(19)
(11)EP 2 601 544 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 10855695.2

(22)Date of filing:  05.08.2010
(51)International Patent Classification (IPC): 
E21B 47/13(2012.01)
(86)International application number:
PCT/US2010/002189
(87)International publication number:
WO 2012/018322 (09.02.2012 Gazette  2012/06)

(54)

WIRELESS COMMUNICATION SYSTEM FOR MONITORING OF SUBSEA WELL CASING ANNULI

DRAHTLOSES KOMMUNIKATIONSSYSTEM ZUR ÜBERWACHUNG VON UNTERWASSERBRUNNENRINGEN

SYSTÈME DE COMMUNICATION SANS FIL POUR LA SURVEILLANCE DES ESPACES ANNULAIRES DE TUBAGES DE PUITS SOUS-MARINS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(43)Date of publication of application:
12.06.2013 Bulletin 2013/24

(73)Proprietors:
  • FMC Technologies, Inc.
    Houston, TX 77067 (US)
  • Hydro Technologies, Inc.
    Windsor, CO 80550 (US)

(72)Inventors:
  • MULHOLLAND, John, J.
    Dunfermline KY12 0QT (GB)
  • SILVA, Gabriel
    Kingwood, TX 77345 (US)
  • JASKOLSKI, Corey
    Severance, CO 80546 (US)

(74)Representative: Onsagers AS 
Munkedamsveien 35 P.O. Box 1813 Vika
0123 Oslo
0123 Oslo (NO)


(56)References cited: : 
WO-A2-99/25070
US-A1- 2001 027 865
US-A1- 2009 066 535
US-A1- 2010 174 495
US-A- 5 585 790
US-A1- 2008 070 499
US-A1- 2010 159 827
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] The present invention relates to a system for non-intrusively and wirelessly monitoring pressure, temperature and/or other parameters in the casing annuli of a subsea hydrocarbon production system. More specifically, the invention provides an apparatus for monitoring the parameters in the casing annuli using a near-field magnetic or an inductive through-wall communications system to communicate with one or more sensing packages located in corresponding casing annuli.

    [0002] Sustained Casinghead Pressure (SCP) is a pressure build-up within the casing annuli of a subsea hydrocarbon production system which is due solely to temperature fluctuations. The need to monitor SCP has been identified by the Minerals Management Service (MMS) of the United States Department of the Interior. However, this requirement has been waived for certain subsea hydrocarbon production systems due to other regulatory prohibitions against body penetrations in high pressure wellhead housings.

    [0003] In addition to regulatory demands for the development of technology for the non-invasive monitoring of casing annuli, operators are interested in such monitoring in order to mitigate the risks to personnel, equipment and system availability which may be caused by working on equipment in an unknown pressure condition or incidents such as the collapse of production tubing due to pressure in the B annulus, i.e., the production casing annulus. Operators have experienced failures on non-High Pressure High Temperature ("HPHT") wells due to excessive pressure in the B annulus, and the risks of annulus pressure build-up and subsequent damage are more acute in HPHT wells due to thermal expansion of trapped fluid within the casing annuli.

    [0004] US 2001/027865 A1 discloses a well data monitoring system which enables annulus pressure and other well parameters to be monitored in the outer annuli of the well casing.

    [0005] US 2010/159827 A1 discloses an underwater communications system that transmits electromagnetic and/or magnetic signals to a remote receiver.

    [0006] US 2010/174495 A1 discloses a hose fault detection system including a hose assembly including a hose having first and second conductive layers.

    [0007] US 5585790 A discloses a method of determining alignment of first and second parts of a borehole tool system in which three mutually orthogonal signals are transmitted by a transmitter in the first tool part and each signal is received and measured in three mutually orthogonal directions at a receiver in the second tool part.

    [0008] US 2009/066535 A1 discloses an apparatus that is usable with a well, including a first equipment section that includes a first inductive coupler and a second equipment section that includes a second inductive coupler.

    [0009] WO 99/25070 A2 discloses a communication system for use with a device located within a containment vessel, comprises a control unit having means providing two-way packet radio frequency communication.

    SUMMARY OF THE INVENTION



    [0010] In accordance with the present invention, a system is provided for monitoring pressure, temperature and/or other parameters within subsea well casing annuli of a subsea hydrocarbon production system without physically penetrating any of the pressure barriers.

    [0011] The monitoring system of the present invention may be employed with a subsea hydrocarbon production system which comprises a wellhead housing mounted at the upper end of a well bore, a number of concentric well casings extending from the wellhead housing through the well bore, including an innermost casing through which a hydrocarbon fluid is produced, and a plurality of casing annuli formed between successive ones of the wellhead housing and the well casings.

    [0012] The monitoring system comprises an interrogation package which is operable to wirelessly transmit an interrogation signal and is located externally of the wellhead housing or within the innermost casing, and sensing packages, each of which is located in one of the casing annuli and which includes at least one sensor for sensing the parameter. The sensing packages are operable to wirelessly receive the interrogation signal and in response thereto wirelessly transmit a response signal to the interrogation package which is indicative of the parameter sensed by the sensor. The monitoring system is arranged so that the interrogation signals are transmitted between the interrogation package and the sensing packages using a multi-hop signal transmission technique, and the interrogation package is adapted to communicate with a radially adjacent sensing package (60, 62, 64) and the sensing packages are adapted to communicate with each other using near-field magnetic induction (NFM) signals.

    [0013] The present invention thus provides a system for the non-intrusive monitoring of pressure, temperature and/or other parameters existing within one or more casing annuli without physically penetrating any pressure barriers in the subsea hydrocarbon production system. The invention thus reduces the risks associated with, and avoids regulatory prohibitions on, pressure barrier penetrations.

    [0014] These and other objects and advantages of the present invention will be made apparent from the following detailed description, with reference to the accompanying drawings. In the drawings, the same reference numbers may be used to denote similar components in the various embodiments.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0015] 

    Figure 1 is a schematic sectional illustration of an exemplary subsea hydrocarbon production system showing a prior art system for monitoring a single casing annulus;

    Figure 2 is a schematic sectional illustration of an exemplary subsea hydrocarbon production system showing an interrogation package located outside the wellhead housing and communicating via a multi-hop technique with sensing packages located in the A, B and C annuli;

    Figure 3 is a schematic sectional illustration of an exemplary subsea hydrocarbon production system showing an interrogation package located outside the wellhead housing and communicating via a multi-barrier technique with a sensing package located in the B annulus;

    Figure 4 is a schematic sectional illustration of an exemplary subsea hydrocarbon production system showing an interrogation package located inside the production bore and communicating via a multi-hop technique with sensing packages located in the A, B and C annuli; and

    Figure 5 is a schematic sectional illustration of an exemplary subsea hydrocarbon production system showing an interrogation package located inside the production bore and communicating via a multi-barrier technique with a sensing package located in the B annulus.


    DETAILED DESCRIPTION OF THE INVENTION



    [0016] Conventional subsea hydrocarbon production systems generally comprise a wellhead housing which is mounted at the upper end of a well bore, a number of concentric well casings which extend from the wellhead housing through the well bore, and a plurality of casing annuli which are formed between successive ones of the wellhead housing and the well casings. Referring to Figure 1, for example, a conventional subsea hydrocarbon production system, generally 10, includes a low pressure wellhead housing 12 which is sealed by a packer 14 to a high pressure wellhead housing 16. The high pressure wellhead housing 16 is connected to the upper end of a surface casing 18, and the annular space between the surface casing 18 and the low pressure wellhead housing 12 defines an annulus D. An intermediate casing 20 extends through the surface casing 18 and is sealed to the bore 22 of the high pressure wellhead housing 16 by a packer 24. The annular space between the intermediate casing 20 and the surface casing 18 defines an annulus C.

    [0017] A production casing 26 extends through the intermediate casing 20 and is sealed to the bore 22 of the high pressure wellhead housing 16 by a packer 28. The annular space between the production casing 26 and the intermediate casing 20 defines a production casing annulus B. An innermost casing 30, which is also referred to as a production tubing, is sealed to the production casing 26 at its lower end by packers 32 and 34 and to the bore 22 of the high pressure wellhead housing 16 at its upper end by a packers 36. The annular space between the production tubing 30 and the production casing 26 defines the production tubing annulus A.

    [0018] In the prior art system 10 shown in Figure 1, pressure within the production tubing annulus A is accessed through an annulus bore 38. The annulus bore 38 is controlled by a valve 40 which is provided on a subsea tree 42 that is mounted on the high pressure wellhead housing 16. A production annulus monitoring line 44 is connected to the annulus bore 38 via a control valve 46.

    [0019] The production tubing 30 is connected to a production bore 48 which is controlled by valves 50 and 52 provided on the tree 42. The valves 50, 52 control the flow of production fluid through a production outlet 54. Pressure within the production bore 48 can be measured either upstream or downstream of the valves 50 and 52.

    [0020] In the conventional subsea hydrocarbon production system shown in Figure 1, only the pressure within the production tubing annulus A is monitored. No means are provided for monitoring the pressures within the B, C and D annuli.

    [0021] In accordance with the present invention, a monitoring system is provided for a subsea hydrocarbon production system for monitoring the pressure and/or other parameters existing within not only the production tubing annulus A, but also within any of a plurality of additional annuli, such as the B, C and D annuli. In the several embodiments of the invention shown in Figures 2 through 5, the monitoring system, generally 56, is shown to comprise an interrogation package 58 which is wirelessly linked with a plurality of sensing packages 60, 62 and 64 that are located in or attached to the surface casing 18, the intermediate casing 20 and the production casing 26, respectively.

    [0022] The interrogation package 58 includes suitable circuitry for generating an interrogation signal, wirelessly transmitting the interrogation signal to the sensing packages 60, 62 and 64, and wirelessly receiving a response signal from the sensing packages. Each sensing package 60, 62 and 64 comprises one or more conventional sensors for sensing one or more parameters, such as pressure and temperature, existing in the casing annuli. In addition, the sensing packages include appropriate circuitry for wirelessly receiving the interrogation signal, generating the response signal, which is indicative of the sensed parameters, and wirelessly transmitting the response signal to the interrogation package 58.

    [0023] Alternatively, each sensing package 60, 62 and 64 may comprise suitable circuitry for generating a signal indicative of the sensed parameters and then wirelessly transmitting the signal to the interrogation package 58 based on a preset timing scheme or a conditional trigger. In this alternative embodiment, the interrogation package 58 would not require means for generating an interrogation signal and transmitting the interrogation signal to the sensing packages 60, 62 and 64, and the sensing packages would not require means for wirelessly receiving an interrogation signal from the interrogation package. Rather, the interrogation package 58 simply "listens" for the signals which are periodically or otherwise generated by the sensing packages 60, 62 and 64.

    [0024] According to the invention, the monitoring system 56 employs a near-field magnetic induction (NFM) communication system to communicate the interrogation and response signals between the interrogation and sensing packages. As described more fully in U.S. Patent Application Publication No. US 2008/0070499 A1, the NFM communication system employs short range (i.e., less than two meters), wireless signals which are coupled by a low power, non-propagating magnetic field that is established between the interrogation and sensing packages. A transmitter coil in one package generates a magnetic field which is measured by a receiver coil in another package. NFM induction is used in the present invention to obtain wireless communication through the well casing walls by creating a localized communications zone around the interrogation and sensing packages which is immune from RF interference.

    [0025] In the embodiment of the invention shown in Figure 2, the interrogation package 58 is positioned outside the low pressure wellhead housing 12, and the interrogation and response signals are transmitted between the interrogation package and the internal sensing packages 60, 62 and 64 using a multi-hop signal transmission technique between sensing packages, as shown by the arrows 68.

    [0026] In the embodiment of the invention shown in Figure 3, the interrogation package 58 is located outside the low pressure wellhead housing 12, and the interrogation and response signals are transmitted directly across multiple well casings and annuli, as shown by the arrow 70.

    [0027] In the embodiment of the invention shown in Figure 4, the interrogation package 58 is located in the production bore 48, rather than outside the low pressure wellhead housing pipe 12, and the sensing packages 60, 62 and 64 are located in or attached to the surface casing 18, the intermediate casing 20 and the production casing 26, respectively. As with the embodiment of the invention shown in Figure 2, this embodiment employs a multi-hop signal transmission technique between the sensing packages 60, 62, 64 and the interrogation package 58, as indicated by the arrows 68.

    [0028] In the embodiment of the invention shown in Figure 5, the interrogation package 58 is located in production bore 48, and a single sensor package 62 is located in the B annulus formed by the intermediate casing 20 and the production casing 26. In this embodiment, the interrogation and response signals, which are indicated by the arrows 70, are transmitted directly across multiple well casings and casing annuli.

    [0029] Thus, it should be apparent from the embodiments of the invention shown in Figures 2 through 5 that the monitoring system of the present invention can be applied to a subsea hydrocarbon production system comprising any number of well casings and corresponding casing annuli, depending on the power and data capabilities of the sensing packages and the available space within the casing annuli.

    [0030] Communication between the interrogation package 58 and a surface vessel (not shown) may be established using conventional means, such as a dedicated control umbilical or a wireless communications device, or through the existing control and instrumentation infrastructure of the subsea hydrocarbon production system utilizing spare ports within the subsea control module, as is known in the art.

    [0031] Power for the interrogation package 58 can be obtained from existing subsea power supplies, energy harvesting techniques or local energy storage devices, as is known in the art. In addition, power for the sensing packages 60, 62 and 64 can be obtained from energy harvesting techniques (employing, for example, the Seebeck Effect or pressure variations), or from local energy storage devices, such as capacitive devices or rechargeable or disposable batteries.

    [0032] In accordance with the present invention, power for the sensing packages 60, 62 and 64 may also be obtained from the external interrogation package 58 using a known inductive power transfer technique. This embodiment employs a modified version of the interrogation and sensing packages which provides both data transfer and power, which may be continual or pulsed to charge in-situ storage systems. The efficiency of the inductive power transfer through the wellhead housing 12 and the well casings 18, 20, 26 and 30 will depend on the material type and thickness of these barriers. As with the NFM communication system of the disclosed invention, the inductive power transfer can be implemented using a multi-hop technique or directly across multiple barriers.

    [0033] Inductive power transfer is accomplished by coupling magnetic flux between a transmitter located in the interrogation package 58 and a receiver located in a corresponding sensor package 60, 62, 64. In this wireless power transfer technique, the transmitter generates an AC magnetic field, and a portion of the resultant AC magnetic flux flows through the receiver. This in turn causes the receiver to generate an AC current which can be sourced to a power storage device, such as a capacitor. With multiple casings separating the interrogation package 58 from the sensor packages 60, 62, 64, the invention may employ multiple transmitter and receiver pairs, with each pair being located in a corresponding annulus. In this manner, power is delivered through one casing, stored in a capacitor or other known energy storage device, and then delivered through the next casing, and so on until the power is delivered to the innermost sensor package.

    [0034] In accordance with a further embodiment of the invention, the inductive power transfer technique employs a pulse-powering method. In this technique, a small amount of power is transmitted continuously between the interrogation package 58 and one or more of the sensor packages 60, 62, 64 but is only used periodically. Thus, the capacitor or other energy storage device is continuously charged by the small amount of received power, and when needed (for example when the sensor package is wirelessly interrogated), this stored energy is used in a single burst to read the sensor and wirelessly transmit the reading. After exhausting the stored energy, the sensor package would then allow the energy to be replenished before being ready for another read/transmit cycle.

    [0035] It should be recognized that, while the present invention has been described in relation to the preferred embodiments thereof, those skilled in the art may develop a wide variation of structural and operational details without departing from the principles of the invention. For example, the various elements shown in the different embodiments may be combined in a manner not illustrated above. The scope of the invention is defined by the appended claims.


    Claims

    1. A subsea hydrocarbon production system which comprises a wellhead housing (12) mounted at the upper end of a well bore, a number of concentric well casings (18, 20, 26, 30) extending from the wellhead housing (12) through the well bore, including an innermost casing (30) through which a hydrocarbon fluid is produced, a plurality of casing annuli (A, B, C, D) formed between successive ones of the wellhead housing (12) and the well casings (18, 20, 26), and a monitoring system (56) for monitoring a parameter existing in at least one of the casing annuli (A, B, C, D), the monitoring system (56) comprising:

    an interrogation package (58) which is operable to wirelessly transmit an interrogation signal, wherein the interrogation package (58) is located externally of the wellhead housing (12) or within the innermost casing (30); and

    a plurality of sensing packages (60, 62, 64), each of which is located in a corresponding casing annulus (A, B, C, D) and includes at least one sensor for sensing the parameter, the sensing packages (60, 62, 64) being operable to wirelessly receive the interrogation signal and in response thereto wirelessly transmit a response signal to the interrogation package (58) which is indicative of the parameter sensed by the sensor,

    characterized in that
    the monitoring system is arranged so that the interrogation signals are transmitted between the interrogation package (58) and the sensing packages (60, 62, 64) using a multi-hop signal transmission technique; and
    the interrogation package (58) is adapted to communicate with a radially adjacent sensing package (60, 62, 64) and the sensing packages (60, 62, 64) are adapted to communicate with each other using near-field magnetic induction (NFM) signals.
     
    2. The system of claim 1, wherein each sensing package (60, 62, 64) comprises a plurality of sensors for monitoring corresponding parameters in the casing annuli (A, B, C, D).
     
    3. The system of claim 1, further comprising means for powering the interrogation package (58).
     
    4. The system of claim 1, further comprising means for powering the sensing packages (60, 62, 64).
     
    5. The system of claim 4, wherein the means for powering the sensing packages comprises a transmitter for generating an AC magnetic field, a receiver which is exposed to the magnetic field and which in response thereto generates an AC current, and an energy storage device which is charged by the current, wherein the energy storage device powers the sensing packages.
     
    6. The system of claim 5, wherein the transmitter is located in the interrogation package (58).
     
    7. The system of claim 1, wherein the monitoring system comprises means for powering the sensing packages (60, 62, 64), said means comprising a transmitter for generating an AC magnetic field, a receiver which is exposed to the magnetic field and which in response thereto generates an AC current, and an energy storage device which is charged by the current, wherein the energy storage device powers the sensing packages (60, 62, 64);
    and wherein the means for powering the sensing packages (60, 62, 64) comprises a plurality of transmitters and receivers arranged in transmitter/receiver pairs, each transmitter/receiver pair being positioned in a corresponding casing annulus (A, B, C, D) and being connected to a corresponding energy storage device which in turn is connected to a corresponding sensing package (60, 62, 64), wherein power for at least one sensing package (60, 62, 64) is transmitted to its corresponding transmitter/receiver pair by the transmitter/receiver pair of a radially adjacent sensing package (60, 62, 64).
     
    8. The system of claim 5, wherein the energy storage device is continuously charged by the current and the power stored in the energy storage device is expended by the sensing device in a single burst.
     


    Ansprüche

    1. Unterwasser-Kohlenwasserstoffherstellungssystem, das ein Bohrlochkopfgehäuse (12), das am oberen Ende eines Bohrlochs montiert ist, eine Reihe konzentrischer Bohrlochfutterrohre (18, 20, 26, 30), die sich von dem Bohrlochkopfgehäuse (12) durch das Bohrloch erstrecken, die ein innerstes Futterrohr (30), durch welches ein Kohlenwasserstofffluid hergestellt wird, eine Vielzahl von Futterrohrringen (A, B, C, D), die zwischen aufeinanderfolgenden des Bohrlochkopfgehäuses (12) und der Bohrlochfutterrohre (18, 20, 26) gebildet sind, und ein Überwachungssystem (56) zur Überwachung eines Parameters, vorkommend in wenigstens einem der Futterrohrringe (A, B, C, D), umfasst, wobei das Überwachungssystem (56) umfasst:

    ein Abfragepaket (58), das funktionsfähig ist, um ein Abfragesignal drahtlos zu übertragen, wobei das Abfragepaket (58) sich außerhalb des Bohrlochkopfgehäuses (12) oder innerhalb des innersten Futterrohrs (30) befindet; und

    eine Vielzahl von Erfassungspaketen (60, 62, 64), von denen sich jedes in einem entsprechenden Futterrohrring (A, B, C, D) befindet und wenigstens einen Sensor zum Erfassen des Parameters umfasst, wobei die Erfassungspakete (60, 62, 64) funktionsfähig sind, um das Abfragesignal drahtlos zu empfangen und in Reaktion darauf drahtlos ein Antwortsignal zu dem Abfragepaket (58) zu übertragen, das für den durch den Sensor abgetasteten Parameter bezeichnend ist,

    dadurch gekennzeichnet, dass
    das Überwachungssystem so angeordnet ist, dass die Abfragesignale zwischen dem Abfragepaket (58) und den Erfassungspaketen (60, 62, 64) übertragen werden, wobei eine Multi-Hop-Signalübertragungspaket (58) verwendet wird, und das Abfragepaket (58) angepasst ist, um mit dem radial angrenzenden Erfassungspaket (60, 62, 64) zu kommunizieren, und die Erfassungspakete (60, 62, 64) angepasst sind, um miteinander unter Verwendung von magnetischer Nahfeldkopplung (Near Field Magnetic Induction, NFM) zu kommunizieren.
     
    2. System nach Anspruch 1, wobei jedes Erfassungspaket (60, 62, 64) eine Vielzahl von Sensoren zur Überwachung entsprechender Parameter in den Rohrfutterringen (A, B, C, D) umfasst.
     
    3. System nach Anspruch 1, das ferner Mittel zur Versorgung des Abfragepaketes (58) mit Energie umfasst.
     
    4. System nach Anspruch 1, das ferner Mittel zur Versorgung der Erfassungspakete (60, 62, 64) mit Energie umfasst.
     
    5. System nach Anspruch 4, wobei das Mittel zur Versorgung der Erfassungspakete mit Energie einen Transmitter zur Erzeugung eines magnetischen Wechselfeldes, einen Empfänger, welcher dem magnetischen Feld ausgesetzt wird und welcher in Reaktion darauf einen Wechselstrom erzeugt, und ein Energiespeichergerät, das durch den Strom geladen wird, umfasst, wobei das Energiespeichergerät die Erfassungspakete mit Energie versorgt.
     
    6. System nach Anspruch 5, wobei der Transmitter sich in dem Abfragepaket (58) befindet.
     
    7. System nach Anspruch 1, wobei das Überwachungssystem Mittel zur Versorgung der Erfassungspakete (60, 62, 64) mit Energie umfasst, wobei das Mittel einen Transmitter zur Erzeugung eines magnetisches Wechselfeld, einen Empfänger, welcher dem magnetischen Feld ausgesetzt wird und welcher in Reaktion darauf einen Wechselstrom erzeugt, und ein Energiespeichergerät, das durch den Strom geladen wird, umfasst, wobei das Energiespeichergerät die Erfassungspakete (60, 62, 64) mit Energie versorgt;
    und wobei das Mittel zur Versorgung der Erfassungspakete (60, 62, 64) mit Energie eine Vielzahl von Transmittern und Empfängern, angeordnet in Transmitter/Empfänger-Paaren, umfasst, wobei jedes Transmitter/Empfänger-Paar in einem entsprechenden Futterrohrring (A, B, C, D) positioniert ist und an ein entsprechendes Energiespeichergerät angeschlossen ist, welches wiederum an ein entsprechendes Erfassungspaket (60, 62, 64) angeschlossen ist, wobei Energie für wenigstens ein Erfassungspaket (60, 62, 64) an sein entsprechendes Transmitter/Empfänger-Paar durch das entsprechende Transmitter/Empfänger-Paar eines radial angrenzenden Erfassungspaketes (60, 62, 64) übertragen wird.
     
    8. System nach Anspruch 5, wobei das Energiespeichergerät kontinuierlich den Strom geladen wird und die in dem Energiespeichergerät gespeicherte Energie durch die Erfassungsvorrichtung in einem einzelnen Burst ausgegeben wird.
     


    Revendications

    1. Système de production d'hydrocarbures sous-marin qui comprend un logement de tête de puits (12) monté au niveau de l'extrémité supérieure d'un puits de forage, un nombre de tubages de puits (18, 20, 26, 30) concentriques s'étendant à partir du logement de tête de puits (12) à travers le puits de forage, comportant un tubage interne (30) à travers lequel un fluide d'hydrocarbure est produit, une pluralité d'espaces annulaires de tubage (A, B, C, D) formés entre des éléments successifs du logement de tête de puits (12) et des tubages de puits (18, 20, 26), et un système de surveillance (56) pour surveiller un paramètre existant dans au moins l'un des espaces annulaires de tubage (A, B, C, D), le système de surveillance (56) comprenant :

    un boîtier d'interrogation (58) utilisable pour transmettre sans fil un signal d'interrogation, dans lequel le boîtier d'interrogation (58) est situé à l'extérieur du logement de tête de puits (12) ou au sein du tubage interne (30) ; et

    une pluralité de boîtiers de mesure (60, 62, 64), dont chacun est situé dans un espace annulaire de tubage (A, B, C, D) correspondant et inclut au moins un capteur pour mesurer le paramètre, les boîtiers de mesure (60, 62, 64) étant utilisables pour recevoir sans fil le signal d'interrogation et en réponse à celui-ci, transmettre sans fil un signal de réponse au boîtier d'interrogation (58) indicatif du paramètre mesuré par le capteur,

    caractérisé en ce que

    le système de surveillance est agencé de sorte que les signaux d'interrogation soient transmis entre le boîtier d'interrogation (58) et les boîtiers de mesure (60, 62, 64) à l'aide d'une technique de transmission de signal à sauts multiples ; et

    le boîtier d'interrogation (58) est adapté pour communiquer avec un boîtier de mesure (60, 62, 64) radialement adjacent et les boîtiers de mesure (60, 62, 64) sont adaptés pour communiquer les uns avec les autres à l'aide de signaux d'induction magnétique en champ proche (NFM).


     
    2. Système selon la revendication 1, dans lequel chaque boîtier de mesure (60, 62, 64) comprend une pluralité de capteurs pour surveiller des paramètres correspondants dans les espaces annulaires de tubage (A, B, C, D).
     
    3. Système selon la revendication 1, comprenant en outre un moyen pour alimenter le boîtier d'interrogation (58).
     
    4. Système selon la revendication 1, comprenant en outre un moyen pour alimenter les boîtiers de mesure (60, 62, 64).
     
    5. Système selon la revendication 4, dans lequel le moyen pour alimenter les boîtiers de mesure comprend un émetteur pour générer un champ magnétique CA, un récepteur qui est exposé au champ magnétique et qui, en réponse à celui-ci, génère un courant alternatif CA, et un dispositif de stockage d'énergie qui est chargé par le courant, dans lequel le dispositif de stockage d'énergie alimente les boîtiers de mesure.
     
    6. Système selon la revendication 5, dans lequel l'émetteur est situé dans le boîtier d'interrogation (58).
     
    7. Système selon la revendication 1, dans lequel le système de surveillance comprend un moyen pour alimenter les boîtiers de mesure (60, 62, 64), ledit moyen comprenant un émetteur pour générer un champ magnétique alternatif, un récepteur qui est exposé au champ magnétique et qui en réponse à celui-ci, génère un courant alternatif CA, et un dispositif de stockage d'énergie qui est chargé par le courant, dans lequel le dispositif de stockage d'énergie alimente les boîtiers de mesure (60, 62, 64) ;
    et dans lequel le moyen pour alimenter les boîtiers de mesure (60, 62, 64) comprend une pluralité d'émetteurs et de récepteurs agencés en paires émetteur/récepteur, chaque paire émetteur/récepteur étant positionnée dans un espace annulaire de tubage (A, B, C, D) correspondant et étant connectée à un dispositif de stockage d'énergie correspondant qui est lui-même connecté à un boîtier de mesure (60, 62, 64) correspondant, dans lequel l'alimentation pour au moins un boîtier de mesure (60, 62, 64) est transmise à sa paire émetteur/récepteur correspondante par la paire émetteur/récepteur d'un boîtier de mesure (60, 62, 64) adjacent.
     
    8. Système selon la revendication 5, dans lequel le dispositif de stockage d'énergie est chargé en continu par le courant, et dans lequel l'alimentation stockée dans le dispositif de stockage d'énergie est consommée par le dispositif de mesure en une seule rafale.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description