(19) |  |
| (11) | EP 2 599 205 B1 |
(12) | EUROPEAN PATENT SPECIFICATION |
(45) | Mention of the grant of the patent: | | 30.03.2022 Bulletin 2022/13 |
(22) | Date of filing: 30.07.2010 |
| (51) | International Patent Classification (IPC): |
(86) | International application number: | | PCT/US2010/043918 |
(87) | International publication number: | | WO 2012/015427 (02.02.2012 Gazette 2012/05) |
|
(54) | REGULATED BOOTSTRAP POWER SUPPLY GEREGELTE BOOTSTRAP-STROMVERSORGUNG ALIMENTATION ÉLECTRIQUE À AMORÇAGE RÉGULÉ |
(84) | Designated Contracting States: | | AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
(43) | Date of publication of application: | | 05.06.2013 Bulletin 2013/23 |
(73) | Proprietor: Otis Elevator Company | | Farmington CT 06032 (US) |
| (72) | Inventors: | | - MARVIN, Daryl J.
Farmington
Connecticut 06032 (US) - MILLETT, Steven M.
Plainville
Connecticut 06062 (US)
|
(74) | Representative: Schmitt-Nilson Schraud Waibel Wohlfrom
Patentanwälte Partnerschaft mbB | | Pelkovenstraße 143 80992 München 80992 München (DE) |
(56) | References cited: : EP-A1- 1 876 709 US-A- 5 264 736 US-B1- 6 441 652 US-B2- 6 747 441
| JP-U- H0 541 397 US-A1- 2005 007 076 US-B1- 6 650 100 US-B2- 6 873 191
|
| | | | - 'IR 2110 Data Sheet (International Rectifier Comp)' HIGH AND LOW SIDE DRIVER 23 March 2005, XP008172516
|
|
| |
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). |
BACKGROUND
[0001] Bootstrap power supplies are known. Most bootstrap power supply circuits are used in consumer electronic devices. Typical gate driver integrated circuits are designed to function with a bootstrap supply, for example.
[0002] Figure 1 illustrates a typical bootstrap power supply arrangement 10 for providing power to a load 12. A voltage source 14 has an associated current limiting resistor 16 and a rectifier 18. A low side IGBT 20 switches on and off in a known manner. A high side IGBT 22 is controlled by an upper gate driver 24. A bootstrap capacitor 26 powers the upper gate driver 24.
[0003] The voltage source 14 charges the bootstrap capacitor 26 when the low side IGBT 20 is conducting. When the low side IGBT 20 is turned off, the bootstrap capacitor 26 is left floating. In that condition, the bootstrap capacitor 26 is connected with the upper gate driver 24 and the emitter of the high side IGBT 22. When the low side IGBT 20 is off, the voltage drop across it effectively changes the voltage that is used for charging the bootstrap capacitor 26. Under those conditions, the power supply for the upper gate driver 24 is unregulated. This is undesirable in many circumstances. For example, the unregulated power supply renders it of limited use for high voltage applications.
[0004] In a high voltage arrangement, the voltage drops across the low side IGBT 20 can be significant compared to the voltage source 14. This produces a large variation in the charging voltage of the bootstrap capacitor 26 and makes it very difficult to remain within the desired voltage range for the upper gate driver 24. The large voltage variation also has a negative effect on the switching performance of the IGBTs 20 and 22.
[0005] Another limitation on the typical arrangement shown in Figure 1 is that the rate at which the bootstrap capacitor 26 can be charged is relatively slow. This requires a larger resister 16 in series with the diode 18. The current limiting resistor 16 protects the upper gate driver 24 from a high change rate of voltage at initial turn on and limits the rate at which the bootstrap capacitor 26 can be charged. For some high voltage situations, the amount of time available for charging the bootstrap capacitor 26 is very limited and without a sufficiently high rate of charging, the arrangement shown in Figure 1 is not useful.
[0006] JP H05 41397 U discloses a voltage type semiconductor device driving device for controlling each voltage type semiconductor device in an inverter formed by using voltage type semiconductor elements such as a power MOSFET, an IGBT. More particularly, it relates to a voltage type semiconductor element driving device suitable for applying an operating voltage to a control circuit from a DC power supply.
US2005/007076 A1 discloses a bootstrap capacitor charging circuit providing charging current limitation.
SUMMARY
[0007] The present invention relates to an elevator system power supply according to the appended claims.
[0008] An exemplary power supply includes a low side switch and a high side switch. A driver controls operation of the high side switch. A bootstrap capacitor supplies power to the driver. An energy storage portion is in parallel with the bootstrap capacitor to control any dropping of a voltage of the bootstrap capacitor. A voltage regulator is in parallel with the bootstrap capacitor for limiting current provided to the bootstrap capacitor and for regulating a voltage of the bootstrap capacitor.
[0009] In further embodiments, the energy storage portion may comprise a second capacitor.
[0010] In further embodiments, the second capacitor may prevent
a voltage of the bootstrap capacitor from dropping below a desired voltage until after the second capacitor voltage drops below the voltage of the bootstrap capacitor.
[0011] In further embodiments, the voltage regulator may comprise a linear voltage regulator.
[0012] In further embodiments, the voltage regulator may comprise a zener diode having a breakdown voltage selected so that the voltage source charges the bootstrap capacitor.
[0013] In further embodiments, the zener diode breakdown voltage may be higher than a desired voltage of the bootstrap capacitor.
[0014] Particularly, the zener diode breakdown voltage may be approximately 0.7 volts higher than the desired voltage of the bootstrap capacitor.
[0015] In further embodiments, the voltage regulator may comprise a transistor having a base in series with the zener diode and wherein the transistor and the zener diode are in parallel with the bootstrap capacitor.
[0016] Further embodiments may comprise a DC bus coupled with the low side switch and the high side switch such that the switches control power supply to the DC bus.
[0017] Particularly, the DC bus may comprise a high voltage DC bus.
[0018] An exemplary method of controlling power supply from a bootstrap capacitor to a driver that controls a switch includes providing an energy storage in parallel with the bootstrap capacitor. The energy storage provides control over whether a voltage of the bootstrap capacitor drops below a desired voltage used to power the driver. The voltage of the bootstrap capacitor is regulated using a linear regulator in parallel with the bootstrap capacitor.
[0019] Further embodiments may comprise using the linear regulator for limiting an amount of current supplied to the bootstrap capacitor.
[0020] In further embodiments the energy storage may comprise a capacitor and the method comprises preventing the voltage of the bootstrap capacitor from dropping below the desired voltage until the energy storage capacitor voltage drops below the voltage of the bootstrap capacitor.
[0021] Further embodiments may comprise using the high side switch for controlling power delivered to a DC bus.
[0022] Particularly, the DC bus comprises a high voltage DC bus.
[0023] The various features and advantages of disclosed example embodiments will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
BRIEF DESCRIPTION OF THE DRAWINGS
[0024]
Figure 1 schematically illustrates a bootstrap capacitor power supply arrangement from the prior art.
Figure 2 schematically illustrates a power supply arrangement designed according to an embodiment of this invention.
Figure 3 schematically illustrates another example power supply arrangement designed according to this invention.
Figure 4 schematically illustrates selected portions of an elevator system that includes a power supply designed according to an embodiment of this invention.
[0025] Figure 2 schematically shows a power supply 40 for providing power to a load 42. In one example, the load 42 comprises a DC bus. In one example, the DC bus comprises a high voltage DC bus. One example includes voltages exceeding 120 volts on the DC bus. In an example used for an elevator system, the voltages may be on the order of 750 volts and up to 1200 volts.
[0026] A low side switch 44 and a high side switch 46 control power provided to the load 42. The high side switch 46 is controlled by an upper gate driver 48. A bootstrap capacitor 50 provides power to the upper gate driver 48.
[0027] A voltage source 52 is in series with a current limiting resistor 54 and a rectifier 56. In one example, the voltage source 52 comprises a high voltage source.
[0028] The illustrated example includes an energy storage portion 60 in parallel with the bootstrap capacitor 50 and a voltage regulator 62, which is also in parallel with the bootstrap capacitor 50. The energy storage portion 60 adds voltage in parallel with the bootstrap capacitor 50 to prevent the voltage of the bootstrap capacitor 50 from dropping until a voltage of the energy storage portion 60 drops below the voltage of the bootstrap capacitor 50. In other words, the energy storage portion 60 provides some control over whether the voltage of the bootstrap capacitor 50 will drop. This feature of the energy storage 60 allows for using relatively less expensive capacitors as the bootstrap capacitor 50, for example.
[0029] The energy storage portion 60 also allows for the voltage source 52 to be higher than the maximum voltage that can be provided to the upper gate driver 48. The presence of the energy storage portion 60 also promotes a faster, more effective charging of the bootstrap capacitor 50.
[0030] The voltage regulator 62 regulates the voltage of the bootstrap capacitor 50. In one example, a linear regulator is used. The voltage regulator 62 also limits the in rush current to the bootstrap capacitor 50, which facilitates using relatively less expensive capacitors.
[0031] The illustrated example allows for a bootstrap power supply to be used in a high voltage scenario because the energy storage portion 60 and the voltage regulator 62 dampen the effects of the voltage drop associated with the low side switch 44 turning off. The energy storage portion 60 and the voltage regulator 62 also protect the bootstrap capacitor 50 and the upper gate driver 48 from experiencing a rapid increase in voltage. The energy storage portion 60 and voltage regulator 62 also facilitate charging the bootstrap capacitor 50 more rapidly than was possible with traditional bootstrap power arrangements.
[0032] Figure 3 schematically illustrates another example power supply 40 in which the energy storage portion 60 comprises a capacitor 70. The capacitance of the bootstrap capacitor 50 and the energy storage capacitor 70 are selected so that the voltage on the bootstrap capacitor 50 will not drop until the voltage on the capacitor 70 drops below that of the bootstrap capacitor 50.
[0033] The voltage regulator 62 in the example of Figure 3 comprises a linear regulator including a zener diode 72. The breakdown voltage of the zener diode 72 is selected to be higher than the desired voltage of the bootstrap capacitor 50 so that the regulator 62 is operative to charge the bootstrap capacitor 50. In one example, the breakdown voltage of the zener diode 72 is approximately 0.7 volts higher than the desired voltage of the bootstrap capacitor 50 for powering the upper gate driver 48. The linear regulator in this example includes a transistor 74 having its base in series with the zener diode 72. A regulator resistor 76 and regulator capacitor 78 are also included in this example.
[0034] In the example of Figure 3, the switches 44 and 46 comprise IGBTs. Other switch configurations such as an FET or another semiconductor switch may be used in some examples.
[0035] The example power supplies 40 of Figures 2 and 3 may be used in a variety of situations. Figure 4 illustrates one example use of such a power supply within an elevator system 80. The power supply 40 is used for powering the drive 82 associated with an elevator machine 84. Movement of an elevator car 86 within a hoistway 88 is controlled by operation of the machine 84. The elevator system components require high voltage and the power supply including the energy storage portion 60 and the voltage regulator 62 allows for using a bootstrap power supply configuration in the high voltage elevator system environment.
[0036] One feature of the illustrated example power supplies is that for an elevator drive, there no longer is a requirement for expensive isolating transformers and separate switch mode power supplies for the gate driving circuitry. In elevator drives, each of the power switches (e.g., the IGBTs 44 and 46 in Figure 3) need an isolated power source that can drive their gates to control the switches. The typical approach of using isolating transformers and separate switch mode power supplies for the gate driving circuitry tends to add significant cost to an elevator system's drive power supply. With the illustrated example arrangement, cost savings are possible and a robust solution for powering the upper gate driver 48 is realized.
[0037] The illustrated examples provide a cost and space optimal solution for an upper IGBT gate driver power supply. The example power supplies minimize constraints otherwise imposed on a pulse width modulation by allowing for faster charging and a larger minimum on time for the low side switch.
[0038] The preceding description is exemplary rather than limiting in nature.
1. An elevator system power supply, comprising:
a low side switch (44);
a high side switch (46);
a driver (48) that controls operation of the high side switch (46);
a bootstrap capacitor (50) that supplies power to the driver (48);
an elevator drive (42, 82) that receives power through the low side switch (44) and the high side switch (46); and
characterized by
means (60,62) for dampening an effect of a voltage drop associated with the low side switch (44) turning off and for protecting the bootstrap capacitor (50) and the high side switch (46) from experiencing a rapid increase in voltage, the means (60,62) for dampening and protecting comprising:
voltage regulator means (62) for limiting current provided to the bootstrap capacitor (50) for charging the bootstrap capacitor (50) and for regulating a voltage of the bootstrap capacitor (50), the voltage regulator means (62) being in parallel with the bootstrap capacitor (50); and
energy storage means (60) for preventing a voltage of the bootstrap capacitor (50) from dropping below a desired voltage, the energy storage means (60) being in parallel with the voltage regulator means (62).
2. The elevator system power supply of claim 1, wherein the energy storage means (60) comprises a second capacitor (70).
3. The elevator system power supply of claim 2, wherein the second capacitor (70) prevents the voltage of the bootstrap capacitor (50) from dropping below the desired voltage until after the second capacitor voltage drops below the voltage of the bootstrap capacitor (50).
4. The elevator system power supply of claim 1, wherein the voltage regulator means (62) comprises a linear voltage regulator.
5. The elevator system power supply of claim 4, wherein the voltage regulator means (62) comprises a zener diode (72) having a breakdown voltage selected so that a voltage source (52) charges the bootstrap capacitor (50).
6. The elevator system power supply of claim 5, wherein the zener diode breakdown voltage is higher than the desired voltage of the bootstrap capacitor (50).
7. The elevator system power supply of claim 6, wherein the zener diode breakdown voltage is approximately 0.7 volts higher than the desired voltage of the bootstrap capacitor (50).
8. The elevator system power supply of claim 5, wherein the voltage regulator means comprises a transistor (74) having a base in series with the zener diode (72) and wherein the transistor (74) and the zener diode (72) are in parallel with the bootstrap capacitor (50).
9. The elevator system power supply of claim 1, wherein the elevator drive (42, 82) comprises a DC bus coupled with the low side switch (44) and the high side switch (46) such that the switches control power supply to the DC bus.
10. The elevator system power supply of claim 9, wherein the DC bus comprises a high voltage DC bus.
11. The elevator system power supply of claim 1, wherein the energy storage means (60) is further for faster charging of the bootstrap capacitor (50).
1. Stromversorgung für ein Aufzugsystem, Folgendes umfassend:
einen Low-Side-Schalter (44);
einen High-Side-Schalter (46);
einen Treiber (48), der den Betrieb des High-Side-Schalters (46) steuert;
einen Bootstrap-Kondensator (50), der den Treiber (48) mit Strom versorgt;
einen Aufzugantrieb (42, 82), der Strom durch den Low-Side-Schalter (44) und den High-Side-Schalter (46) erhält; und
gekennzeichnet durch
Mittel (60, 62) zum Dämpfen eines Effekts eines Spannungsabfalls, der mit dem Ausschalten des Low-Side-Schalters (44) verbunden ist, und zum Schützen des Bootstrap-Kondensators (50) und des High-Side-Schalters (46) vor einem schnellen Spannungsanstieg, wobei die Mittel (60, 62) zum Dämpfen und Schützen Folgendes umfassen:
Spannungsreglermittel (62) zum Begrenzen des Stroms, der dem Bootstrap-Kondensator (50) zum Laden des Bootstrap-Kondensators (50) zur Verfügung gestellt wird, und zum Regeln einer Spannung des Bootstrap-Kondensators (50), wobei das Spannungsreglermittel (62) parallel zu dem Bootstrap-Kondensator (50) ist; und
Energiespeichermittel (60) zum Verhindern, dass eine Spannung des Bootstrap-Kondensators (50) unter eine gewünschte Spannung fällt, wobei das Energiespeichermittel (60) parallel zu dem Spannungsreglermittel (62) ist.
2. Stromversorgung für ein Aufzugsystem nach Anspruch 1, wobei das Energiespeichermittel (60) einen zweiten Kondensator (70) umfasst.
3. Stromversorgung für ein Aufzugsystem nach Anspruch 2, wobei der zweite Kondensator (70) verhindert, dass die Spannung des Bootstrap-Kondensators (50) unter die gewünschte Spannung fällt, bis die Spannung des zweiten Kondensators unter die Spannung des Bootstrap-Kondensators (50) gefallen ist.
4. Stromversorgung für ein Aufzugsystem nach Anspruch 1, wobei das Spannungsreglermittel (62) einen linearen Spannungsregler umfasst.
5. Stromversorgung für ein Aufzugsystem nach Anspruch 4, wobei das Spannungsreglermittel (62) eine Zener-Diode (72) mit einer Durchbruchspannung aufweist, die so gewählt ist, dass eine Spannungsquelle (52) den Bootstrap-Kondensator (50) auflädt.
6. Stromversorgung für ein Aufzugsystem nach Anspruch 5, wobei die Durchbruchspannung der Zener-Diode höher als die gewünschte Spannung des Bootstrap-Kondensators (50) ist.
7. Stromversorgung für ein Aufzugsystem nach Anspruch 6, wobei die Durchbruchspannung der Zener-Diode ungefähr 0,7 Volt höher als die gewünschte Spannung des Bootstrap-Kondensators (50) ist.
8. Stromversorgung für ein Aufzugsystem nach Anspruch 5, wobei das Spannungsreglermittel einen Transistor (74) mit einer Basis in Reihe mit der Zener-Diode (72) umfasst und wobei der Transistor (74) und die Zener-Diode (72) parallel zu dem Bootstrap-Kondensator (50) sind.
9. Stromversorgung für ein Aufzugsystem nach Anspruch 1, wobei der Aufzugantrieb (42, 82) einen Gleichstrom-Bus umfasst, der mit dem Low-Side-Schalter (44) und dem High-Side-Schalter (46) gekoppelt ist, sodass die Schalter die Stromversorgung des Gleichstrom-Busses steuern.
10. Stromversorgung für ein Aufzugsystem nach Anspruch 9, wobei der Gleichstrom-Bus einen Hochspannungs-Gleichstrom-Bus umfasst.
11. Stromversorgung für ein Aufzugsystem nach Anspruch 1, wobei das Energiespeichermittel (60) ferner für eine schnellere Aufladung des Bootstrap-Kondensators (50) vorgesehen ist.
1. Alimentation électrique de système d'ascenseur, comprenant :
un commutateur côté bas (44) ;
un commutateur côté haut (46) ;
un circuit de commande (48) qui commande le fonctionnement du commutateur côté haut (46) ;
un condensateur d'amorçage (50) qui fournit de l'énergie au circuit de commande (48) ;
un dispositif d'entraînement d'ascenseur (42, 82) qui reçoit de l'énergie par l'intermédiaire du commutateur côté bas (44) et du commutateur côté haut (46) ; et
caractérisée par
des moyens (60, 62) pour amortir un effet d'une chute de tension associée à la fermeture du commutateur côté bas (44) et pour protéger le condensateur d'amorçage (50) et le commutateur côté haut (46) contre une augmentation rapide de la tension, les moyens (60, 62) d'amortissement et de protection comprenant :
un moyen régulateur de tension (62) pour limiter un courant fourni au condensateur d'amorçage (50) afin de charger le condensateur d'amorçage (50) et pour réguler une tension du condensateur d'amorçage (50), le moyen régulateur de tension (62) étant en parallèle avec le condensateur d'amorçage (50) ; et
un moyen de stockage d'énergie (60) pour empêcher une tension du condensateur d'amorçage (50) de chuter en dessous d'une tension souhaitée, le moyen de stockage d'énergie (60) étant en parallèle avec le moyen régulateur de tension (62).
2. Alimentation électrique de système d'ascenseur selon la revendication 1, dans laquelle le moyen de stockage d'énergie (60) comprend un second condensateur (70).
3. Alimentation électrique de système d'ascenseur selon la revendication 2, dans laquelle le second condensateur (70) empêche la tension du condensateur d'amorçage (50) de chuter en dessous de la tension souhaitée jusqu'à ce que la tension du second condensateur chute en dessous de la tension du condensateur d'amorçage (50).
4. Alimentation électrique de système d'ascenseur selon la revendication 1, dans laquelle le moyen régulateur de tension (62) comprend un régulateur de tension linéaire.
5. Alimentation électrique de système d'ascenseur selon la revendication 4, dans laquelle le moyen régulateur de tension (62) comprend une diode Zener (72) ayant une tension de claquage sélectionnée de sorte qu'une source de tension (52) charge le condensateur d'amorçage (50).
6. Alimentation électrique de système d'ascenseur selon la revendication 5, dans laquelle la tension de claquage de la diode Zener est supérieure à la tension souhaitée du condensateur d'amorçage (50).
7. Alimentation électrique de système d'ascenseur selon la revendication 6, dans laquelle la tension de claquage de la diode Zener est supérieure d'environ 0,7 volt à la tension souhaitée du condensateur d'amorçage (50).
8. Alimentation électrique de système d'ascenseur selon la revendication 5, dans laquelle le moyen régulateur de tension comprend un transistor (74) ayant une base en série avec la diode Zener (72) et dans laquelle le transistor (74) et la diode Zener (72) sont en parallèle avec le condensateur d'amorçage (50).
9. Alimentation électrique de système d'ascenseur selon la revendication 1, dans laquelle le dispositif d'entraînement d'ascenseur (42, 82) comprend un bus CC couplé au commutateur côté bas (44) et au commutateur côté haut (46) de sorte que les commutateurs commandent une alimentation électrique vers le bus CC.
10. Alimentation électrique de système d'ascenseur selon la revendication 9, dans laquelle le bus CC comprend un bus CC haute tension.
11. Alimentation électrique de système d'ascenseur selon la revendication 1, dans laquelle le moyen de stockage d'énergie (60) est en outre destiné à charger plus rapidement le condensateur d'amorçage (50).


REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description