 10, bei der das Anzeigesystem (54) zur Anzeige von Informationen, die das modellierte Füllpegel-Profil (22) darstellten, an den Betreiber des Aufnahmefahrzeuges konfiguriert ist.
     
    12. Getreide-Überführungssystem nach einem der Ansprüche 9 bis 11, bei dem die Steuereinrichtung (72) weiterhin so konfiguriert ist, dass sie automatisch eine Steueranzeige (74) an einen Betreiber des Aufnahmefahrzeuges liefert, um die Einstellung der Relativpositionen der Erntemaschine (20) und des Aufnahmebehälters (22) zu ermöglichen.
     
    13. Getreide-Überführungssystem nach einem der Ansprüche 9 bis 12, bei dem das System so konfiguriert ist, dass es dem Betreiber der Erntemaschine (20) ermöglicht, die Bewegung des Aufnahmefahrzeuges zur Einstellung der Relativposition zwischen diesen zu steuern.
     
    14. Getreide-Überführungssystem nach einem der vorhergehenden Ansprüche, bei dem das Entladerohr (26) gegenüber der Erntemaschine (20) bewegbar ist.
     
    15. Getreide-Überführungssystem nach Anspruch 14, bei dem der Betreiber der Erntemaschine (20) die Position des Entladerohres (26) gegenüber der Erntemaschine (20) zur Einstellung der Position der Entlademündung (28) gegenüber dem jeweiligen ersten Bereich (40) bis zum n-th Bereich (44) steuert.
     
    16. Getreide-Überführungssystem nach Anspruch 14 unter Rückbeziehung auf Anspruch 9, bei dem der Betreiber des Aufnahmefahrzeuges die Position des Entladerohres (26) gegenüber der Erntemaschine (20) zur Einstellung der Position der Entlademündung (28) gegenüber dem jeweiligen ersten Bereich (40) bis zum n-th Bereich (44) steuert.
     
    17. Getreide-Überführungssystem nach einem der vorhergehenden Ansprüche, bei dem die Steuereinrichtung (72) weiterhin so konfiguriert ist, dass sie automatisch die Getreideströmung stoppt, wenn die Position der Entlademündung (28) dazu führen würde, dass die Getreideströmung außerhalb des Aufnahmebehälters (22) oder auf einem Bereich gelenkt würde, der ein modelliertes Füllpegel-Profil (52) aufweist, das anzeigt, dass dieser Bereich voll ist.
     
    18. Getreide-Überführungssystem nach einem der vorhergehenden Ansprüche, bei dem die Steuereinrichtung (72) weiterhin so konfiguriert ist, dass sie automatisch die Position der Entlademündung (28) gegenüber dem jeweiligen ersten Bereich (40) bis n-th Bereich (44) einstellt und automatisch die Relativstellung der Erntemaschine (20) und des Aufnahmebehälters (22) einstellt.
     
    19. Getreide-Überführungssystem nach einem der vorhergehenden Ansprüche, bei dem das Entladesystem (24) zur Überführung von Getreide von einem Körnertank (30) der Erntemaschine (20) betreibbar ist.
     


    Revendications

    1. Système de commande de transfert de grain automatique d'une machine de récolte (20) vers un conteneur de réception (22) tandis que la machine de récolte et le conteneur de réception sont situés dans des positions relatives généralement l'une à côté de l'autre, comprenant :

    un système de déchargement (24) comprenant un tube de déchargement (26) comportant une buse de refoulement (28), le système de déchargement (24) étant conçu et fonctionnel pour orienter l'écoulement du grain de la machine de récolte (20) vers le conteneur de réception (22) par la buse de refoulement (28) à une vitesse d'écoulement connue, caractérisé en ce que le système de transfert de grain comprend en plus :

    un système de détection (34) comprenant un dispositif de lecture (36) installé à côté de ou sur la buse (28) et un premier dispositif de données (38) disposé dans ou en relation prédéterminée avec une première région (40) du conteneur de réception (22) jusqu'à un nième dispositif de données (42) disposé respectivement dans ou en relation prédéterminée avec une nième région (44) du conteneur de réception (22), le premier dispositif de données (38) comprenant au moins une information représentative d'un emplacement de la première région (40) du conteneur de réception (22) et le nième dispositif de données (42) comprenant respectivement au moins une information représentative d'un emplacement de la nième région (44) du conteneur de réception (22), le dispositif de lecture (36) étant conçu pour acquérir des informations du premier dispositif de données (38) jusqu'au nième dispositif de données (42), et le système de détection (34) étant conçu pour déterminer des positions de la buse (28) par rapport à la première région (40) jusqu'à la nième région (44) en fonction du temps,

    un système de modélisation (50) incluant un processeur conçu pour communiquer avec le système de détection (34) et pour modéliser un profil de niveau de remplissage en temps réel (52) pour au moins une région (40, 44) du conteneur de réception (22) en fonction des positions (46) de la buse (28), en fonction du temps et des vitesses d'écoulement connues (48) du grain,

    un système d'affichage (54) conçu pour afficher des informations représentatives du profil de niveau de remplissage modélisé (52) en temps réel, et

    un contrôleur (72) en communication avec le système de modélisation (50) et conçu pour fournir automatiquement une indication de commande (74) pour ajuster la position de la buse (28) par rapport à la première région (40) jusqu'à la nième région (44) afin d'orienter respectivement l'écoulement du grain vers chacune des n régions, pour réaliser un remplissage généralement uniforme du conteneur de réception (22).


     
    2. Système de commande de transfert de grain selon la revendication 1, caractérisé en ce que le système de modélisation (50) est conçu pour recevoir automatiquement les vitesses d'écoulement connues (48) et les positions (46) de la buse (28) en fonction du temps et pour modéliser le profil de niveau de remplissage pour au moins une de la première région à la nième région (44) en se basant sur les vitesses d'écoulement connues pendant des intervalles de temps lors desquels la buse (28) dirige respectivement l'écoulement du grain vers la première région (40) à la nième région (44), et pour actualiser le profil de niveau de remplissage (52) au fur et à mesure que le grain est débité dans le conteneur de réception (22).
     
    3. Système de commande de transfert de grain selon la revendication 2, comprenant un dispositif pour surveiller le transfert de grain à partir de la machine de récolte (20) et pour générer un signal représentatif de la vitesse d'écoulement (48) du grain.
     
    4. Système de commande de transfert de grain selon l'une quelconque des revendications précédentes, caractérisé en ce que le système d'affichage (54) est conçu pour afficher des informations représentatives du profil de niveau de remplissage modélisé (52) pour au moins un conducteur de la machine de récolte (20).
     
    5. Système de commande de transfert de grain selon l'une quelconque des revendications précédentes, caractérisé en ce que au moins un du premier dispositif de données (38) au nième dispositif de données (42) comprend en plus des informations représentatives d'au moins une des données suivantes :

    capacité totale du conteneur de réception (22), date et heure de la récolte, emplacements et états du champ, et informations représentatives du grain.


     
    6. Système de commande de transfert de grain selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif de lecture (36) comprend un émetteur-récepteur à radio fréquence et le premier au nième dispositifs de données (38, 42) comprennent des transpondeurs à radiofréquence, l'émetteur-récepteur étant conçu pour interroger les premier au nième transpondeurs et pour recevoir les informations stockées respectivement du premier transpondeur au nième transpondeur et les transpondeurs étant conçus pour débiter en réponse des informations stockées sur ceux-ci lorsqu'ils sont interrogés par l'émetteur-récepteur.
     
    7. Système de commande de transfert de grain selon l'une quelconque des revendications précédentes, caractérisé en ce que le contrôleur (72) est conçu en plus pour fournir une indication de commande (74) au conducteur de la machine de récolte (20) pour lui permettre d'ajuster la position relative de la machine de récolte (20) et du conteneur de réception (22).
     
    8. Système de commande de transfert de grain selon l'une quelconque des revendications précédentes, caractérisé en ce que le contrôleur (72) est conçu en plus pour commander automatiquement la machine de récolte (20) afin d'ajuster la position relative de la machine de récolte (20) et du conteneur de réception (22).
     
    9. Système de commande de transfert de grain selon l'une quelconque des revendications précédentes, caractérisé en ce que un véhicule récepteur commande le mouvement du conteneur de réception (22).
     
    10. Système de commande de transfert de grain selon la revendication 9, caractérisé en ce que le contrôleur (72) est conçu en plus pour commander automatiquement le véhicule récepteur pour ajuster la position relative de la machine de récolte (20) et du conteneur de réception (22).
     
    11. Système de commande de transfert de grain selon la revendication 9 ou 10, caractérisé en ce que le système d'affichage (54) est conçu pour afficher des informations représentatives du profil de niveau de remplissage (52) modélisé pour le conducteur du véhicule récepteur.
     
    12. Système de commande de transfert de grain selon l'une quelconque des revendications 9 à 11, caractérisé en ce que le contrôleur (72) est conçu en plus pour fournir automatiquement une indication de commande (74) à un conducteur du véhicule récepteur pour lui permettre de régler la position relative de la machine de récolte (20) et du conteneur de réception (22).
     
    13. Système de commande de transfert de grain selon l'une quelconque des revendications 9 à 12, caractérisé en ce que le système est conçu pour permettre au conducteur de la machine de récolte (20) de commander le mouvement du véhicule récepteur afin d'ajuster la position relative entre eux.
     
    14. Système de commande de transfert de grain selon l'une quelconque des revendications précédentes, caractérisé en ce que le tube de déchargement (26) est mobile par rapport à la machine de récolte (20).
     
    15. Système de commande de transfert de grain selon la revendication 14, caractérisé en ce que le conducteur de la machine de récolte (20) commande la position du tube de déchargement (26) par rapport à la machine de récolte (20) pour ajuster respectivement la position de la buse (28) par rapport à la première région (40) jusqu'à la nième région (44).
     
    16. Système de commande de transfert de grain selon la revendication 14, lorsqu'elle est dépendante de la revendication 9, caractérisé en ce que le conducteur du véhicule récepteur (20) commande la position du tube de déchargement (26) par rapport à la machine de récolte (20) pour ajuster respectivement la position de la buse (28) par rapport à la première région (40) jusqu'à la nième région (44).
     
    17. Système de commande de transfert de grain selon l'une quelconque des revendications précédentes, caractérisé en ce que le contrôleur (72) est conçu en plus pour arrêter automatiquement l'écoulement du grain lorsque la position de la buse (28) provoquerait un écoulement du grain à l'extérieur du conteneur de réception (22) ou vers une région ayant un profil de niveau de remplissage modélisé (52) indiquant que la région est pleine.
     
    18. Système de commande de transfert de grain selon l'une quelconque des revendications précédentes, caractérisé en ce que le contrôleur (72) est conçu en plus pour ajuster automatiquement la position de la buse (28) par rapport à la première région (40), respectivement jusqu'à la nième région (44), et pour ajuster respectivement la position relative de la machine de récolte (20) et du conteneur de réception (22).
     
    19. Système de commande de transfert de grain selon l'une quelconque des revendications précédentes, caractérisé en ce que le système de déchargement (24) est fonctionnel pour transférer du grain à partir d'un réservoir à grains (30) de la machine de récolte (20).
     




    Drawing






























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description