(19)
(11)EP 2 595 308 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
30.03.2022 Bulletin 2022/13

(21)Application number: 12189582.5

(22)Date of filing:  23.10.2012
(51)International Patent Classification (IPC): 
H02P 9/00(2006.01)
H02P 21/06(2016.01)
H02P 21/00(2016.01)
H02P 21/14(2016.01)
(52)Cooperative Patent Classification (CPC):
H02P 21/141; H02P 9/00; H02P 21/06

(54)

System for improved wind turbine generator performance

System zur verbesserten Windturbinengeneratorleistung

Système permettant d'améliorer les performances de générateur à turbine éolienne


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 26.10.2011 US 201113281879

(43)Date of publication of application:
22.05.2013 Bulletin 2013/21

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • Klodowski, Anthony Michael
    Salem, Virginia 24153 (US)
  • Barker, Sidney Allen
    Salem, Virginia 24153 (US)

(74)Representative: Zimmermann & Partner Patentanwälte mbB 
Postfach 330 920
80069 München
80069 München (DE)


(56)References cited: : 
GB-A- 2 420 456
US-A1- 2011 018 281
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates generally to power conversion systems. More particularly, the invention relates to a power conversion system used in a rotary power generation system for converting a variable-frequency alternating current produced by a variable-speed rotary power generator into an alternating current with controlled amplitude or frequency for feeding an electric grid.

    [0002] A rotary power generation system comprises a rotary power generator for generating an alternating current with a variable frequency by rotation of a generator rotor and a power conversion system for converting the variable-frequency alternating current into an alternating current with controlled amplitude or frequency to be supplied to an electric grid. One example of such a rotary power generation system is a variable-speed wind turbine power generation system.

    [0003] Variable-speed wind turbine power generation systems are one type of renewable energy-based power unit that competes with traditional forms of electric power generation. As a result, variable-speed wind turbine power generation systems depend on cost effective, reliable as well as safe means to capture wind energy and convert it to electrical energy that is suitable for delivery miles away. In operation, variable-speed wind turbine power generation systems include a multiple of rotating blades connected to a rotor shaft that are turned by the wind. The rotation of the blades by the wind spins the rotor shaft to generate a rotational torque or force that drives one or more generators to convert mechanical energy to electrical energy. The rotor shaft and generator are mounted within a housing or nacelle that is positioned on top of a truss or tubular tower. The electrical energy generated in the nacelle is distributed down through the tower to a utility grid via a transformer.

    [0004] Variable-speed wind turbine power generation systems include generators with rotation speeds that vary with wind speed and which generate an alternating current with a variable frequency. Variable speed wind turbine generators can provide more energy over a range of wind speeds as compared with wind turbine generators requiring a constant speed of operation. See, for example, US 2011/018281 and GB 2 420 456.

    [0005] Power conversion systems for variable-speed wind turbine power generation systems typically include a generator-side electronic power converter for converting the variable-frequency alternating current into a direct current at a DC link. A line (or grid) side electronic power converter is also provided for converting the direct current at the DC link into an alternating current with controlled amplitude or frequency for feeding the electric grid. The electronic power converters may be made up of a single full size converter or multiple smaller converters operated in parallel, each of which is referred to as a thread. It is desirable to transmit as much of the wind power to the grid as possible.

    [0006] During the generation of power in a variable-speed wind turbine power generation system, the generator currents or thread currents can become imbalanced by electrical imbalances in the converter, generator or cables . Such imbalances in current can cause power reduction of the generator to occur which leads to inefficient generation of power by the wind turbine.

    [0007] Hence the present invention, as defined by the appended claims, is provided.

    [0008] The above described and other features are exemplified by the following detailed description.

    [0009] Various features of this invention will be more readily understood from the following detailed description of the various aspects and embodiments of the invention taken in conjunction with the accompanying drawings, that depict various embodiments of the invention, and in which:

    FIG. 1 is a block diagram of a rotary power generation system coupled to an electric grid, according to an embodiment.

    FIG. 2 is a diagrammatic representation of an exemplary permanent magnet generator controller employed in the rotary power generation system of FIG. 1, according to an embodiment.

    FIG. 3 is a diagrammatic representation of an exemplary generator negative sequence regulator employed in the permanent magnet generator controller of FIG. 2, according to an embodiment.

    FIG. 4 depicts a chart of D-axis and Q-axis negative sequence gains for a plurality of different frequencies, according to an embodiment.

    FIG. 5 is a flow diagram of a process for balancing generator currents, according to an embodiment.



    [0010] Embodiments disclosed herein relate to a power conversion system used in a rotary power generation system for converting a variable-frequency alternating current produced by a variable-speed rotary power generator into an alternating current with controlled amplitude or frequency for feeding an electric grid.

    [0011] Power conversion systems for variable-speed wind turbine power generation systems typically include a generator-side electronic power converter for converting the variable-frequency alternating current into a direct current at a DC link. A line (or grid) side electronic power converter is also provided for converting the direct current at the DC link into an alternating current with controlled amplitude or frequency for feeding the electric grid. The electronic power converters may be made up of a single full size converter or multiple smaller converters operated in parallel, each of which is referred to as a thread. It is desirable to transmit as much of the wind power to the grid as possible.

    [0012] Described herein is a negative sequence current regulator that is used to balance thread currents to maximize the wind power transferred to the electric grid. The negative sequence current regulator is described below with regard to a single converter, but is generally applied to a multi-threaded converter. For example, a multi-threaded converter can include four (4) threads, each of which can include the negative sequence current regulator of the present invention embedded therein. The result is that the thread currents are balanced and so is the generator current. This is viable for any number of threads.

    [0013] Reference is first made to a rotary power generation system as illustrated in FIG. 1. In this embodiment, the rotary power generation system comprises a variable-speed wind turbine power generation system 10 ("wind turbine system 10"). Although described herein with regard to a variable-speed wind turbine power generation system, embodiments of the invention are applicable to other rotary power generation systems having a rotary power generator that is operated at a variable speed. Examples of other types of rotary power generation systems may include, for example, gas turbines, micro-turbines, and marine hydro kinetic devices.

    [0014] When wind conditions are sufficient, a turbine control 12 communicates control signals to various sub-control systems in the wind turbine system 10. One of the control signals is a pitch control signal 14 that is provided to a pitch control 16 to set the pitch of a set of turbine blades 18 in order to regulate the rotational speed of a first shaft 20 to a gearbox 22. The gearbox 22 is coupled to a permanent magnet generator 24 by a generator shaft 26.

    [0015] The turbine control 12 regulates the power provided to the electric grid 28 via the pitch control signal 14, torque command 30, permanent magnet generator converter and control 32 ("generator converter" 32), and regenerative line converter and control 34 ("line converter" 34). The real power provided to the electric grid 28 is controlled by the generator converter 32 and line converter 34 (and associated controls) and is determined to be the product of the torque command 30 and an angular speed 36 of the generator shaft 26.

    [0016] The line converter 34 generates a set of three phase electrical sinusoidal voltages in a manner to induce currents that are necessary for the line converter 34 to produce the active power provided by the generator converter 32 and the reactive power commanded by the turbine control 12. The line converter 34 manages the voltage at the dc link 38 so that nearly all of the power generated into the dc link 38 by the permanent magnet generator 24 and the generator converter 32 is exported to the electric grid 28.

    [0017] The permanent magnet generator 24 develops a voltage on its terminals that is a function of the rotational speed of the generator shaft 26. The generator converter 32 generates a set of three phase electrical sinusoidal voltages at its terminals in a manner to induce currents that are necessary for the generator converter 32 to follow the torque command 30 given by the turbine control 12 and to provide for losses in the system. In order to perform proper control, the generator convertor 32 either calculates or measures the angular speed 36 of the permanent magnet generator 24 (e.g., the angular speed 36 of the generator shaft 26). Typically, the angular speed 36 of the permanent magnet generator 24 is measured and provided to the generator convertor 32 as depicted in FIG. 1.

    [0018] The flow of the three phase currents from the permanent magnet generator 24 into the generator convertor 32 must be managed in such a way as not to exceed the ratings of the generator converter 32, the permanent magnet generator 24, and the conductors that connect the generator converter 32 and the permanent magnet generator 24. Generally, this requires that the maximum of the three phase currents does not exceed the capacity of those devices. The same restrictions apply to the line converter 34, turbine transformer 40, and connecting cabling.

    [0019] The wind turbine system 10 can produce maximum power when all of the three phase currents are at the maximum allowed value and are of the same magnitude. If the three phase currents are imbalanced, the maximum current of the three phases must still not exceed the allowed capacity of the system components. Thus, it is desirable to achieve balance of the three phase currents between the generator converter 32 and the permanent magnet generator 24 as well as the three phase currents between the line converter 34 and the turbine transformer 40.

    [0020] Since the frequency of the electric grid 28 voltage is somewhat fixed, it is relatively easy to balance the three phase currents between the line converter 34 and the turbine transformer 40. However, the control complexity needed to balance currents between the permanent magnet generator 24 and the generator converter 32 is much more difficult because of the variable frequencies of the three phase currents flowing between the permanent magnet generator 24 and the generator converter 32.

    [0021] FIG. 2 is a more detailed view of a generator converter 32 in accordance with an embodiment. Many of components of the generator converter 32 operate in a known manner and will not be described in detail. In particular, the components of the generator converter 32, with the exception of the operation of the negative sequence current regulator 50, are within the purview of one skilled in the art and will not be described in detail.

    [0022] Shown on the right side of FIG. 2 are a converter bridge 52, the permanent magnet generator 24, and a system 54 for measuring the angular speed 36 of the permanent magnet generator 24. These components are not part of the generator converter 32.

    [0023] A vector demodulator 56 samples the voltages and currents from the permanent magnet generator 24, and demodulates the sampled voltages and currents into signals Iq, Id, Vq, and Vd. A vector rotate and PWM (pulse-width modulation) modulation component 58 receives Uq 60 and Ud 62 modulation commands from a voltage regulation and DC bus compensation component 64, rotates the Uq 60 and Ud 62 modulation commands at the frequency and electrical angle 104 of the generator voltages, and produces gating 66 signals that are transmitted to the gating devices of the converter bridge 52. The remaining components depicted in FIG. 2 are used to generate the Uq 60 and Ud 62 modulation commands in such a way as to follow the torque command 30 from the torque control 12.

    [0024] A D-axis current control 68 compares a flux reference 70 to a generator flux 72 calculated by a generator flux and torque calculation component 74 from the Iq, Id, Vq, and Vd signals output by the vector demodulator 56. The D-axis current control 68 outputs a D-axis current command 76. A Q-axis current command 78 is generated from the torque command 30. The D-axis current command 76 and the Q-axis current command 78 are provided to a D-axis current regulator 80 and a Q-axis current regulator 82, respectively.

    [0025] The signals output by the D-axis current regulator 80 and the Q-axis current regulator 82 are compensated by two other signal sets to provide Vd 84 and Vq 86 voltage signals to the voltage regulation and DC bus compensation component 64. One set, generated by a voltage feed-forward component 88, includes a D-axis feed-forward voltage 90 and a Q-axis feed-forward voltage 92, which approximate the net voltage needed and lessen the work of the D-axis current regulator 80 and the Q-axis current regulator 82. The other set, generated by the negative sequence current regulator 50, includes a NseqVq 94 signal and a NseqVd 96 signal, which are the focus of the present disclosure.

    [0026] The NseqVq 94 and NseqVd 96 signals are determined by the negative sequence current regulator 50 in such a way that their summation into the Vd 84 and Vq 86 voltage signals trims the Vd 84 and Vq 86 voltage signals to achieve balanced currents between the generator converter 32 and the permanent magnet generator 24.

    [0027] As depicted in greater detail in FIG. 3, the inputs to the negative sequence current regulator 50 include a Q-axis current regulator error 100, a D-axis current regulator error 102, a generator electrical angle 104, and a generator electrical frequency 106. The Q-axis current regulator error 100 is determined by the Q-axis current regulator 82 and is based on the difference between the Q-axis current command 78 and a Q-axis current feedback signal 108 (FIG. 2). Similarly, the D-axis current regulator error 102 is determined by the D-axis current regulator 80 and is based on the difference between the D-axis current command 76 and a D-axis current feedback signal 110 (FIG. 2).

    [0028] Referring to FIG. 3, a vector demodulator 120 demodulates the Q-axis current regulator error 100 and the D-axis current regulator error 102 using the generator electrical angle 104 into an Iq error signal 122 and an Id error signal 124, respectively. The Iq error signal 122 and the Id error signal 124 are then passed through respective integrators 126 to generate signals 128, 130.

    [0029] In accordance with an embodiment, a frequency-dependent set 132 of D-axis and Q-axis negative sequence gains 134, 136 are applied to the signals 128, 130 and then rotated by vector rotator 142 using the generator electrical angle 104 to generate the NseqVq 94 and NseqVd 96 signals. When using NseqVq 94 and NseqVd 96 signals generated in this manner, the currents in the three phases of the permanent magnet generator 24 (FIG. 1) are balanced across the entire frequency range of operation of the permanent magnet generator 24 (FIG. 1), thereby increasing the operational efficiency and yield of the wind turbine system 10 (FIG.1).

    [0030] In an embodiment, referring collectively to FIGS. 1-3, it was determined that in a wind turbine system 10 in which the generator electrical frequency 106 of the voltages vary over a wide range with time, the D-axis and Q-axis negative sequence gains 134, 136 necessary for proper and stable performance of the negative sequence current regulator 50 vary according to the generator electrical frequency 106. To this extent, for a given wind turbine system 10, a stable frequency-dependent set 132 of D-axis and Q-axis negative sequence gains 134, 136 across the operational frequency range of the wind turbine system 10 was developed and dynamically applied (e.g., via a look-up table or calculation) as a function of generator electrical frequency 106. Depending on the details of the electrical system design and tune-up of the regulating structure detailed in Fig.2 each different wind turbine system 10 could have different operational characteristics, a different frequency-dependent set 132 of D-axis and Q-axis negative sequence gains 134, 136 may be required for each wind turbine system 10.

    [0031] In an embodiment, an exemplary frequency-dependent set 132 of D-axis and Q-axis negative sequence gains 134, 136 was determined by analyzing the performance (e.g., step response) of the negative sequence current regulator 50 and wind turbine system 10 for a range of rotational speeds (e.g. 300 rpm to 535 rpm to 2000 rpm) as the D-axis and Q-axis negative sequence gains in the negative sequence current regulator 50 were varied. The D-axis and Q-axis negative sequence gains thus determined were then normalized to achieve a step response that had the same time response across the frequency range, thereby providing the D-axis and Q-axis negative sequence gains 134, 136. An illustrative frequency-dependent set 132 of D-axis and Q-axis negative sequence gains 134, 136, which shows the wide variation of the D-axis and Q-axis negative sequence gains 134, 136 necessary for proper and stable performance of the negative sequence current regulator 50 at different generator electrical frequencies 106, is depicted in FIG. 4.

    [0032] Referring again to FIG. 3, the D-axis and Q-axis negative sequence gains 134, 136 are applied to the signals 128, 130 by a cross-coupled multiplier/adder circuit 140. Thereafter, the outputs of the cross-coupled multiplier/adder circuit 140 undergo a vector rotation 142 based on the generator electrical angle 104 and are then multiplied by a bandwidth gain 144 to generate the NseqVq 94 and NseqVd 96 signals. The bandwidth gain 144 is a fixed normalizing gain for the current regulating structure. It is practically redundant to the D, Q gains and is an independent way of adjusting the amplitude of the correction. The D, Q gains are set to control the relative amplitudes of the components (which determine both the amplitude and phase shift of the correcting signal) and the amplitude is further adjusted by the bandwidth gain.

    [0033] FIG. 5 depicts a flow diagram 200 of a process for balancing generator currents, according to an embodiment. At PI, the electrical frequency of the permanent magnet generator is obtained. At P2, D-axis and Q-axis negative sequence gains are determined based on the obtained electrical frequency of the permanent magnet generator. At P3, negative sequence voltage signals are generated based on the determined D-axis and Q-axis negative sequence gains. At P4, the variable-frequency alternating currents generated by the permanent magnet generator are balanced using the generated negative sequence voltage signals, thereby maximizing the wind power transferred to the electric grid.

    [0034] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

    [0035] This written description uses examples to disclose the invention, including the preferred mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the appended claims.


    Claims

    1. A rotary power generation system (10), comprising:

    a rotary power generator (24) for generating variable-frequency alternating currents;

    a negative sequence current regulator (50) comprises a vector demodulator (120) configured to demodulate a Q-axis current regulator error (100) and a D-axis current regulator error (102) using a generator electrical angle (104) into an Iq error signal (122) and an Id error signal (124),

    wherein the negative sequence current regulator (50) is further configured to

    obtain a electrical frequency (106) of the rotary power generator (24),

    generate respective integrated signals (128, 130) from the Iq error signal (122) and from the Id error signal (124), and to

    determine a set (132) of frequency-dependent negative sequence gains (134, 136) based on the obtained electrical frequency (106) of the rotary power generator (24), wherein the set of frequency-dependent negative sequence gains comprise a D-axis negative sequence gain (134) and a Q-axis negative sequence gain (136), and

    wherein the negative sequence current regulator (50) further comprises

    a cross-coupled multiplier/adder circuit (140) configured for applying the D-axis negative sequence gain (134) and Q-axis negative sequence gain (136) of the rotary power generation system (10) to the integrated signals (128, 130) by generating

    an output of the cross-coupled multiplier/adder circuit (140) for the D-axis as a sum of the integrated Id error signal (130) multiplied by the D-axis negative sequence gain (134) and the negative integrated Iq error signal (128) multiplied by the Q-axis negative sequence gain (136), and by generating an output of the cross-coupled multiplier/adder circuit (140) for the Q-axis as a sum of the integrated Iq error signal (128) multiplied by the D-axis negative sequence gain (134) and the integrated Id error signal (130) multiplied by the Q-axis negative sequence gain (136), and

    a vector rotator (142) configured for providing a vector rotation to the outputs of the cross-coupled multiplier/adder circuit (140) using the generator electrical angel (104) and thereby generating negative sequence voltage signals (94, 96) based on the determined negative sequence gains (134, 136); and

    a system (58) for controlling voltage components for balancing the variable-frequency alternating currents generated by the rotary power generator (24) based on the negative sequence gains (134, 136),

    wherein the system (58) is configured to balance the variable-frequency alternating currents of the rotary power generator (24) based on the negative sequence voltage signals NseqVq (94) and NseqVd (96) generated by the negative sequence current regulator (50).


     
    2. The rotary power generation system (10) of claim 1, wherein the current regulator (50) is further configured to multiply the vector rotated output of the cross-coupled multiplier/adder circuit (140) by a bandwidth gain (144) to generate negative sequence voltage signals NseqVq (94) and NseqVd (96).
     
    3. The rotary power generation system (10) of claim 2, wherein the NseqVq signal (94) and the NseqVd signal (96) are used to balance currents in the respective phases of the rotary power generator (24).
     
    4. The rotary power generation system (10) of any preceding claim, further comprising:
    a generator convertor (74) for receiving the variable-frequency alternating currents from the rotary power generator (24), wherein the voltage regulation system (58) balances the variable-frequency alternating currents between the rotary power generator and the generator converter.
     
    5. The rotary power generation system (10) of any preceding claim, wherein the rotary power generator (24) comprises a variable-speed wind turbine generator.
     
    6. The rotary power generation system (10) of claim 5, further comprising:
    a plurality of blades (18) for rotating a shaft (20) of the variable-speed wind turbine generator (24).
     
    7. A method (200) for balancing generator currents of a rotary power generator (24) of a rotary power generation system (10) of any preceding claim, comprising:

    obtaining (P1) the electrical frequency (106) of the rotary power generator (24);

    demodulating the Q-axis current regulator error (100) and the D-axis current regulator error (102) using the generator electrical angle (104) into the Iq error signal (122) and

    the Id error signal (124), wherein the Iq error signal (122) and Id error signal (124) are integrated into integrated signals (128, 130);

    determining (P2) the set (132) of frequency-dependent negative sequence gains (134, 136) based on the obtained electrical frequency (106), wherein the set (132) of frequency-dependent negative sequence gains (134, 136) comprise a D-axis negative sequence gain (134) and a Q-axis negative sequence gain (136);

    generating (P3) negative sequence voltage signals (94, 96) based on the determined negative sequence gains (134, 136) by

    applying by the cross-coupled multiplier/adder circuit (140) the set (132) of negative sequence gains (134, 136) to the integrated signals (128, 130) as follows:

    generating an output of the cross-coupled multiplier/adder circuit (140) for the D-axis as a sum of the integrated Id error signal (130) multiplied by the D-axis negative sequence gain (134) and the negative integrated Iq error signal (128) multiplied by the Q-axis negative sequence gain (136), and

    generating an output of the cross-coupled multiplier/adder circuit (140) for the Q-axis as a sum of the integrated Iq error signal (128) multiplied by the D-axis negative sequence gain (134) and the integrated Id error signal (130) multiplied by the Q-axis negative sequence gain (136); and by providing by the vector rotator (142) a vector rotation to the outputs of the cross-coupled multiplier/adder circuit (140) using the generator electrical angel (104); and

    balancing (P4) variable-frequency alternating currents generated by the rotary power generator (24) using the generated negative sequence voltage signals NseqVq (94) and NseqVd (96).


     
    8. The method (200) of claim 7, comprising the step of multiplying the vector rotated output of the cross-coupled multiplier/adder circuit (140) by a bandwidth gain (144) to generate negative sequence voltage signals NseqVq (94) and NseqVd (96).
     
    9. The method (200) of claim 8, comprising generating the NseqVq signal (94) and the NseqVd signal (96) for balancing currents in respective phases of the rotary power generator (24).
     


    Ansprüche

    1. Drehstromgeneratorsystem (10), umfassend:

    ein Drehstromgenerator (24) zur Erzeugung von Wechselströmen mit variabler Frequenz;

    einen Gegensystemstrom-Regler (50), der einen derart konfigurierten Vektordemodulator (120) aufweist, dass er einen Q-Achsen-Stromregler-Fehler (100) und einen D-Achsen-Stromregler-Fehler (102) unter Verwendung eines elektrischen Generatorwinkels (104) in ein Iq-Fehlersignal (122) und ein Id-Fehlersignal (124) demoduliert,

    wobei der Gegensystemstrom-Regler (50) ferner derart konfiguriert ist, dass er

    eine elektrische Frequenz (106) des Drehstromgenerators (24) erhält,

    jeweilige integrierter Signale (128, 130) aus dem Iq-Fehlersignal (122) und aus dem Id-Fehlersignal (124) generiert, und

    einen Satz (132) von frequenzabhängigen Gegensystemverstärkungen (134, 136) basierend auf der erhaltenen elektrischen Frequenz (106) des Drehstromgenerators (24), wobei der Satz von frequenzabhängigen Gegensystemverstärkungen eine D-Achsen-Gegensystemverstärkung (134) und eine Q-Achsen-Gegensystemverstärkung (136) aufweist, und

    wobei der Gegensystemstrom-Regler (50) ferner aufweist

    eine kreuzgekoppelte Multiplizierer/Addierer-Schaltung (140), die derart konfiguriert ist, dass sie die D-Achsen-Gegensystemverstärkung (134) und die Q-Achsen-Gegensystemverstärkung (136) des Drehstromgeneratorsystem (10) auf die integrierten Signale (128, 130) anwendet, durch Erzeugen
    einer Ausgabe der kreuzgekoppelten Multiplizierer/Addierer-Schaltung (140) für die D-Achse als eine Summe des integrierten Id-Fehlersignals (130) multipliziert mit der D-Achsen-Gegensystemverstärkung (134) und des negativen integrierten Iq-Fehlersignals (128) multipliziert mit der Q-Achsen-Gegensystemverstärkung (136), und durch Erzeugen einer Ausgabe der kreuzgekoppelten Multiplizierer/Addierer-Schaltung (140) für die Q-Achse als eine Summe des integrierten Iq-Fehlersignals (128), multipliziert mit der D-Achsen-Gegensystemverstärkung (134), und des integrierten Id-Fehlersignals (130), multipliziert mit der Q-Achsen-Gegensystemverstärkung (136), und

    einen Vektordreher (142), der derart konfiguriert ist, dass er den Ausgaben der kreuzgekoppelten Multiplizierer/Addierer-Schaltung (140) unter Verwendung des elektrischen Generatorwinkels (104) eine Vektordrehung bereitstellt und dadurch Gegensystemspannungssignale (94, 96) basierend auf den bestimmten Gegensystemverstärkungen (134, 136) erzeugt; und

    ein System (58) zum Steuern von Spannungskomponenten zum Ausgleichen der von dem Drehstromgenerator (24) erzeugten Wechselströme mit variabler Frequenz basierend auf den Gegensystemverstärkungen (134, 136),

    wobei das System (58) derart konfiguriert ist, dass es die frequenzvariablen Wechselströme des Drehstromgenerators (24) basierend auf den Gegensystemspannungssignalen NseqVq (94) und NseqVd (96), die von dem Gegensystemstrom-Regler (50) erzeugt werden, ausgleicht.


     
    2. Drehstromgeneratorsystem (10) nach Anspruch 1, wobei der Stromregler (50) ferner konfiguriert ist, dass er die vektoriell gedrehte Ausgabe der kreuzgekoppelten Multiplizierer/Addierer-Schaltung (140) mit einer Bandbreitenverstärkung (144) multipliziert, um Gegensystemspannungssignale NseqVq (94) und NseqVd (96) zu erzeugen.
     
    3. Drehstromgeneratorsystem (10) nach Anspruch 2, wobei das NseqVq-Signal (94) und das NseqVd-Signal (96) zum Ausgleichen von Strömen in den jeweiligen Phasen des Drehstromgenerators (24) verwendet werden.
     
    4. Drehstromgeneratorsystem (10) nach einem der vorhergehenden Ansprüche, ferner umfassend:
    einen Generatorwandler (74) zum Empfangen der frequenzvariablen Wechselströme vom Drehstromgenerator (24), wobei das Spannungsregelungssystem (58) die frequenzvariablen Wechselströme zwischen dem Drehstromgenerator und dem Generatorwandler ausgleicht.
     
    5. Drehstromgeneratorsystem (10) nach einem der vorhergehenden Ansprüche, wobei der Drehstromgenerator (24) einen drehzahlvariablen Windkraftanlagengenerator aufweist.
     
    6. Drehstromgeneratorsystem (10) nach Anspruch 5, ferner umfassend eine Vielzahl von Rotorblattanordnungen (18) zum Drehen einer Welle (20) des drehzahlvariablen Windkraftanlagengenerators (24).
     
    7. Verfahren (200) zum Ausgleichen von Generatorströmen eines Drehstromgenerators (24) eines Drehstromgeneratorsystems (10) nach einem der vorhergehenden Ansprüche, umfassend:

    Erhalten (P1) der elektrischen Frequenz (106) des Drehstromgenerators (24);

    Demodulieren des Q-Achsen-Stromregler-Fehlers (100) und des D-Achsen-Stromregler-Fehlers (102) unter Verwendung des elektrischen Generatorwinkels (104) in das Iq-Fehlersignal (122) und das Id-Fehlersignal (124), wobei das Iq-Fehlersignal (122) und das Id-Fehlersignal (124) in integrierte Signale (128, 130) integriert werden;

    Bestimmen (P2) des Satzes (132) frequenzabhängiger Gegensystemverstärkungen (134, 136) basierend auf der erhaltenen elektrischen Frequenz (106), wobei der Satz (132) frequenzabhängiger Gegensystemverstärkungen (134, 136) eine D-Achsen-Gegensystemverstärkung (134) und eine Q-Achsen-Gegensystemverstärkung (136) umfasst;

    Erzeugen (P3) von Gegensystemspannungssignalen (94, 96) basierend auf den bestimmten Gegensystemverstärkungen (134, 136) durch

    Anwenden des Satzes (132) von Gegensystemverstärkungen (134, 136) auf die integrierten Signale (128, 130) durch die kreuzgekoppelte Multiplizierer/Addierer-Schaltung (140) wie folgt:

    Erzeugen einer Ausgabe der kreuzgekoppelten Multiplizierer/Addierer-Schaltung (140) für die D-Achse als eine Summe des integrierten Id-Fehlersignals (130), multipliziert mit der Gegensystemverstärkung (134) der D-Achse, und des negativen integrierten Iq-Fehlersignals (128), multipliziert mit der Q-Achsen Gegensystemverstärkung (136), und

    Erzeugen einer Ausgabe der kreuzgekoppelten Multiplizierer/Addierer-Schaltung (140) für die Q-Achse als eine Summe des integrierten Iq-Fehlersignals (128), multipliziert mit der D-Achsen-Gegensystemverstärkung (134), und des integrierten Id-Fehlersignals (130), multipliziert mit der Q-Achsen-Gegensystemverstärkung (136); und

    durch Bereitstellen durch den Vektordreher (142) einer Vektordrehung an den Ausgaben der kreuzgekoppelten Multiplizierer/Addierer-Schaltung (140) unter Verwendung des elektrischen Generatorwinkels (104); und

    Ausgleichen (P4) von Wechselströmen variabler Frequenz, die von dem Drehstromgenerator (24) erzeugt werden, unter Verwendung der erzeugten Gegensystemspannungssignale NseqVq (94) und NseqVd (96).


     
    8. Verfahren (200) nach Anspruch 7, das den Schritt des Multiplizierens der vektoriell gedrehten Ausgabe der kreuzgekoppelten Multiplizierer/Addierer-Schaltung (140) mit einer Bandbreitenverstärkung (144) umfasst, um Gegensystemspannungssignale NseqVq (94) und NseqVd (96) zu erzeugen.
     
    9. Verfahren (200) nach Anspruch 8, das die Erzeugung des NseqVq-Signals (94) und des NseqVd-Signals (96) zum Ausgleichen der Ströme in den jeweiligen Phasen des Drehstromgenerators (24) umfasst.
     


    Revendications

    1. Système de génération de puissance rotatif (10), comprenant :

    un générateur de puissance rotatif (24) pour générer des courants alternatifs à fréquence variable ;

    un régulateur de courant de séquence négative (50) comprend un démodulateur vectoriel (120) configuré pour démoduler une erreur de régulateur de courant d'axe Q (100) et une erreur de régulateur de courant d'axe D (102) en utilisant un angle électrique de générateur (104) en un signal d'erreur Iq (122) et un signal d'erreur Id (124),

    dans lequel le régulateur de courant de séquence négative (50) est configuré en outre pour obtenir une fréquence électrique (106) du générateur de puissance rotatif (24), générer des signaux intégrés respectifs (128, 130) à partir du signal d'erreur Iq (122) et à partir du signal d'erreur Id (124), et pour déterminer un ensemble (132) de gains de séquence négative dépendant de la fréquence (134, 136) sur la base de la fréquence électrique obtenue (106) du générateur de puissance rotatif (24), dans lequel l'ensemble de gains de séquence négative dépendant de la fréquence comprennent un gain de séquence négative d'axe D (134) et un gain de séquence négative d'axe Q (136), et

    dans lequel le régulateur de courant de séquence négative (50) comprend en outre un circuit multiplicateur/additionneur à couplage croisé (140) configuré pour appliquer le gain de séquence négative d'axe D (134) et le gain de séquence négative d'axe Q (136) du système de génération de puissance rotatif (10) aux signaux intégrés (128, 130) en générant une sortie du circuit multiplicateur/additionneur à couplage croisé (140) pour l'axe D en tant que somme du signal d'erreur Id intégré (130) multiplié par le gain de séquence négative d'axe D (134) et du signal d'erreur Iq intégré négatif (128) multiplié par le gain de séquence négative d'axe Q (136), et en générant une sortie du circuit multiplicateur/additionneur à couplage croisé (140) pour l'axe Q en tant que somme du signal d'erreur Iq intégré (128) multiplié par le gain de séquence négative d'axe D (134) et du signal d'erreur Id intégré (130) multiplié par le gain de séquence négative d'axe Q (136), et

    un rotateur de vecteur (142) configuré pour fournir une rotation de vecteur aux sorties du circuit multiplicateur/additionneur à couplage croisé (140) en utilisant l'angle électrique de générateur (104) et en générant de ce fait des signaux de tension de séquence négative (94, 96) sur la base des gains de séquence négative déterminés (134, 136) ; et

    un système (58) pour commander des composantes de tension pour équilibrer les courants alternatifs à fréquence variable générés par le générateur de puissance rotatif (24) sur la base des gains de séquence négative (134, 136),

    dans lequel le système (58) est configuré pour équilibrer les courants alternatifs à fréquence variable du générateur de puissance rotatif (24) sur la base des signaux de tension de séquence négative NseqVq* (94) et NseqVd* (96) générés par le régulateur de courant de séquence négative (50).


     
    2. Système de génération de puissance rotatif (10) selon la revendication 1, dans lequel le régulateur de courant (50) est configuré en outre pour multiplier la sortie à rotation de vecteur du circuit multiplicateur/additionneur à couplage croisé (140) par un gain de largeur de bande (144) pour générer des signaux de tension de séquence négative NseqVq* (94) et NseqVd* (96).
     
    3. Système de génération de puissance rotatif (10) selon la revendication 2, dans lequel le signal NseqVq* (94) et le signal NseqVd* (96) sont utilisés pour équilibrer les courants dans les phases respectives du générateur de puissance rotatif (24).
     
    4. Système de génération de puissance rotatif (10) selon une quelconque revendication précédente, comprenant en outre :
    un convertisseur de générateur (74) pour recevoir les courants alternatifs à fréquence variable depuis le générateur de puissance rotatif (24), dans lequel le système de régulation de tension (58) équilibre les courants alternatifs à fréquence variable entre le générateur de puissance rotatif et le convertisseur de générateur.
     
    5. Système de génération de puissance rotatif (10) selon une quelconque revendication précédente, dans lequel le générateur de puissance rotatif (24) comprend un générateur de turbine éolienne à vitesse variable.
     
    6. Système de génération de puissance rotatif (10) selon la revendication 5, comprenant en outre :
    une pluralité de pales (18) pour mettre en rotation un arbre (20) du générateur de turbine éolienne à vitesse variable (24).
     
    7. Procédé (200) pour équilibrer des courants de générateur d'un générateur de puissance rotatif (24) d'un système de génération de puissance rotatif (10) selon une quelconque revendication précédente, comprenant : l'obtention (P1) de la fréquence électrique (106) du générateur de puissance rotatif (24) ;

    la démodulation de l'erreur de régulateur de courant d'axe Q (100) et de l'erreur de régulateur de courant d'axe D (102) en utilisant l'angle électrique de générateur (104) en le signal d'erreur Iq (122) et le signal d'erreur Id (124), dans lequel le signal d'erreur Iq (122) et le signal d'erreur Id (124) sont intégrés en signaux intégrés (128, 130) ;

    la détermination (P2) de l'ensemble (132) de

    gains de séquence négative dépendant de la fréquence (134, 136) sur la base de la

    fréquence électrique obtenue (106), dans lequel l'ensemble (132) de gains de séquence négative dépendant de la fréquence (134, 136) comprennent un gain de séquence négative d'axe D (134) et un gain de séquence négative d'axe Q (136) ;

    la génération (P3) de signaux de tension de séquence négative (94, 96) sur la base des gains de séquence négative déterminés (134, 136) par

    l'application par le circuit multiplicateur/additionneur à couplage croisé (140) de l'ensemble (132) de gains de séquence négative (134, 136) aux signaux intégrés (128, 130) comme suit :

    la génération d'une sortie du circuit multiplicateur/additionneur à couplage croisé (140) pour l'axe D en tant que somme du signal d'erreur Id intégré (130) multiplié par le gain de séquence négative d'axe D (134) et du signal d'erreur Iq intégré négatif (128) multiplié par le gain de séquence négative d'axe Q (136), et

    la génération d'une sortie du circuit multiplicateur/additionneur à couplage croisé (140) pour l'axe Q en tant que somme du signal d'erreur Iq intégré (128) multiplié par le gain de séquence négative d'axe D (134) et du signal d'erreur Id intégré (130) multiplié par le gain de séquence négative d'axe Q (136) ; et

    en fournissant par le rotateur de vecteur (142) une rotation de vecteur aux sorties du circuit multiplicateur/additionneur à couplage croisé (140) en utilisant l'angle électrique de générateur (104) ; et

    l'équilibrage (P4) de courants alternatifs à fréquence variable générés par le générateur de puissance rotatif (24) en utilisant les signaux de tension de séquence négative générés NseqVq* (94) et NseqVd* (96).


     
    8. Procédé (200) selon la revendication 7, comprenant l'étape de multiplication de la sortie à rotation de vecteur du circuit multiplicateur/additionneur à couplage croisé (140) par un gain de largeur de bande (144) pour générer des signaux de tension de séquence négative NseqVq* (94) et NseqVd* (96).
     
    9. Procédé (200) selon la revendication 8, comprenant la génération du signal NseqVq* (94) et du signal NseqVd* (96) pour équilibrer les courants dans les phases respectives du générateur de puissance rotatif (24).
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description