(19)
(11)EP 0 353 551 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
16.03.1994 Bulletin 1994/11

(21)Application number: 89113307.6

(22)Date of filing:  20.07.1989
(51)International Patent Classification (IPC)5C08G 18/22, C08G 18/28, C08G 18/38, C09K 3/10

(54)

Fast-cure polyurethane sealant composition containing titanium ester accelerators

Titanesterbeschleuniger enthaltende schnellhärtende Polyurethan-Dichtungsmittelzusammensetzung

Composition de scellement à partir d'un polyréthane à vitesse de durcissement élevé contenant des accélérateurs d'ester titanique


(84)Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

(30)Priority: 03.08.1988 US 227938

(43)Date of publication of application:
07.02.1990 Bulletin 1990/06

(73)Proprietor: ADCO PRODUCTS, INC.
Michigan Center Michigan 49254 (US)

(72)Inventor:
  • Bagdachi, Jamil
    Northville Michigan 48167 (US)

(74)Representative: Prinz, Egon, Dipl.-Ing. et al
Prinz & Partner Manzingerweg 7
81241 München
81241 München (DE)


(56)References cited: : 
EP-A- 0 240 137
FR-A- 2 292 015
US-A- 3 632 557
DE-A- 2 335 569
US-A- 3 262 830
US-A- 4 562 237
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates to room temperature curable organic polymer sealant compositions. More particularly, this invention concerns fast cure one-part room temperature curable organic polymer sealant compositions containing titanium ester accelerating agents.

    [0002] Sealants are comprised of pigmented or unpigmented synthetic elastomeric polymers which, in the uncured state, constitute pourable or easily extrudable putty-like mastics. When cured, the sealants are transformed into elastomeric materials which are able to expand or contract with the relative motion of the structural elements which the sealant connects and seals. They also form a tight barrier against moisture, gases and chemicals. Such sealants find a wide variety of applications in the building trades industry and the automotive industry where they are widely used to seal fixed window panels and taillight glass panels to coated auto, truck, and bus bodies.

    [0003] Such sealants include compositions based on polysiloxane polymers as well as others which include polyurethane or polyacrylate polymers. Additionally, modern sealant compositions include one-part and two-part formulations which cure by a variety of chemical mechanisms. One-part sealant compositions generally contain an end-capped base polymer together with a reactive cross-linking agent and, typically, a curing catalyst which promotes the cross-linking reaction either in the presence of heat or atmospheric moisture. Upon application under normal conditions of temperature and moisture, one-part sealants react to form tough, pliable elastomeric seals.

    [0004] Two-part sealant compositions, on the other hand, comprise two reactive components which are separately packaged and mixed just prior to or at the time of application and react upon mixing to form the semi-rigid sealant bead.

    [0005] Two-part sealant compositions are less convenient to use since it is necessary to mix the components prior to use or meter the components during application to insure correct proportions if the two components are applied together to form the sealant bead. For this reason, one-part sealants have found wide acceptance in the market. A number of such one-part moisture-curable sealant compositions are known. Because of their convenience and ease of use, there has been increasing demand for such sealants, especially if they possess both good shelf life and rapid curing rates. To enhance the curing rates of moisture-cured sealants, a variety of curing catalysts have been incorporated into such one-part compositions. The following United States patents disclose one-part moisture-curable polyurethane based sealant compositions and curing catalysts: 3,779,794 to De Santis (1,2,4-trimethylpiperazine); 3,979,344 to Bryant (dibutyl tin diacetate); 4,038,239 to Coyner, et al. (metallic salts of tin, lead, mercury, or Group VIII such as iron, organo-tin (IV) and organo-lead compounds, and organic amines such as trialkylamines, N-substituted piperidines, N,N'-substituted piperazines, pyridine); 4,469,831 to Bueltjer, et al. (aliphatic or aromatic carboxylic acids, toluenesulfonic acid); and 4,707,515 to Gilch, et al. (organic and inorganic acids, salts of organic acids such as tin naphthenate, tin octoate, tin butyrate, dibutyltin dioctoate, dibutyltin dilaurate, dibutyltin diacetate, iron stearate, lead octoate, or organic amines).

    [0006] FR-A-2 292 015 and US-A-3 632 557 disclose curable compositions comprising a siloxane terminated polyurethane, a minor amount of amino-alkylsiloxane and tin curing catalysts. The use of orthotitanate accelerator is not described in these documents.

    [0007] US-A-3 262 830 describes the use of orthotitanates to increase the rate of the crosslinking reaction of siloxanes in the presence of water.

    [0008] US-A-4 562 237 describes sealant compositions comprising (A) a siloxane terminated polyether, (B) a partial addition condensation product of an aminoalkylalkoxysilane, an epoxy compound, a siloxane compound, an alkoxysilane and an organic titanic acid ester and (c) a condensation catalyst.

    [0009] It has been found, in accordance with the present invention, that one-component polyurethane-based sealant compositions having fast cure rates at room temperature in the presence of moisture comprise a mixture of a silane-capped polyurethane polymer, from 0.2 to 1.0 parts by weight of an aminosilane crosslinking agent, per 100 parts by weight of the polyurethane polymer and a curing catalyst, characterized in that the sealant compositions comprise from 0.2 to 1.0 parts by weight of a titanium ester accelerator per 100 parts of the polyurethane polymer.
    The Silane-capped polyurethane polymer has the structure


    where R is lower alkyl of from 1 to 6 carbon atoms and R¹ is a divalent bridging radical selected from the group consisting of divalent hydrocarbon radicals,divalent hydrocarbon ether radicals, and divalent hydrocarbon amino radicals. The group A is selected from -S- and -NR²- where R2 is hydrogen or alkyl of from one to six carbon atoms.

    [0010] The aminosilane has the structure


    where x is an integer of from one to three, and R³ and R⁴ may be the same or different and are selected from alkyl of from one to four carbon atoms. The group R⁵ is alkyl of from one to four carbon atoms or alkoxyl or from one to four carbon atoms and R6 is hydrogen or - (CH₂)yNHR₇ where R⁷ is hydrogen or -(CH₂)zNH₂. The subscripts y and z may be the same or different and are integers of from one to three. The titanium ester accelerator has the structure


    where B is a direct bond or is -SO₂- and R⁸ is a hydrocarbyl group of from three or twenty carbon atoms. R⁹ is-(R¹⁰-NH)m-R¹⁰-NH₂ where m is an integer of from one to four and R¹⁰ is selected from divalent hydrocarbyl radicals of from two to ten carbon atoms, divalent hydrocarbaryl radicals or from six to ten carbon atoms, and divalent cyclohydrocarbyl radicals of from three to ten carbon atoms.
    The composition may also contain other ingredients generally known to formulators of polymeric sealant compositions such as pigments, thixotropic agents, fillers, acidic or basic polymerization agents.
    The sealant compositions of the present invention comprise a base silane-capped polyurethane polymer having a number average molecular weight in the range of from 10,000 to 30,000. Such silane-capped polyurethane polymers are prepared by conventional polymerization techniques by reacting a polyether polyol having at least two free hydroxyl groups per molecule with an isocyanate compound having at least two isocyanate reactive groups per molecule. The polyether polyol and isocyanate compound are reacted in a weight ratio of 8:1 to 12:1, respectively. The starting polyether polyol preferably has a number average molecular weight of between 1,000 and 5,000. One such preferred starting material is polypropylene glycol available as Polypropylene Glycol 2025 from Union Carbide Co., 270 Park Avenue, New York, NY 10017.
    The starting isocyanate compound may be selected from a variety of materials known in the art for such purposes, but one such preferred material is toluene diisocyanate.
    The copolymer formed by reaction of these two monomers is end-capped with a silane group having the structure -A-R¹-Si-(OR)₃. The group A is sulfur or an alkylamino group in which the alkyl portion contains from one to six carbon atoms. The bridging group R¹ may be a divalent hydrocarbon radical, a divalent hydrocarbon radical containing one or more oxygen ether linkages, or a divalent hydrocarbon radical containing one or more >NH linkages. The end-capping of the polyurethane polymer is achieved by including in the reaction mixture containing the polyether polyol and isocyanate compound an aminosilane compound such as gamma-aminopropyl trimethoxysilane (A 1110) available from Union Carbide Corp., 270 Park Ave., New York, NY 10017).
    The silane-capped polyurethane polymer is mixed with from 30 to 40 parts by weight of a pigmenting agent such as carbon black per 100 parts by weight of the capped polyurethane polymer. Small amounts, ranging from 0.25 to 0.75 parts by weight of a thixotropic agent per 100 parts by weight of polyurethane polymer may also be added to adjust the flow characteristics of the sealant composition. A typical thixotropic agent is Thixseal 1085 available from NL Chemicals, Inc., Heightstown, NJ 08520.
    Additional aminosilane cross-linking agent is added to the sealant composition in amounts ranging between 0.2 to 1.0 parts by weight (preferably between 0.4 to 0.8 parts by weight) per 100 parts by weight of the polyurethane polymer. The aminosilane used is selected from compounds having the formula


    where x is an integer of from one to three and R³ and R⁴ may be the same or different and are selected from alkyl of from one to four carbon atoms. The group R⁵ is alkyl of from one to four carbon atoms or alkoxyl of from one to four carbon atoms and R⁶ is hydrogen or - (CH₂)yNHR⁷. R⁷ is hydrogen or -(CH₂)zNH₂ wherein y and z may be the same or different and are integers of from one to three. Suitable materials for this purpose are aminosilanes such as A 1110, A 1120, and A 1130, available from Union Carbide Corp., 270 Park Ave., New York, NY 10017).
    As used throughout this specification and the appended claims, the term "alkyl" means a hydrocarbon residue derived from branched or unbranched alkane by removal of a single hydrogen atom. The term "alkoxyl" denotes alkyl groups attached through an oxygen ether linkage to the remainder of the parent molecule.
    The sealant compositions of this invention further contain from 0.2 to 1.0 parts by weight (preferably between 0.2 to 0.8 parts by weight) per 100 parts by weight of the polyurethane polymer of a titanate ester accelerator having the structure


    where B is a direct bond or is -SO₂-. The group R⁸ is a hydrocarbyl group of from three to twenty carbon atoms, and R⁹ is -(R¹⁰-NH)m-R¹⁰-NH₂ where m is an integer of from one to four. R¹⁰ is selected from a divalent hydrocarbyl radical of from two to ten carbon atoms, a divalent hydrocarbaryl radical of from six to ten carbon atoms, and a divalent cyclohydrocarbaryl radical of from three to ten carbon atoms.
    As used throughout this specification and the appended claims, the term "divalent hydrocarbyl" means a branched or unbranched hydrocarbon group derived by removal of two hydrogen atoms from a saturated or unsaturated acrylic hydrocarbon. The term "divalent hydrocarbaryl" denotes a group derived from the removal of two hydrogen atoms from hydrocarbons containing one or more carbocyclic aromatic rings including phenyl, alkylphenyl, and phenylalkyl. The term "divalent cyclohydrocarbyl" means a group derived by the removal of two hydrogen atoms from a carbocyclic non-aromatic hydrocarbon including cyclohexane, alkylcyclohexane.
    It is preferred that the titanate esters which are employed as accelerators possess at least one primary or secondary amine group per molecule. Preferred materials include (4-aminobenzene)sulfanato-O, bis-(dodecylbenzene)sulfanato-O, 2-propanolato titanium (IV); 2-propanolato, tris-(3,6-diaza)hexanolato titanium (IV) 2,2-bis-(2-propenolatomethyl)butanolato, tris-(2-ethylenediamino)ethylato titanium (IV); and 2,2-bis-(2-propenolatomethyl)butanolato, tris-(3-amino)phenylato titanium (IV), commercially available from Kenrich Petrochemicals,Inc., 140 East 22d Street, Bayonne, NJ 07002).

    [0011] It has been found in accordance with the present invention that the inclusion of such titanate ester accelerators in the sealant compositions significantly increases the cure rates over the cure rates for similar sealant compositions which lack the titanate ester accelerator compounds, as can be seen from the data provided in the Examples and in Tables 1 and 2 below. Enhanced cure rates provide an important advantage when the sealants of this invention are employed, for example, in sealing fixed window panels and taillight glass panels to motor vehicle bodies where slowly curing sealants may present problems in a continuous production assembly line operation.

    [0012] The following examples are provided to enable one skilled in the art to practice the present invention. These examples are merely illustrative of the present invention and are not to read as limiting the scope of the invention which is defined by the appended claims.

    Example 1



    [0013] A silane-capped polyurethane polymer of the type described in United States Patent 3,632,557 was prepared as follows:
    A. Niax PPG 2025 ONE (2000 Molecular weight polyether polyol available from Union Carbide Corp. 270 Park Ave., New York, NY 10017) 2001.00 g
    HyleneR (80:20 Grade toluene diisocyanate available from E.I. duPont de Nemours & Co., Wilmington, DE 19898) 204.00 g
    Glacial acetic acid 0.55 g
    Dibutyltin diacetate 0.45 g
    B. Anhydrous toluene 110.00 g
    C. Anhydrous toluene 81.00 g
    Silane A 1110 (gamma-aminopropyl)trimethoxy silane available from Union Carbide Corp., 270 Park Ave., New York, NY 10017 68.30 g
    D. Anhydrous methanol 273.00 g


    [0014] The components of A above were mixed and heated to 155 °F (68.3°C) under anhydrous conditions and maintained at that temperature for fifty-five minutes. At the end of that time, B was added. Over the next forty-five minutes, the temperature of the mixture was gradually reduced to 105°F (40.6°C) and heating was continued for two and one-quarter hours. At the end of this timne, C was added to the mixture and the resulting mixture was heated at 150-165 °F (65.6-73.9°C) for an additional two and one-quarter hours. During this time, samples of the reaction mixture were tested for free isocyanate functional groups. When the tests indicated no residual free isocyanate, D was added and the mitxure heated under reflux for a short time. The mixture was degassed and cooled to room temperature.

    Comparative Example 2



    [0015] A mixer equipped with a sweep blade and a high speed disperser was charged with 101 1b (45.91 kg) of the polymeric composition prepared as described in Example 1.

    [0016] Under anhydrous conditions, 9 1b (4.09 kg) of anhydrous methanol was added to the mixer contents and the resulting mixture was stirred for about five to ten minutes. To this mixture was then added 0.5 1b (0.23 kg) of Silane A1120 (Union Carbide Company, 270 Park Avenue, New York, NY 10017), 0.7 1b (0.32 kg) of Thixseal 1084 (NL Chemicals, Inc., Heightstown, NJ 08520) 0.6 1b (0.27 kg) of DBTDA antioxidant (AO 2246, American Cyanamide Co., Bound Brook, NJ 08805), 0.5 1b (0.23 kg) of 2,2-bis(2-propenolatomethyl)butanolato, tris(3-amino)-phenylato titanium (IV) (LICA 97, Kenrich Petrochemicals, Inc., 140 East 22d Street, Bayonne, NJ 07002), and 0.11 1b (0.05 kg) of dibutyltin diacetate. The resulting mixture was stirred under anhydrous conditions for twenty minutes. Carbon black (40 1b, 18.18 kg) which had been previously dried to less than 0.05 % by weight moisture content was added and the resulting mixture was heated to 140-150 °F (60 - 65.5 °C) and stirred for one hour.

    [0017] After this time the mixture was allowed to cool for ten to fifteen minutes, was degassed under reduced pressure, and packaged under anhydrous conditions. This material was found to possess good storage stability when tested under accelerated storage conditions (130°F) (54.4°C) for three days). The material was packaged under anhydrous conditions and its properties tested as described below and compared with a similar material which lacked the titanium ester accelerator. The results of this testing appear in Table 1 below.

    Example 3



    [0018] A second batch of one-part fast curing sealant composition was prepared using the general methods of Example 1 and 2 with the following ingredients in the indicated proportions. In this example, 2,2 bis(2-propenolatomethyl)butanolato, tris (2-ethylenediamino)ethylato titanium (IV) (LICA 44, Kenrich Petrochemicals, Inc., 140 East 22d Street, Bayonne, NJ 07002) was substituted for the 2,2-bis(2-propenolatomethyl)-butanolato, tris-(3-amino)phenylato titanium (IV) (LICA 97) used as the accelerator in Example 2.



    [0019] This material was packaged under anhydrous conditions and its properties tested as described below. The results appear in Table 2.

    Example 4



    [0020] The general procedures of Example 1 and 2 were followed to prepare polymeric sealant composition in which 2,2-bis-(2-propenolatomethyl)butanolato, tris-(2-ethylenediamino)ethylato titanium (IV) (KR 44, Kenrich Petrochemicals, Inc., 140 East 22d Street, Bayonne, NJ 007002) was used as the titanium ester accelerator compound in place of the 2,2-bis(2-propenolatomethyl)butanolato, tris(3-amino)-phenylato titanium (IV) used in Example 2.

    [0021] This material was found to have a rapid curing rate, exhibiting a lap shear strength of 85 psi (76.1 kp) after 3 hours of curing at room temperature and 50 % relative humidity.

    Comparative Example 5



    [0022] A moisture-curable one-part sealant composition was prepared using the general methods of Examples 1 und 2 but substituting (4-aminobenzene)sulfanato-0, bis(dodecylbenzene)sulfanato-0, 2-propanolato titanium (IV) (KR 26S, Kenrich Petrochemicals, Inc., 140 East 22d Street, Bayonne, NJ 07002) as the titanate ester accelerator compound in place of the 2,2-bis(2-propenolatomethyl)-butanolato, tris((3-amino)-phenylato titanium (IV) used there.

    [0023] The resultant material was tested both on painted test plates as described further below and on ceramic glazed glass test plates. In these tests, the sealant composition was found to cure rapidly, developing a lap shear strength of 68 psi (60,9 kP) and 65 psi (58,2 kP) on metal-to-metal and glass-to-metal test plates, respectively after three hours at 50 % relative humidity.

    Testing Procedures



    [0024] The lap shear strength of the sealant material of Example 2 was tested and compared with a similar material which did not contain the titanate ester curing catalyst. In each instance, pairs of shear strength test plates were prepared by bonding two previously primed and painted steel plates, each 1 inch by 0.32 inches (2.54 cm x 0.81 cm), with a sealant bread 1 inch long by 0.25 inches wide by 5/16 inches thick (2.54 cm x 0.64 cm x 0.79 cm). The sealant bead was applied along one of the one-inch edge of the test plates by means of a sealant tube. The plates were than pressed together so that the sealant bead was about 0.25 inches (0.64 cm) thick.

    [0025] The sealant bead applied to the bonded test plates was allowed to cure at room temperature and 50% relative humidity for periods which varied between three and seventy-two hours. After the appropriate cure time in each case, the shear strength of each sealant bead was tested on an Instron testing machine by pulling in a direction parallel to the faces of the bonded test plates. The results of these tests appear in Table 1.
    Table 1
    Shear Strength and Properties of Sealant Composition of Comparative Example 2
    PropertyTitanium-Containing Sealant Composition of This InventionTitanium-Free Sealant Composition
    Lap Shear Strength After 3 Hours 61 psi (54.6 kP) 11 psi (9.84 kP)
    Lap Shear Strength After 24 Hours 530 psi (474.2 kP) 350 psi (313.2 kP)
    Lap Shear Strength After 48 Hours 681 psi (609.3 kP) 595 psi (532.4 kP)
    Lap Sheer Strength After 72 Hours 975 psi (872.4 kP) 955 psi (854.5 kP)
    Viscosity 37 sec 42 sec
    Tensile Strength 1100 psi (984.2 kP) 1100 psi (984.2 kP)
    Elongation 250% 250%
    Hardness (Shore A Durometer) 60 60
    Slump None None
    Table 2
    Shear Strength and Properties of Sealant of Example 3
    PropertyTitanium-Containing Sealant Composition of This InventionTitanium-Free Sealant Composition
    Lap Shear Strength After 3 Hours 97 psi (86.8 kP) 10 psi (8.95 kP)
    Lap Shear Strength After 24 Hours 580 psi (518.9 kP) 400 psi (357.9 kP)
    Lap Shear Strength After 48 Hours 610 psi (545.8 kP) 630 psi (563.7 kP)
    Lap Shear Strength After 7 Days 1010 psi (903.7 kP) 992 psi (887.6 kP)
    Viscosity 43 sec 41 sec
    Tensile Strength 999 psi (893.9 kP) 1030 psi (921.6 kP)
    Elongation 270% 241%
    Hardness (Shore A Durometer) 60 60
    Slump None None



    Claims

    Claims for the following Contracting State(s): AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE

    1. A one-component, moisture-curable sealant composition comprising a mixture of

    (a) a silane capped polyurethane polymer of the formular

    wherein

    R   is lower alkyl of from 1 to 6 carbon atoms

    R¹   is a divalent bridging radical selected from the group consisting of a divalent hydrocarbon radical, a divalent hydrocarbon ether radical, and a divalent hydrocarbon amino radical;

    A   is selected from the group consisting of -S- and -NR²- where R² is hydrogen or alkyl of from one to six carbon atoms;

    (b) from 0.2 to 1.0 parts by weight of an aminosilane per 100 parts by weight of said polyurethane polymer, said aminosilane having the structure

    wherein

    x   is an integer of from one to three;

    R³and R⁴   may be the same or different and are selected from alkyl of from one to four carbon atoms;

    R⁵   is alkyl of from one to four carbon atoms or alkoxyl of from one to four carbon atoms;

    R⁶   is hydrogen or -(CH₂)yNHR⁷ wherein R⁷ is hydrogen or -(-CH₂)zNH₂ wherein y and z may be the same or different and are integers of from one to three;

    (d) a curing catalyst and characterized in that the sealant composition comprises

    (c) from 0.2 to 1.0 parts by weight of an accelerator per 100 parts by weight of said polyurethane polymer, wherein said accelerator has the structure

    wherein

    B   is a direct bond or is -SO₂-;

    R⁸   is a hydrocarbyl group of from three to twenty carbon atoms,

    and

    R⁹   is -(R¹⁰-NH)m-R¹⁰-NH₂ wherein m is an integer of from one to four

    R¹⁰   is selected from
    a divalent hydrocarbyl radical of from two to ten carbon atoms,
    a divalent hydrocarbaryl radical of from six to ten carbyon atoms, and
    a divalent cyclohydrocarbyl radical of from three to ten carbon atoms.


     
    2. A one-component, moisture-curable sealant composition as defined in Claim 1 wherein said polyurethane polymer is the reaction product of a polyether polyol containing at least two hydroxyl groups per molecule and a number average molecular weight of 1000 to 3000 and an isocyanate having at least two isocyanate groups per molecule.
     
    3. A one-component, moisture-curable sealant composition as defined in Claim 1 wherein said polyurethane polymer has a number average molecular weight of from 10,000 to 30,000.
     
    4. A one-component, moisture-curable sealant composition as defined in Claim 3 wherein A is -NR²- where R² is as defined therein.
     
    5. A one-component, moisture-curable sealant composition as defined in Claim 1 wherein said composition comprises from 0.4 to 0.8 parts by weight of said aminosilane per 100 parts by weight of said polyurethane polymer.
     
    6. A one-component, moisture-curable sealant composition as defined in Claim 5 wherein said aminosilane is N-(beta-aminoethyl)-gamma-aminopropyltrimethoxysilane.
     
    7. A one-component, moisture-curable sealant composition as defined in Claim 1 wherein said composition comprises from 0.2 to 0.8 parts by weight of said accelerator per 100 parts by weight of said polyurethane polymer.
     
    8. A one-component, moisture-curable sealant composition as defined in Claim 1 wherein said accelerator is 2,2-bis-(2-propenolatomethyl)-butanolato, tris-(2-ethylenediamino)ethylato titanium (IV).
     


    Claims

    Claims for the following Contracting State(s): ES, GR

    1. A process for the preparation of a one-component moisture-curable sealant composition wherein

    (a) a silane capped polyurethane polymer of the formular

    wherein

    R   is lower alkyl of from 1 to 6 carbon atoms

    R¹   is a divalent bridging radical selected from the group consisting of a divalent hydrocarbon radical, a divalent hydrocarbon ether radical, and a divalent hydrocarbon amino radical;

    A   is selected from the group consisting of -S- and -NR²- where R² is hydrogen or alkyl of from one to six carbon atoms;

    (b) from 0.2 to 1.0 parts by weight of an aminosilane per 100 parts of said polyurethane polymer, said aminosilane having the structure

    wherein

    x   is an integer of from one to three;

    R³ and R⁴   may be the same or different and are selected from alkyl of from one to four carbon atoms;

    R⁵   is alkyl of from one to four carbon atoms or alkoxyl of from one to four carbon atoms;

    R⁶   is hydrogen or -(CH₂)yNHR⁷ wherein R⁷ is hydrogen or -(-CH₂)zNH₂ wherein y and z may be the same or different and are integers of from one to three;

    and

    (d) a curing catalyst
    are mixed, characterized in that

    (c) from 0.2 to 1.0 parts by weight of an accelerator per 100 parts by weight of said polyurethane polymer, wherein said accelerator has the structure

    wherein

    B   is a direct bond or is -SO₂-;

    R⁸   is a hydrocarbyl group of from three to twenty carbon atoms,

    and

    R⁹   is -(R¹⁰-NH)m-R¹⁰-NH₂ wherein m is an integer of from one to four,

    R¹⁰   is selected from
    a divalent hydrocarbyl radical of from two to ten carbon atoms,
    a divalent hydrocarbaryl radical of from six to ten carbon atoms, and
    a divalent cyclohydrocarbyl radical of from three to ten carbon atoms

    is incorporated into the sealant composition.


     
    2. A process as defined in Claim 1 wherein a polyurethane polymer is used which is the reaction product of a polyether polyol containing at least two hydroxyl groups per molecule and a number average molecular weight of 1000 to 3000 and an isocyanate having at least two isocyanate groups per molecule.
     
    3. A process as defined in Claim 1 wherein a polyurethane polymer is used which has a number average molecular weight of from 10,000 to 30,000.
     
    4. A process as defined in Claim 3 wherein a polyurethane polymer is used in which A is -NR₂-where R² is as defined therein.
     
    5. A process as defined in Claim 1 wherein from 0.4 to 0.8 parts by weight of said aminosilane per 100 parts by weight of said polyurethane polymer are used.
     
    6. A process as defined in Claim 5 wherein said aminosilane is N-(beta-aminoethyl)-gamma-aminopropyltrimethoxysilane.
     
    7. A process as defined in Claim 1 wherein from 0.2 to 0.8 parts by weight of said accelerator per 100 parts by weight of said polyurethane polymer are used.
     
    8. A process as defined in Claim 1 wherein said accelerator is 2,2-bis- (2-propenolatomethyl)-butanolato, tris-(2-ethylenediamino) ethylato titanium (IV).
     


    Ansprüche

    Patentansprüche für folgende(n) Vertragsstaat(en): AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE

    1. Feuchtigkeitshärtbase Einkomponentendichtungsmassenzusammensetzung bestehend aus einer Mischung aus

    (a) einem mit Silan verkappten Polyurethanpolymer der Formel

    worin

    R   Niederalkyl mit 1 bis 6 Kohlenstoffatomen;

    R¹   ein zweiwertiger Verbrückungsrest, ausgewählt aus der Gruppe zweiwertiger Kohlenwasserstoffreste, zweiwertiger Kohlenwasserstoffetherreste und zweiwertiger Kohlenwasserstoffaminoreste sind;

    A   aus der Gruppe -S- und -NR²- ausgewählt ist, worin R² Wasserstoff oder Alkyl mit einem bis sechs Kohlenstoffatomen bedeutet;

    (b) 0,2 bis 1,0 Gewichtsteilen eines Aminosilans pro 100 Gewichtsteile jenes Polyurethanpolymers, wobei das Aminosilan die Struktur

    aufweist,
    worin

    x   eine ganze Zahl von 1 bis 3 bedeutet;

    R³ und R⁴   gleich oder verschieden sein können und aus Alkyl mit 1 bis 4 Kohlenstoffatomen ausgewählt sind;

    R⁵   Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen bedeutet;

    R⁶   Wasserstoff oder -(CH₂)yNHR⁷ bedeutet, worin R⁷ Wasserstoff oder -(CH₂)zNH₂ ist, und worin y und z gleich oder verschieden sein können und für ganze Zahlen von 1 bis 3 stehen;

    (d) einem Härtungskatalysator und dadurch gekennzeichnet, daß die Dichtungsmassenzusammensetzung

    (c) 0,2 bis 1,0 Gewichtsteile eines Beschleunigers pro 100 Gewichtsteile Polyurethanpolymer enthält, worin der Beschleuniger die Struktur

    aufweist,
    worin

    B   eine direkte Bindung oder -SO₂-;

    R⁸   eine Hydrocarbylgruppe mit drei bis zwanzig Kohlenstoffatomen bedeuten,

    sowie

    R⁹   für -(R¹⁰-NH)m-R¹⁰-NH₂ steht, worin m eine ganze Zahl von eins bis vier bedeutet,

    R¹⁰   aus
    einem zweiwertigen Hydrocarbylrest mit zwei bis zehn Kohlenstoffatomen,
    einem zweiwertigen Hydrocarbarylrest mit sechs bis zehn Kohlenstoffatomen, und
    einem zweiwertigen Cyclohydrocarbylrest mit drei bis zehn Kohlenstoffatomen ausgewählt ist.


     
    2. Feuchtigkeitshärtbare Einkomponentendichtungsmassenzusammensetzungen nach Anspruch 1, worin das Polyurethanpolymer das Umsetzungsprodukt aus einem Polyetherpolyol mit mindestens zwei Hydroxylgruppen pro Molekül und einem zahlenmittleren Molekulargewicht von 1000 bis 3000 und einem Isocyanat mit mindestens zwei Isocyanatgruppen pro Molekül ist.
     
    3. Feuchtigkeitshärtbare Einkomponentendichtungsmassenzusammensetzung nach Anspruch 1, worin das Polyurethanpolymer ein zahlenmittleres Molekulargewicht von 10.000 bis 30.000 besitzt.
     
    4. Feuchtigkeitshärtbare Einkomponentendichtungsmassenzusammensetzung nach Anspruch 3, worin A -NR²-bedeutet, worin R² die dort angegebene Bedeutung aufweist.
     
    5. Feuchtigkeitshärtbare Einkomponentendichtungsmassenzusammensetzung nach Anspruch 1, worin 0,4 bis 0,8 Gewichtsteile Aminosilan pro 100 Gewichtsteile Polyurethanpolymer enthalten sind.
     
    6. Feuchtigkeitshärtbare Einkomponentendichtungsmassenzusammensetzung nach Anspruch 5, worin das Aminosilan N-(β-Aminoethyl)-γ-aminopropyltrimethoxysilan ist.
     
    7. Feuchtigkeitshärtbare Einkomponentendichtungsmassenzusammensetzung nach Anspruch 1, worin 0,2 bis 0,8 Gewichtsteile Beschleuniger pro 100 Gewichtsteile Polyurethanpolymer enthalten sind.
     
    8. Feuchtigkeitshärtbare Einkomponentendichtungsmassenzusammensetzung nach Anspruch 1, worin der Beschleuniger Titan(IV)-2,2-bis(2-propenolatomethyl)butanolat-tris(2-ethylendiaminoethylat) ist.
     


    Ansprüche

    Patentansprüche für folgende(n) Vertragsstaat(en): ES, GR

    1. Verfahren zur Herstellung einer feuchtigkeitshärtbaren Einkomponentendichtungsmassenzusammensetzung, worin

    (a) ein mit Silan verkapptes Polyurethanpolymer der Formel
    worin

    R   Niederalkyl mit 1 bis 6 Kohlenstoffatomen;

    R¹   ein zweiwertiger Verbrückungsrest, ausgewählt aus der Gruppe zweiwertiger Kohlenwasserstoffreste, zweiwertiger Kohlenwasserstoffetherreste und zweiwertiger Kohlenwasserstoffaminoreste sind;

    A   aus der Gruppe -S- und -NR²- ausgewählt ist, worin R² Wasserstoff oder Alkyl mit einem bis sechs Kohlenstoffatomen bedeutet;

    (b) 0,2 bis 1,0 Gewichtsteile eines Aminosilans pro 100 Gewichtsteile jenes Polyurethanpolymers, wobei das Aminosilan die Struktur

    aufweist,
    worin

    x   eine ganze Zahl von 1 bis 3 bedeutet;

    R³ und R⁴   gleich oder verschieden sein können und aus Alkyl mit 1 bis 4 Kohlenstoffatomen ausgewählt sind;

    R⁵   Alkyl mit 1 bis 4 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen bedeutet;

    R⁶   Wasserstoff oder -(CH₂)yNHR⁷ bedeutet, worin R⁷ Wasserstoff oder -(CH₂)zNH₂ ist, und worin y und z gleich oder verschieden sein können und für ganze Zahlen von 1 bis 3 stehen; und

    (d) ein Härtungskatalysator miteinander vermischt werden, dadurch gekennzeichnet, daß

    (c) 0,2 bis 1,0 Gewichtsteile eines Beschleunigers pro 100 Gewichtsteile Polyurethanpolymer, worin der Beschleuniger die Struktur

    aufweist,
    worin

    B   eine direkte Bindung oder -SO₂-;

    R⁸   eine Hydrocarbylgruppe mit drei bis zwanzig Kohlenstoffatomen bedeuten,

    sowie

    R⁹   für -(R¹⁰-NH)m-R¹⁰-NH₂ steht, worin m eine ganze Zahl von eins bis vier bedeutet,

    R¹⁰   aus
    einem zweiwertigen Hydrocarbylrest mit zwei bis zehn Kohlenstoffatomen,
    einem zweiwertigen Hydrocarbarylrest mit sechs bis zehn Kohlenstoffatomen, und
    einem zweiwertigen Cyclohydrocarbylrest mit drei bis zehn Kohlenstoffatomen ausgewählt ist,

    in die Dichtungsmassenzusammensetzung eingearbeitet werden.


     
    2. Verfahren nach Anspruch 1, worin als Polyurethanpolymer das Umsetzungsprodukt aus einem Polyetherpolyol mit mindestens zwei Hydroxylgruppen pro Molekül und einem zahlenmittleren Molekulargewicht von 1000 bis 3000 und einem Isocyanat mit mindestens zwei Isocyanatgruppen und einem Isocyanat mit mindestens zwei Isocyanatgruppen pro Molekül eingesetzt wird.
     
    3. Verfahren nach Anspruch 1, worin ein Polyurethanpolymer mit einem zahlenmittleren Molekulargewicht von 10.000 bis 30.000 verwendet wird.
     
    4. Verfahren nach Anspruch 3, worin ein Polyurethanpolymer verwendet wird, worin A -NR₂- bedeutet, worin R² die dort angegebene Bedeutung aufweist.
     
    5. Verfahren nach Anspruch 1, worin 0,4 bis 0,8 Gewichtsteile Aminosilan pro 100 Gewichtsteile Polyurethanpolymer verwendet werden.
     
    6. Verfahren nach Anspruch 5, worin das Aminosilan N-(β-Aminoethyl)-γ-aminopropyltrimethoxysilan ist.
     
    7. Verfahren nach Anspruch 1, worin 0,2 bis 0,8 Gewichtsteile Beschleuniger pro 100 Gewichtsteile Polyurethanpolymer verwendet werden.
     
    8. Verfahren nach Anspruch 1, worin der Beschleuniger Titan(IV)-2,2-bis(2-propenolatomethyl)butanolat-tris(2-ethylendiaminoethylat) ist.
     


    Revendications

    Revendications pour l'(les) Etat(s) contractant(s) suivant(s): AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE

    1. Composition d'étanchéité à un composant, durcissable à l'humidité, comprenant un mélange

    (a) d'un polymère polyuréthane à extrémités silane de formule

    dans laquelle

    R   est un groupe alkyle inférieur de 1 à 6 atomes de carbone;

    R¹   est un radical pontant divalent choisi dans le groupe constitué par un radical hydrocarboné divalent, un radical éther hydrocarboné divalent, et un radical amino hydrocarboné divalent;

    A   est choisi dans le groupe constitué par -S- et -NR²-, où R² est un atome d'hydrogène ou un groupe alkyle de 1 à 6 atomes de carbone;

    (b) de 0,2 à 1,0 partie en poids d'un aminosilane, pour 100 parties en poids dudit polymère polyuréthane, ledit aminosilane possédant la structure

    dans laquelle

    x   est un nombre entier de 1 à 3;

    R³ et R⁴   peuvent être identiques ou différents et sont choisis parmi les groupes alkyle de 1 à 4 atomes de carbone;

    R⁵   est un groupe alkyle de 1 à 4 atomes de carbone ou un groupe alcoxyle de 1 à 4 atomes de carbone;

    R⁶   est un atome d'hydrogène ou un groupe -(CH₂)yNHR⁷, où R⁷ est un atome d'hydrogène ou un groupe -(CH₂)zNH₂, dans lequel les indices y et z peuvent être identiques ou différents et sont des nombres entiers de 1 à 3;

    (d) d'un accélérateur de durcissement, et caractérisée en ce que la composition d'étanchéité comprend

    (c) de 0,2 à 1,0 partie en poids d'un accélérateur, pour 100 parties en poids dudit polymère polyuréthane, ledit accélérateur possédant la structure

    dans laquelle

    B   est une liaison directe ou un radical -SO₂-;

    R⁸   est un groupe hydrocarbyle de 3 à 20 atomes de carbone

    et

    R⁹   est -(R¹⁰-NH)m-R¹⁰-NH₂, où m est un nombre entier de 1 à 4;

    R¹⁰   est choisi parmi un radical hydrocarbyle divalent de 2 à 10 atomes de carbone, un radical hydrocarbaryle divalent de 6 à 10 atomes de carbone, et
    un radical cyclohydrocarbyle divalent de 3 à 10 atomes de carbone.


     
    2. Composition d'étanchéité à un composant, durcissable à l'humidité, selon la revendication 1, dans laquelle ledit polymère polyuréthane est le produit de réaction d'un polyéther-polyol comportant au moins deux groupes hydroxy libres par molécule et possédant une masse moléculaire moyenne en nombre de 1 000 à 3 000 avec un composé isocyanate comportant au moins deux groupes isocyanate réactifs par molécule.
     
    3. Composition d'étanchéité à un composant, durcissable à l'humidité, selon la revendication 1, dans laquelle ledit polymère polyuréthane a une masse moléculaire moyenne en nombre de 10 000 à 30 000.
     
    4. Composition d'étanchéité à un composant, durcissable à l'humidité, selon la revendication 3, dans laquelle A est -NR², où R² est tel que défini précédemment.
     
    5. Composition d'étanchéité à un composant, durcissable à l'humidité, selon la revendication 1, dans laquelle ladite composition comprend de 0,4 à 0,8 partie en poids dudit aminosilane, pour 100 parties en poids dudit polymère polyuréthane.
     
    6. Composition d'étanchéité à un composant, durcissable à l'humidité, selon la revendication 5, dans laquelle ledit aminosilane est le N-(bêta-aminoéthyl)-gamma-aminopropyltriméthoxysilane.
     
    7. Composition d'étanchéité à un composant, durcissable à l'humidité, selon la revendication 1, dans laquelle ladite composition comprend de 0,2 à 0,8 partie en poids dudit accélérateur, pour 100 parties en poids dudit polymère polyuréthane.
     
    8. Composition d'étanchéité à un composant, durcissable à l'humidité, selon la revendication 1, dans laquelle ledit accélérateur est le 2,2-bis(2-propénolatométhyl)butanolato, tris(2-éthylènediamino)éthylato titane (IV).
     


    Revendications

    Revendications pour l'(les) Etat(s) contractant(s) suivant(s): ES, GR

    1. Procédé de préparation d'une composition d'étanchéité à un composant, durcissable à l'humidité, dans lequel on mélange

    (a) un polymère polyuréthane à extrémités silane de formule

    dans laquelle

    R   est un groupe alkyle inférieur de 1 à 6 atomes de carbone;

    R¹   est un radical pontant divalent choisi dans le groupe constitué par un radical hydrocarboné divalent, un radical éther hydrocarboné divalent, et un radical amino hydrocarboné divalent;

    A   est choisi dans le groupe constitué par -S- et -NR²-, où R² est un atome d'hydrogène ou un groupe alkyle de 1 à 6 atomes de carbone;

    (b) de 0,2 à 1,0 partie en poids d'un aminosilane, pour 100 parties en poids dudit polymère polyuréthane, ledit aminosilane possédant la structure

    dans laquelle

    x   est un nombre entier de 1 à 3;

    R³ et R⁴   peuvent être identiques ou différents et sont choisis parmi les groupes alkyle de 1 à 4 atomes de carbone;

    R⁵   est un groupe alkyle de 1 à 4 atomes de carbone ou un groupe alcoxyle de 1 à 4 atomes de carbone;

    R⁶   est un atome d'hydrogène ou un groupe -(CH₂)yNHR⁷, où R⁷ est un atome d'hydrogène ou un groupe -(CH₂)zNH₂, dans lequel les indices y et z peuvent être identiques ou différents et sont des nombres entiers de 1 à 3; et

    (d) un accélérateur de durcissement, caractérisé en ce que l'on incorpore dans la composition d'étanchéité

    (c) de 0,2 à 1,0 partie en poids d'un accélérateur, pour 100 parties en poids dudit polymère polyuréthane, ledit accélérateur possédant la structure

    dans laquelle

    B   est une liaison directe ou un radical -SO₂-;

    R⁸   est un groupe hydrocarbyle de 3 à 20 atomes de carbone

    et

    R⁹   est -(R¹⁰-NH)m-R¹⁰-NH₂, où m est un nombre entier de 1 à 4;

    R¹⁰   est choisi parmi un radical hydrocarbyle divalent de 2 à 10 atomes de carbone, un radical hydrocarbaryle divalent de 6 à 10 atomes de carbone, et
    un radical cyclohydrocarbyle divalent de 3 à 10 atomes de carbone.


     
    2. Procédé selon la revendication 1, dans lequel on utilise un polymère polyuréthane qui est le produit de réaction d'un polyéther-polyol comportant au moins deux groupes hydroxy libres par molécule et possédant une masse moléculaire moyenne en nombre de 1 000 à 3 000 avec un composé isocyanate comportant au moins deux groupes isocyanate réactifs par molécule.
     
    3. Procédé selon la revendication 1, dans lequel on utilise un polymère polyuréthane qui a une masse moléculaire moyenne en nombre de 10 000 à 30 000.
     
    4. Procédé selon la revendication 3, dans lequel on utilise un polymère polyuréthane dans lequel A est -NR²-, où R² est tel que défini précédemment.
     
    5. Procédé selon la revendication 1, dans lequel on utilise de 0,4 à 0,8 partie en poids dudit aminosilane, pour 100 parties en poids dudit polymère polyuréthane.
     
    6. Procédé selon la revendication 5, dans lequel ledit aminosilane est le N-(bêta-aminoéthyl)-gamma-aminopropyl-triméthoxysilane.
     
    7. Procédé selon la revendication 1, dans lequel on utilise de 0,2 à 0,8 partie en poids dudit accélérateur, pour 100 parties en poids dudit polymère polyuréthane.
     
    8. Procédé selon la revendication 1, dans lequel ledit accélérateur est le 2,2-bis(2-propénolatométhyl)butanolato, tris(2-éthylènediamino)éthylato titane (IV).