(19)
(11)EP 2 610 590 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
21.10.2015 Bulletin 2015/43

(21)Application number: 12198224.3

(22)Date of filing:  19.12.2012
(51)International Patent Classification (IPC): 
G01C 23/00(2006.01)
G08G 5/02(2006.01)
G08G 5/06(2006.01)
G08G 5/00(2006.01)

(54)

System and method for selecting images to be displayed

System und Verfahren zur Auswahl von anzuzeigenden Bildern

Système et procédé de sélection d'images à afficher


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.12.2011 US 201113339028

(43)Date of publication of application:
03.07.2013 Bulletin 2013/27

(73)Proprietor: Honeywell International Inc.
Morristown, NJ 07962-2245 (US)

(72)Inventor:
  • He, Gang
    Morristown, NJ 07962-2245 (US)

(74)Representative: Houghton, Mark Phillip 
Patent Outsourcing Limited 1 King Street
Bakewell, Derbyshire DE45 1DZ
Bakewell, Derbyshire DE45 1DZ (GB)


(56)References cited: : 
EP-A2- 2 234 088
FR-A1- 2 888 342
US-A1- 2011 046 868
US-B2- 7 352 292
FR-A1- 2 884 022
US-A- 5 317 394
US-B1- 6 957 130
US-B2- 7 655 908
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The exemplary embodiments described herein generally relate to display systems and more particularly to a display system and method for selecting features to be displayed on an aircraft cockpit display.

    BACKGROUND



    [0002] It is important for pilots to know the layout of the taxiways and runways when taxing for takeoff or from landing. Navigation of an airport surface (taxiways/runways) can be as difficult (from a pilot's workload perspective) and dangerous (from an aviation safety perspective) as the airborne portion of the flight, especially in limited visibility of night and/or weather, or at unfamiliar airports. An increase in pilot workload typically results in decreased safety: the pilot must interpret the information provided on the screen occupying his thought processes when he may have many other decisions to make. Undesired results include taxing onto unapproved taxiways/runways and becoming disorientated while taxing.

    [0003] Many vehicles, such as aircraft, are commonly equipped with one or more vision enhancing systems to convey flight path and/or flight management information. Such vision enhancing systems are designed and configured to assist a pilot when flying in conditions that diminish the pilot's view from the cockpit, such as, but not limited to, darkness and weather phenomenon. One example of a vision enhancing system is known as a synthetic vision system (hereinafter, "SVS") and may be more generally described as a being a dynamic condition subsystem of the aircraft. An example of a synthetic vision system is disclosed in US patent No. 7,352,292. Additionally, an exemplary synthetic vision system is available for sale in the market place under product name SmartView, manufactured by Honeywell International, Inc.

    [0004] A typical SVS is configured to work in conjunction with a position determining unit associated with the aircraft as well as with dynamic sensors that sense the aircraft's altitude, heading, and attitude. The SVS typically includes a database containing information relating to the topography along the aircraft's flight path. The SVS receives inputs from the position determining unit indicative of the aircraft's location and also receives inputs from the dynamic sensors on board the aircraft indicative of the aircraft's heading, altitude, and attitude. The SVS is configured to utilize the position, heading, altitude, and orientation information and the topographical information contained in its database, and generate a three-dimensional image that shows the topographical environment through which the aircraft is flying from the perspective of a person sitting in the cockpit of the aircraft. The three-dimensional image may be displayed to the pilot on any suitable display unit accessible to the pilot. Using an SVS, the pilot can look at the display screen to gain an understanding of the three-dimensional topographical environment through which the aircraft is flying and can also see what lies ahead. One advantage of the SVS is that its image is clean and is not obstructed by any weather phenomenon. SV image integrity, however, is limited by the integrity of the information pre-stored in the database. Accordingly, incomplete and/or outdated database information can result in SV images of limited value.

    [0005] Another example of a vision enhancing system is known as an enhanced vision system (hereinafter, "EVS") and may be more generally described as being a sensor subsystem. Examples of enhanced vision systems are disclosed in US patents nos. 7,655,908 and 5,317,394. Additionally, an exemplary enhanced vision system is available for sale in the market place under product name EVS-II, manufactured by Kollsman, Inc. A typical EVS includes an imaging device, such as, but not limited to, a visible lowlight television camera, an infrared camera, or any other suitable light detection system capable of detecting light or electromagnetic radiation, either within or outside of the visible light spectrum. Such imaging devices are mounted to the aircraft and oriented to detect light transmissions originating from an area outside of the aircraft and are typically located ahead of the aircraft in the aircraft's flight path. The light received by the EVS is used by the EVS to form an image that is then displayed to the pilot on any suitable display in the cockpit of the aircraft. The sensor used in an EVS is more sensitive to light than is the human eye. Accordingly, using the EVS, a pilot can view elements of the topography that are not visible to the human eye. For this reason, an EVS is very helpful to a pilot when attempting to taxi or fly an aircraft in inclement weather or at night. One advantage to an EVS system is that it depicts what is actually present versus depicting what is recorded in a database.

    [0006] Some display systems display both an SV image and an EV image display. For example, as a fused (merged) image (such as overlaying an EV image onto an SV image) or as a side-by-side display. The images may be indexed at the time of camera installation, e.g., by aligning an EV image sensor to ensure that the sensor and the SV view are indexed. Such a process may be periodically repeated during normal course of maintenance to assure proper alignment. Although such an overlaid "enhanced synthetic vision system" display may be useful, the display can be confusing, noisy, and difficult to interpret. For example, pixel averaging or alpha blending between SV and EV images can result with views being obscured with noisy or non-useful information, making it difficult for the pilot to interpret the information encoded on the display.

    [0007] In addition to the above described vision systems, additional images, in the form of symbology, are typically presented to the pilot on the same display screen where the images from the EVS and the SVS are displayed. The symbology commonly appears as an icon or a series of icons on the display screen and may be indicative of, for example, the aircraft's heading, direction, attitude, orientation. Such symbology serves an important role in providing the pilot with situational awareness and controls concerning the orientation and attitude of the aircraft. This symbology is traditionally overlaid over the image presented by the SVS and the EVS.

    [0008] However, the combination of the images from the EV and SV systems and the symbology provide a plethora of information for which the pilot's heads-up time and attention may be unnecessarily demanded.

    [0009] These integrated symbology and EV and SV images are not necessarily suitable for all phases of flight operation. During the airborne phase, symbology must be prominently displayed for aircraft controls. During taxi operations after landing or prior to take off, pilots must pay more attention to the taxi environment. During low visibility conditions and night operations, the presence of EV images assist the pilot in readily identifying taxiways and objects ahead. However, typical flight symbology may interfere with an understanding of the displayed taxi environment EV images, and additional symbology elements may be needed to assist pilots in low visibility taxi environments.

    [0010] Accordingly, it is desirable to provide an apparatus and method for improving the display of information necessary for taxi operations. Furthermore, other desirable features and characteristics of exemplary embodiments will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.

    [0011] EP2234088A2 discloses a flight deck display system for an aircraft or other vehicle, including a first data source of visual feature data that is indicative of visual features of a location of interest. A display element renders a dynamic graphical representation of the location of interest using the visual feature data. The dynamic graphical representation of the location conveys an amount of visible detail that varies as a function of the flight data.

    [0012] US6957130B1 discloses an aircraft navigational system including a graphical user interface that is capable of displaying navigational information in a split-screen format. One panels displays a plurality of air traffic symbols corresponding to airborne obstacles and another panel simultaneously displays ground traffic symbols representing ground obstacles. The obstacles can include other aircraft in the air and on runways as the pilot's aircraft approaches for a landing. The navigational system also is capable of switching between a single graphical user panel and multiple panels.

    [0013] FR2888342A1 discloses a large-size civil aviation aircraft e.g. Boeing 747, taxiing assisting optoelectronic device for airports, having head-up collimator displaying ergonomic 3D symbols to inform the pilot of the trajectory to be taken and location of aircraft on traffic lane. The symbols have lateral safety marks, represented by plots of variable height embodying the lane limit, arranged at regular intervals and located equidistant on either side of the center line of the lane. An aerial view of the location of the aircraft on the lane is displayed, when the taxiing conditions render the plots invisible in the collimator.

    [0014] FR2884022A1 discloses an aircraft e.g. cargo aircraft, lateral control assisting method for use during e.g. take-off phase, involving displaying a line related to a runway's central axis based on a representation conformed to be shown to the pilot in axial superposition. The method involves measuring a cross track deviation. A line corresponding to a central axis of the runway is determined from the deviation and a distance. The line is displayed on the visual display unit in superposition of an environment existing in front of the aircraft.

    [0015] US2011046868A1 discloses an aircraft guidance system for assisting in airport navigation, including: at least one airport database comprising topology data of an airport; at least one configuration database comprising aircraft configuration data and the position of a guidance point, a positioning system delivering aircraft kinematic and attitude parameters; at least one computer generating a 2D view of the representation of the airport notably comprising navigation indications and a representation of the aircraft; and at least one display for displaying the representation of the airport. In the system, a first symbol is generated on the display indicating the position of an early guidance point, corresponding to the position of the guidance point at a future time.

    BRIEF SUMMARY



    [0016] The present invention provides an aircraft display system according to claim 1 of the appended claims.

    [0017] The invention further provides a method for displaying features on a display in an aircraft, according to claim 9 of the appended claims.

    [0018] Display systems and methods for displaying images based on operational status are described. The invention is an aircraft display system for displaying images to an aircrew of an aircraft, acccording to the appended claims and a display configured to display the enhanced vision features, the synthetic vision features, and the symbology for the determined taxi mode or the takeoff mode.

    [0019] According to the appended claims is also provided a method for displaying features on a display in an aircraft.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0020] The exemplary embodiments will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and

    FIG. 1 is a functional block diagram of a flight display system;

    FIG. 2 is a first image displayed in accordance with a first exemplary embodiment that may be rendered on the flight display system of FIG. 1;

    FIG. 3 is a second image displayed in accordance with the first exemplary embodiment that may be rendered on the flight display system of FIG. 1; and

    FIG. 4 is a flow diagram of a method for generating a merged image of an SV image and a filtered EV image, in accordance with an exemplary embodiment.


    DETAILED DESCRIPTION



    [0021] The following detailed description is merely exemplary in nature and is not intended to limit the application and uses. Furthermore, there is no intention to be bound by any theory presented in the preceding technical field, background, brief summary, or the following detailed description.

    [0022] Improved systems and methods for displaying images to a pilot of an aircraft during ground operations are disclosed. Selected EV and SV images and primary flight display symbology are displayed as determined by the operational status, for example, taxiing or ready for takeoff.

    [0023] When a determination is made that an aircraft is in a taxi mode, for example, low ground speed, not on a runway, or selected by an aircrew member, one or more of the symbology for the airborne mode are faded or removed. Information critical for configuring the aircraft for takeoff, for example, rotation speed, airspeed, flight director modes, and current altitude remain displayed, although less prominently (faded) so images and symbols more important for taxi operations are more readily discerned. Likewise, when a determination is made that the aircraft is positioned for takeoff, the information for configuring the aircraft for takeoff are predominately displayed.

    [0024] Those of skill in the art will appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. Some of the embodiments and implementations are described above in terms of functional and/or logical block components (or modules) and various processing steps. However, it should be appreciated that such block components (or modules) may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention. For example, an embodiment of a system or a component may employ various integrated circuit components, e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices. In addition, those skilled in the art will appreciate that embodiments described herein are merely exemplary implementations.

    [0025] The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. The word "exemplary" is used exclusively herein to mean "serving as an example, instance, or illustration." Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments. Any of the above devices are exemplary, non-limiting examples of a computer readable storage medium.

    [0026] The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal. Any of the above devices are exemplary, non-limiting examples of a computer readable storage medium

    [0027] In this document, relational terms such as first and second, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Numerical ordinals such as "first," "second," "third," etc. simply denote different singles of a plurality and do not imply any order or sequence unless specifically defined by the claim language. The sequence of the text in any of the claims does not imply that process steps must be performed in a temporal or logical order according to such sequence unless it is specifically defined by the language of the claim. The process steps may be interchanged in any order without departing from the scope of the invention as long as such an interchange does not contradict the claim language and is not logically nonsensical.

    [0028] Furthermore, depending on the context, words such as "connect" or "coupled to" used in describing a relationship between different elements do not imply that a direct physical connection must be made between these elements. For example, two elements may be connected to each other physically, electronically, logically, or in any other manner, through one or more additional elements.

    [0029] The following detailed description is merely exemplary in nature and is not intended to limit application and uses. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.

    [0030] Although embodiments described herein are specific to aircraft display systems, it should be recognized that principles of the inventive subject matter may be applied to other vehicle display systems.

    [0031] FIG. 1 is a simplified functional block diagram illustrating a system 10 for displaying multiple overlaid images to a pilot of an aircraft during flight. System 10 includes multiple components each of which may be configured for mounting to aircraft. In some embodiments, system 10 may be a self-contained system such that each of the components described below are contained in a single housing and are dedicated exclusively to serving the functions of system 10, while in other embodiments, the various components described below may be standalone components or they maybe components that are used as part of other systems and which are configured to be used as a shared resource between such other systems and system 10.

    [0032] In the embodiment illustrated in FIG. 1, system 10 includes an enhanced vision system 12 (EVS), a Global Positioning System and avionics sensors 14, an ground status decisioner 18, a synthetic vision system 16 (SVS), a ground status sensor 17, a display unit 20, a display screen 22, and a processor 24. In equivalent embodiments, system 10 may include either additional or fewer components.

    [0033] EVS 12 includes one or more sensors adapted for mounting to an aircraft and configured to detect a light signature originating from outside the aircraft. The sensor may include a visible low light television camera, an infrared camera, and millimeter wave (MMW) camera or any other light sensing device capable of detecting light either within, or outside of the visible spectrum. The light signature may include any light that is projected from, or that is reflected off of any terrain or object outside of the aircraft. In one application, the light signature includes, but is not limited to, signature components from lights that are positioned adjacent to a runway and which are pointed to facilitate approach runway position and bearing identification..

    [0034] EVS 12 is configured to generate a first signal 26 and to provide first signal 26 to processor 24. First signal 26 is an electronic signal that includes information corresponding to the light signature detected by EVS 12 and which would enable processor 24 to render an image of the light signature (referred to hereinafter as "the EVS image"). For example, if the detected light signature includes components of a distant runway and runway approach lights adjacent to the runway, first signal 26 would enable processor 24 to render an image of the distant runway and the adjacent runway approach lights. In some embodiments, EVS 12 may include a dedicated processor, a microprocessor, circuitry, or some other processing component that is configured to receive input from the one or more light detecting sensors and to generate first signal 26 using such inputs. In other embodiments, EVS 12 may not include a dedicated processor, microprocessor, circuitry or other processing component, in which case the first signal 26 would comprise unprocessed inputs from the light detecting sensors of EVS 12 for processing by processor(s) 24.

    [0035] SVS 16 is configured to generate a three-dimensional image of the topographical environment around the aircraft (referred to hereinafter as "the SVS image") generate a third signal 30 carrying SVS Image and to provide the third signal 30 to processor 24. In some embodiments, SVS 16 may include a data storage device (not shown) containing a data base with data relating to the topography, which may represent either or both landscape and/or man-made structures located along the aircraft's flight path. In some embodiments, the data storage device may contain such data for an entire geographical region such as a state, a country or continent. SVS 16 may also access or include a position determining unit that is configured to determine the position of the aircraft with respect to the surface of the earth. Such a position determining unit may include, but is not limited to, a GPS system, an inertial navigation system, and the like. SVS 16 may be configured to receive course, speed and other avionics inputs relating to the aircraft's heading, altitude and attitude. In equivalent embodiments, SVS 16 may receive the GPS and avionics inputs from the aircraft's GPS and avionics sensors 14.

    [0036] In some embodiments, SVS 16 may include a dedicated processor, microprocessor, or other circuitry that is configured to take the information pertaining to the position, attitude, altitude and heading of the aircraft and to utilize the information available in the database to generate a third signal 30 that may be utilized by processor 24 to render a three-dimensional image of the topographical environment through which the aircraft is flying. In other embodiments, SVS 16 may not include a dedicated processor, microprocessor or other circuitry. In such embodiments, third signal 30 would contain the unprocessed sensor information and location data which could then be utilized by processor 24 to render the three dimensional image of the topographical environment. In either event, SVS 16 is configured to provide third signal 30 to processor 24.

    [0037] The ground status sensor 17 senses whether the aircraft is in a taxi mode or a "ready" for takeoff mode. This sensing of a taxi mode (ground operations) may include, for example, sensing a lower ground speed, weight on wheels, sensing a distance from the runway, or as selected by an aircrew member. The ground status sensor 17 may alternatively be incorporated into the GPS/Avionics system 14.

    [0038] The display unit 20, as noted above, in response to display commands supplied from the processor 404, selectively renders on the display screen 22 various textual, graphic, and/or iconic information, and thereby supply visual feedback to the operator. It will be appreciated that the display unit 20 may be implemented using any one of numerous known display screens suitable for rendering textual, graphic, and/or iconic information in a format viewable by the operator. Non-limiting examples of such displays include various cathode ray tube (CRT) displays, and various flat panel displays such as various types of LCD (liquid crystal display) and TFT (thin film transistor) displays. The display unit 20 may additionally be implemented as a panel mounted display, a HUD (head-up display) projection, or any one of numerous known technologies. It is additionally noted that the display unit 20 may be configured as any one of numerous types of aircraft flight deck displays. For example, it may be configured as a multi-function display, a horizontal situation indicator, or a vertical situation indicator. In the depicted embodiment, however, the display unit 20 is configured as a primary flight display (PFD). In some embodiments, display unit 20 may include multiple display screens 22 and system 10 may include multiple display units 20.

    [0039] Processor 24 may be any type of computer, computer system, microprocessor, collection of logic devices, or any other analog or digital circuitry that is configured to calculate, and/or to perform algorithms, and/or to execute software applications, and/or to execute sub-routines, and/or to be loaded with and to execute any type of computer program. Processor 24 may comprise a single processor or a plurality of processors acting in concert. In some embodiments, processor 24 may be dedicated for use exclusively with system 10 while in other embodiments processor 24 may be shared with other systems on board the aircraft. In still other embodiments, processor 24 may be integrated into any of the other components of system 10. For example, in some embodiments, processor 24 may be a component of SVS 16 or of EVS 12.

    [0040] Processor 24 is communicatively coupled to EVS 12, GPS/avionics sensors 14, and SVS 16, and is operatively coupled to display unit 20. Such communicative and operative connections may be effected through the use of any suitable means of transmission, including both wired and wireless connections. For example, each component may be physically connected to processor 24 via a coaxial cable or via any other type of wired connection effective to convey electronic signals. In other embodiments, each component may be communicatively connected to processor 24 across a bus or other similar communication corridor. Examples of suitable wireless connections include, but are not limited to, a Bluetooth connection, a Wi-Fi connection, an infrared connection or the like.

    [0041] Being communicatively and/or operatively coupled with EVS 12, GPS/avionics sensors 14, SVS 16, and display unit 20, provides processor 24 with a pathway for the receipt and transmission of signals, commands, instructions, and interrogations to and from each of the other components. Processor 24 is configured (i.e., loaded with and being capable of executing suitable computer code, software and/or applications) to interact with and to coordinate with each of the other components of system 10 for the purpose of overlaying images corresponding to first signal 26 and third signal 30. For example, in the illustrated embodiment, processor 24 is configured to receive third signal 30 from SVS 16 and to send a command to display unit 20 instructing display unit 20 to display a corresponding SVS image on a display screen 22. Processor 24 may also be configured o receive a second signal 28 from the aircraft's GPs/Avionics system 14.

    [0042] Processor 24 is also configured to receive first signal 26 from EVS 12 and to send a command to display unit 20 instructing display unit 20 to display the EVS image on display screen 22. Processor 24 is further configured to command display unit 20 to overlay the semi-transparent EVS image on top of the SVS image. Furthermore, because the EVS image actually presents what is along the aircraft's flight path, processor 24 may give precedence to the EVS image and may, depending on the operational status, command display unit 20 to obscure or gradually fade out portions of the SVS image, the EVS image, and/or the symmbology.

    [0043] Processor 24 is in operable communication with the ground status decisioner 18. Ground status decisioner 18 may be a suitably configured and programmed computing device or in equivalent embodiments may be a software module executing on the processor 24. In other embodiments, the ground status decisioner 18 may comprise firmware or may be manifested as a combination of hardware, firmware and software. In still other embodiments, the ground status decisioner 18 and the processor 24 may work together in tandem.

    [0044] Referring to FIG. 2, the display 200 presents a view in front of the aircraft when in a takeoff mode or is determined to be on a runway. Merged EV image 202, SV image 204, and iconic avionics data 206 are displayed. The EV image 202 includes detected features such as a runway center line 212 and the SV image 204 includes features such as the terrain 214 and sometimes synthetically generated runway features such as centerlines and taxiways when database information is available. In the combined display such as in Fig.2, EV data or sensed data will take precedence of any synthetically generated data, i.e., the EV image portion on the display is opaque for the taxi operation mode. Iconic avionics data 206 includes, for example, an airspeed indicator 216, an altitude indicator 218, compass and heading indicator 220, pitch scale 222, and an attitude indicator 224.

    [0045] FIG. 3 is a view as presented in the taxi mode in accordance with one exemplary embodiment. While some features or part of the features, such as iconic avionics data 206 including the trend information of airspeed indicator 216, the trend information of altitude indicator 218, and most of the pitch ladder within center of the display 210 have been removed except for the digital display of ground speed 302 and altitude 304 (which may be displayed less predominately) and some part of the pitch ladder not interfering with taxi environment displays. Display information added when in the taxi mode include triangles 308 for indicating if the current aircraft position is centered on the taxiway guidance centerline 310 and optionally a taxiway diagram 306 on the primary flight display . The triangles 308 as shown indicate the aircraft is to the left of the taxiway centerline detected by the EVS camera and is beyond a pre-determined acceptable distance. Such a distance limit is aircraft dependent so as to provide pilots an indication that aircraft main gears will stay within the taxiway boundaries. If the aircraft was on the centerline 310, the center triangle 312 would be on the centerline 310. If the aircraft was left of the centerline 310, but within an acceptable distance, while the center triangle 312 would be left of the centerline 310, the right triangle 314 would be on or right of the centerline 310. The separation of the triangles on the display can be determined by projecting the real world maximum limit allowed to deviate from the taxiway centerline to the display via typical perspective view transformation for a given aircraft height above ground and with the symbology displayed at, for example, 10 degree down looking pitch ladder position.

    [0046] FIGS. 4 and 5 are flow charts that illustrate an exemplary embodiment of a display process 400, 500 suitable for use with a flight deck display system such as the display system 10. Processes 400, 500 represents implementations of a method for displaying aircraft traffic information on an onboard display element of a host aircraft. The various tasks performed in connection with processes 400, 500 may be performed by software, hardware, firmware, or any combination thereof. For illustrative purposes, the following description of processes 400, 500 may refer to elements mentioned above in connection with FIGS. 4, 5. In practice, portions of processes 400, 500 may be performed by different elements of the described system, e.g., a processor, a display element, or a data communication component. It should be appreciated that processes 400, 500 may include any number of additional or alternative tasks, the tasks shown in FIGS. 4, 5 need not be performed in the illustrated order, and processes 400, 500 may be incorporated into a more comprehensive procedure or process having additional functionality not described in detail herein. Moreover, one or more of the tasks shown in FIGS. 4, 5 could be omitted from an embodiment of the processes 400, 500 as long as the intended overall functionality remains intact.

    [0047] FIG. 4 is a flow diagram of a first exemplary method of operating the vehicle display system 10 in accordance with an exemplary embodiment. In an exemplary embodiment, a vision system 12, 14, 16 generates 402 video images, each comprising a plurality of features, step 402. A determination is made 404 whether the aircraft is in a taxi mode. The plurality of features is displayed 406, and at least one of the features is diminished 408 when in the taxi mode.

    [0048] FIG. 5 is a flow diagram of a second exemplary method of operating the vehicle display system 10 in accordance with an exemplary embodiment. In an exemplary embodiment, an EV vision system 12 generates 502 EV video images, each comprising a plurality of features in response to data supplied by the enhanced image sensor. The generation of EV images 204 comprises, for example, the generation of infrared images or millimeter-wave images. In the same timeframe, an SV database containing information regarding terrain and objects for a taxi path of the vehicle are accessed and SV images, each comprising a plurality of SV features, are generated 504. Travel conditions symbology provided by the GPS/Avionics system 14, including information such as aircraft position, heading, present altitude, speed, are generated 506. The ground status sensor 17 senses 508 if the aircraft is in a taxi mode. If so, selected features are diminished 510 before displaying the EV features, SV features, and symbology.

    [0049] In another exemplary embodiment, the SV and EV images are displayed in different formats, enabling the operator viewing the displayed images to distinguish between the two images. The two formats may be represented, for example, by different colors. In other embodiments, the different formats may include, for example, different brightness.

    [0050] While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, of the invention which is only defined by the appended claims. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the inventive subject matter, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the inventive subject matter as set forth in the appended claims.


    Claims

    1. An aircraft display system (10) for displaying images to an aircrew of an aircraft, comprising:

    a vision system (12, 16) configured to generate (402; 502, 504) a plurality of features;

    a ground status system (17) configured to determine (404, 508) whether the aircraft is in a taxi mode or a takeoff mode, wherein the taxi mode includes when the aircraft has a low ground speed or is not on a runway, or is selected by an aircrew member, and the takeoff mode includes when the aircraft is positioned for takeoff;

    an avionics system configured to generate avionics data;

    a processor (24) coupled to the vision system (12, 16) and the ground status system (17) and configured to:

    when the aircraft is in the taxi mode,

    fade or disable (408; 510, 512) a first feature of the avionics data, the first feature being selected from one of the group consisting of rotation speed, airspeed, flight director modes, and altitude;

    disable a second feature (224) comprising attitude display elements; and

    enable a first symbol (314), the first symbol (314) indicating a proximity of the aircraft with respect to the taxiway centerline (212; 310); and when the aircraft is in the take-off mode, disable the first symbol (314), brighten or enable the first feature and enable the second feature; and a display (20) configured to display (406; 512) the plurality of features generated by the vision system, the first symbol (314) enabled, the first feature faded or disabled when in the taxi mode, and to display the first feature brightened or enabled and the second feature enabled when in the take-off mode.


     
    2. The aircraft display system (10) of claim 1 wherein the ground status system (17) is configured to:

    determine whether the aircraft is in a taxi mode or a takeoff mode by detecting weight on the wheels and speed the aircraft is traveling.


     
    3. The aircraft display system (10) of claim 1 wherein the ground status system is configured to determine whether the aircraft is in a taxi mode or a takeoff mode by determining the distance of the aircraft to a runway.
     
    4. The aircraft display system of claim 1 wherein the ground status system (17) is configured to sense a selection by the aircrew.
     
    5. The aircraft display system of claim 1 wherein the processor (24) is further configured to:

    provide a second symbol (312) in the taxi mode indicating the taxiway centerline (212; 310) within a sensed image is near to a line along a direction aligned with the aircraft centerline.


     
    6. The aircraft display system of claim 1 wherein the processor (24) is further configured to:

    provide at least one second symbol (312) in the taxi mode indicating the distance of the aircraft to the runway or the taxiway centerline (212; 310), wherein the distance between the first (314) and second (312) symbols represents a distance on the ground.


     
    7. The aircraft display system of claim 1 wherein the processor (24) is further configured to:

    provide the first symbol (314) and a second symbol (312) in the taxi mode indicating a distance of the aircraft to the taxiway or runway centerline upon which the aircraft is positioned, wherein the distance between the first (314) and second (312) symbols is determined by a size of the aircraft and width of the taxiway or the runway.


     
    8. The aircraft display system of claim 1 wherein the processor (24) is further configured to:

    provide at least one second symbol (312) in the taxi mode indicating the proximity of the aircraft to the runway or taxiway centerline (212; 310), wherein the distance between the first (314) and second (312) symbols is received via a user interface from the aircrew.


     
    9. A method (400; 500) for displaying features on a display (20) in an aircraft, comprising:

    generating (402; 502, 504) a plurality of images by an vision system, each image comprising a plurality of features;

    generating avionics data by an avionics system;

    determining (404; 508) whether the aircraft is in a taxi mode or a takeoff mode,

    wherein the taxi mode includes when the aircraft has a low ground speed, or is not on a runway, or is selected by an aircrew member, and the takeoff mode includes when the aircraft is positioned for takeoff;
    when the aircraft is in taxi mode, fading or disabling (408; 510, 512) at least one of the avionics data;
    disabling at least one of the other avionics data; and
    enabling a first symbol (314), the first symbol (314) indicating a distance of the aircraft with respect to a taxiway centerline (212; 310). When the aircraft is in the take-off mode, disabling the first symbol (314), brightening or enabling the first feature and enabling the second feature; and displaying (406; 512) the plurality of features generated by the vision system, the first symbol (314) enabled, the first feature faded or disabled when in the taxi mode, and displaying the first feature brightened or enabled and the second feature enabled when in the take-off mode.
     
    10. The method of claim 9 wherein the determining step comprises:

    determining whether the aircraft is in a taxi mode or a takeoff mode by detecting weight on the wheels and speed the aircraft is traveling.


     
    11. The method of claim 9 wherein the determining step comprises:

    determining whether the aircraft is in a taxi mode or a takeoff mode by determining the distance of the aircraft to a runway.


     
    12. The method of claim 9 further comprising:

    providing a second symbol (312) in the taxi mode indicating the plurality of images are near to a line along a direction aligned with the aircraft centerline.


     
    13. The method of claim 9 further comprising:

    providing one second symbol (312) in the taxi mode indicating a distance of the aircraft to the runway centerline (212; 310), wherein the a distance between the first (314) and second (312) symbols represents a distance on the ground.


     
    14. The method of claim 9 further comprising:

    providing a second symbol (312) in the taxi mode indicating a distance of the aircraft to the runway centerline (212; 310), wherein the a distance between the first (314) and second (312) symbols is determined by a size of the aircraft.


     
    15. The method of claim 9 further comprising:

    providing at least one second symbol (312) in the taxi mode indicating a distance of the aircraft to the runway centerline (212; 310), wherein the distance between the first (314) and second (312) symbols is received via a user interface from the aircrew.


     


    Ansprüche

    1. Flugzeuganzeigesystem (10), das dazu bestimmt ist, einer Besatzung eines Flugzeugs Bilder anzuzeigen, und aufweist:

    ein Sichtsystem (12, 16), das dafür ausgelegt ist, mehrere Merkmale zu erzeugen (402; 502, 504);

    ein Bodenzustandssystem (17), das dafür ausgelegt ist zu bestimmen (404, 508), ob sich das Flugzeug in einem Rollmodus oder in einem Startmodus befindet, wobei der Rollmodus vorliegt, wenn das Flugzeug eine niedrige Geschwindigkeit relativ zum Boden hat oder sich nicht auf einer Start- und Landebahn befindet oder wenn er von einem Besatzungsmitglied gewählt wird, und der Startmodus vorliegt, wenn das Flugzeug für den Start positioniert ist;

    ein Avioniksystem, das dafür ausgelegt ist, Avionikdaten zu erzeugen;

    einen Prozessor (24), der mit dem Sichtsystem (12, 16) und dem Bodenzustandssystem (17) gekoppelt ist und dafür ausgelegt ist:

    wenn sich das Flugzeug im Rollmodus befindet,

    ein erstes Merkmal der Avionikdaten verblassen zu lassen oder zu deaktivieren (408; 510, 512), wobei das erste Merkmal aus der Gruppe ausgewählt ist, welche aus Drehzahl, Geschwindigkeit relativ zur Luft, Flight-Director-Modi und Flughöhe besteht;

    ein zweites Merkmal (224) zu deaktivieren, das Fluglage-Anzeigeelemente beinhaltet; und

    ein erstes Symbol (314) zu aktivieren, wobei das erste Symbol (314) eine Nähe des Flugzeugs in Bezug auf die Rollbahn-Mittellinie (212; 310) anzeigt; und

    wenn sich das Flugzeug im Startmodus befindet, das erste Symbol (314) zu deaktivieren, das erste Merkmal aufleuchten zu lassen oder zu aktivieren und das zweite Merkmal zu aktivieren; und

    eine Anzeigeeinrichtung (20), die dafür ausgelegt ist, die von dem Sichtsystem erzeugten mehreren Merkmale anzuzeigen (406; 512), das erste Symbol (314) aktiviert, das erste Merkmal verblasst oder deaktiviert anzuzeigen, wenn der Rollmodus vorliegt, und das erste Merkmal erleuchtet oder aktiviert und das zweite Merkmal aktiviert anzuzeigen, wenn der Startmodus vorliegt.


     
    2. Flugzeuganzeigesystem (10) nach Anspruch 1, wobei das Bodenzustandssystem (17) dafür ausgelegt ist:

    zu bestimmen, ob sich das Flugzeug in einem Rollmodus oder einem Startmodus befindet, indem es das Gewicht auf den Rädern und die Geschwindigkeit, mit der sich das Flugzeug bewegt, erfasst.


     
    3. Flugzeuganzeigesystem (10) nach Anspruch 1, wobei das Bodenzustandssystem dafür ausgelegt ist zu bestimmen, ob sich das Flugzeug in einem Rollmodus oder in einem Startmodus befindet, indem es die Entfernung des Flugzeugs zu einer Start- und Landebahn bestimmt.
     
    4. Flugzeuganzeigesystem nach Anspruch 1, wobei das Bodenzustandssystem (17) dafür ausgelegt ist, eine von der Besatzung vorgenommene Auswahl zu erfassen.
     
    5. Flugzeuganzeigesystem nach Anspruch 1, wobei der Prozessor (24) ferner dafür ausgelegt ist:

    ein zweites Symbol (312) im Rollmodus bereitzustellen, welches anzeigt, dass die Rollbahn-Mittellinie (212; 310) innerhalb eines erfassten Bildes nahe einer Linie entlang einer Richtung verläuft, die mit der Flugzeugmittellinie fluchtet.


     
    6. Flugzeuganzeigesystem nach Anspruch 1, wobei der Prozessor (24) ferner dafür ausgelegt ist:

    wenigstens ein zweites Symbol (312) im Rollmodus bereitzustellen, welches die Entfernung des Flugzeugs zu der Start- und Landebahn- oder der Rollbahn-Mittellinie (212; 310) anzeigt, wobei der Abstand zwischen dem ersten (314) und dem zweiten (312) Symbol eine Entfernung auf dem Boden repräsentiert.


     
    7. Flugzeuganzeigesystem nach Anspruch 1, wobei der Prozessor (24) ferner dafür ausgelegt ist:

    das erste Symbol (314) und ein zweites Symbol (312) im Rollmodus bereitzustellen, welche eine Entfernung des Flugzeugs zu der Rollbahn- oder Start- und Landebahn-Mittellinie, auf welcher das Flugzeug positioniert ist, anzeigen, wobei der Abstand zwischen dem ersten (314) und dem zweiten (312) Symbol durch eine Größe des Flugzeugs und eine Breite der Rollbahn oder der Start- und Landebahn bestimmt wird.


     
    8. Flugzeuganzeigesystem nach Anspruch 1, wobei der Prozessor (24) ferner dafür ausgelegt ist:

    wenigstens ein zweites Symbol (312) im Rollmodus bereitzustellen, welches die Nähe des Flugzeugs zu der Start- und Landebahn- oder Rollbahn-Mittellinie (212; 310) anzeigt, wobei der Abstand zwischen dem ersten (314) und zweiten (312) Symbol über eine Benutzeroberfläche von der Besatzung empfangen wird.


     
    9. Verfahren (400; 500) zum Anzeigen von Merkmalen auf einer Anzeigeeinrichtung (20) in einem Flugzeug, welches beinhaltet:

    Erzeugen (402; 502, 504) mehrerer Bilder durch ein Sichtsystem, wobei jedes Bild mehrere Merkmale aufweist;

    Erzeugen von Avionikdaten durch ein Avioniksystem;

    Bestimmen (404; 508), ob sich das Flugzeug in einem Rollmodus oder in einem Startmodus befindet, wobei der Rollmodus vorliegt, wenn das Flugzeug eine niedrige Geschwindigkeit relativ zum Boden hat oder sich nicht auf einer Start- und Landebahn befindet oder wenn er von einem Besatzungsmitglied gewählt wird, und der Startmodus vorliegt, wenn das Flugzeug für den Start positioniert ist;

    wenn sich das Flugzeug im Rollmodus befindet,

    Verblassenlassen oder Deaktivieren (408; 510, 512) wenigstens eines Elements der Avionikdaten;

    Deaktivieren wenigstens eines Elements der anderen Avionikdaten; und

    Aktivieren eines ersten Symbols (314), wobei das erste Symbol (314) eine Entfernung des Flugzeugs in Bezug auf eine Rollbahn-Mittellinie (212; 310) anzeigt;

    wenn sich das Flugzeug im Startmodus befindet, Deaktivieren des ersten Symbols (314), Aufleuchtenlassen oder Aktivieren des ersten Merkmals und Aktivieren des zweiten Merkmals; und

    Anzeigen (406; 512) der von dem Sichtsystem erzeugten mehreren Merkmale, Anzeigen des ersten Symbols (314) aktiviert, des ersten Merkmals verblasst oder deaktiviert, wenn der Rollmodus vorliegt, und Anzeigen des ersten Merkmals erleuchtet oder aktiviert und des zweiten Merkmals aktiviert, wenn der Startmodus vorliegt.


     
    10. Verfahren nach Anspruch 9, wobei der Schritt des Bestimmens beinhaltet:

    Bestimmen, ob sich das Flugzeug in einem Rollmodus oder einem Startmodus befindet, durch Erfassen des Gewichts auf den Rädern und der Geschwindigkeit, mit der sich das Flugzeug bewegt.


     
    11. Verfahren nach Anspruch 9, wobei der Schritt des Bestimmens beinhaltet:

    Bestimmen, ob sich das Flugzeug in einem Rollmodus oder einem Startmodus befindet, durch Bestimmen der Entfernung des Flugzeugs zu einer Start- und Landebahn.


     
    12. Verfahren nach Anspruch 9, welches ferner beinhaltet:

    Bereitstellen eines zweiten Symbols (312) im Rollmodus, welches anzeigt, dass sich die mehreren Bilder nahe einer Linie entlang einer Richtung befinden, die mit der Flugzeugmittellinie fluchtet.


     
    13. Verfahren nach Anspruch 9, welches ferner beinhaltet:

    Bereitstellen eines zweiten Symbols (312) im Rollmodus, welches eine Entfernung des Flugzeugs zu der Start- und Landebahn-Mittellinie (212; 310) anzeigt, wobei der Abstand zwischen dem ersten (314) und dem zweiten (312) Symbol eine Entfernung auf dem Boden repräsentiert.


     
    14. Verfahren nach Anspruch 9, welches ferner beinhaltet:

    Bereitstellen eines zweiten Symbols (312) im Rollmodus, welches eine Entfernung des Flugzeugs zu der Start- und Landebahn-Mittellinie (212; 310) anzeigt, wobei der Abstand zwischen dem ersten (314) und dem zweiten (312) Symbol durch eine Größe des Flugzeugs bestimmt wird.


     
    15. Verfahren nach Anspruch 9, welches ferner beinhaltet:

    Bereitstellen wenigstens eines zweiten Symbols (312) im Rollmodus, welches eine Entfernung des Flugzeugs zu der Start- und Landebahn-Mittellinie (212; 310) anzeigt, wobei der Abstand zwischen dem ersten (314) und dem zweiten (312) Symbol über eine Benutzeroberfläche von der Besatzung empfangen wird.


     


    Revendications

    1. Système d'affichage d'aéronef (10) pour afficher des images à l'attention des membres d'équipage d'un aéronef, comprenant :

    un système de visionnage (12, 16) configuré pour générer (402 ; 502, 504) une pluralité de caractéristiques ;

    un système de statut au sol (17) configuré pour déterminer (404, 508) si l'aéronef est en mode circulation au sol ou en mode décollage, où le mode circulation au sol inclut les moments où l'aéronef a une vitesse au sol faible ou ne se trouve pas sur une piste, ou est sélectionné par un membre d'équipage, et le mode décollage inclut les moments où l'aéronef est en position de décollage ;

    un système avionique configuré pour générer des données avioniques ;

    un processeur (24) couplé au système de visionnage (12, 16) et au système de statut au sol (17) et configuré pour :

    lorsque l'aéronef est en mode circulation au sol,

    atténuer ou désactiver (408 ; 510, 512) une première caractéristique des données avioniques, la première caractéristique étant sélectionnée parmi une caractéristique du groupe constitué des caractéristiques suivantes : une vitesse de rotation, une vitesse aérodynamique, des modes de directeur de vol, et une altitude ;

    désactiver une seconde caractéristique (224) comprenant des éléments d'affichage d'assiette ;

    activer un premier symbole (314), le premier symbole (314) indiquant une proximité de l'aéronef par rapport à l'axe central de la voie de circulation (212 ; 310) ; et

    lorsque l'aéronef se trouve en mode décollage, désactiver le premier symbole (314), éclaircir ou activer la première caractéristique et activer la seconde caractéristique ; et

    un écran (20) configuré pour afficher (406 ; 512) la pluralité de caractéristiques générées par le système de visionnage, le premier symbole (314) activé, la première caractéristique atténuée ou désactivée lorsqu'il est en mode circulation au sol, et pour afficher la première caractéristique éclaircie ou activée et la seconde caractéristique activée lorsqu'il est en mode décollage.


     
    2. Système d'affichage d'aéronef (10) selon la revendication 1, dans lequel le système de statut au sol (17) est configuré pour :

    déterminer si l'aéronef est en mode circulation au sol ou en mode décollage en détectant un poids sur les roues et une vitesse de déplacement de l'aéronef.


     
    3. Système d'affichage d'aéronef (10) selon la revendication 1, dans lequel le système de statut au sol est configuré pour déterminer si l'aéronef est en mode circulation au sol ou en mode décollage en déterminant la distance de l'aéronef par rapport à la piste.
     
    4. Système d'affichage d'aéronef selon la revendication 1, dans lequel le système de statut au sol (17) est configuré pour capter une sélection par l'équipage.
     
    5. Système d'affichage d'aéronef selon la revendication 1, dans lequel le processeur (24) est en outre configuré pour :

    fournir un second symbole (312) en mode circulation au sol indiquant que l'axe central de la voie de circulation (212 ; 310) dans une image captée est proche d'une ligne le long d'une direction alignée sur l'axe central de l'aéronef.


     
    6. Système d'affichage d'aéronef selon la revendication 1, dans lequel le processeur (24) est en outre configuré pour :

    fournir au moins un second symbole (312) en mode circulation au sol indiquant la distance de l'aéronef par rapport à la piste ou à l'axe central de la voie de circulation (212 ; 310), où la distance entre les premier (314) et second (312) symboles représente une distance au sol.


     
    7. Système d'affichage d'aéronef selon la revendication 1, dans lequel le processeur (24) est en outre configuré pour :

    fournir le premier symbole (314) et un second symbole (312) en mode circulation au sol indiquant une distance de l'aéronef par rapport à la voie de circulation ou à l'axe central de la piste sur laquelle l'aéronef est positionné, où la distance entre les premier (314) et second (312) symboles est déterminée par une taille de l'aéronef et une largeur de la voie de circulation ou de la piste.


     
    8. Système d'affichage d'aéronef selon la revendication 1, dans lequel le processeur (24) est en outre configuré pour :

    fournir au moins un second symbole (312) en mode circulation au sol indiquant la proximité de l'aéronef par rapport à la piste ou à l'axe central de la voie de circulation (212 ; 310), où la distance entre les premier (314) et second (312) symboles est reçue via une interface d'utilisateur depuis l'équipage.


     
    9. Procédé (400 ; 500) pour afficher des caractéristiques sur un écran (20) d'un aéronef, comprenant les étapes suivantes :

    générer (402 ; 502, 504) une pluralité d'images par un système de visionnage, chaque image comprenant une pluralité de caractéristiques ;

    générer des données avioniques par un système avionique ;

    déterminer (404 ; 508) si l'aéronef est en mode circulation au sol ou en mode décollage, où le mode circulation au sol inclut les moments où l'aéronef a une vitesse au sol faible ou n'est pas sur une piste, ou est sélectionné par un membre d'équipage, et le mode décollage inclut les moments où l'aéronef est en position de décollage ;

    lorsque l'aéronef est en mode circulation au sol,

    atténuer ou désactiver (408 ; 510, 512) au moins une des données avioniques ;

    désactiver au moins une des autres données avioniques ; et

    activer un premier symbole (314), le premier symbole (314) indiquant une distance de l'aéronef par rapport à un axe central de la voie de circulation (212 ; 310) ; et

    lorsque l'aéronef est en mode décollage, désactiver le premier symbole (314), éclaircir ou activer la première caractéristique et activer la seconde caractéristique ; et

    afficher (406 ; 512) la pluralité de caractéristiques générées par le système de visionnage, le premier symbole (314) activé, la première caractéristique atténuée ou désactivée lorsqu'il est en mode circulation au sol, et afficher la première caractéristique éclaircie ou activée et la seconde caractéristique activée lorsqu'il est en mode décollage.


     
    10. Procédé selon la revendication 9, dans lequel l'étape de détermination comprend l'étape suivante :

    déterminer si l'aéronef est en mode circulation au sol ou en mode décollage en détectant un poids sur les roues et une vitesse de déplacement de l'aéronef.


     
    11. Procédé selon la revendication 9, dans lequel l'étape de détermination comprend l'étape suivante :

    déterminer si l'aéronef est en mode circulation au sol ou en mode décollage en déterminant la distance de l'aéronef par rapport à la piste.


     
    12. Procédé selon la revendication 9 comprenant en outre l'étape suivante :

    fournir un second symbole (312) en mode circulation au sol indiquant que la pluralité d'images est proche d'une ligne le long d'une direction alignée avec l'axe central de l'aéronef.


     
    13. Procédé selon la revendication 9, comprenant en outre l'étape suivante :

    fournir au moins un second symbole (312) en mode circulation au sol indiquant une distance de l'aéronef par rapport à l'axe central de la piste (212 ; 310), où la distance entre les premier (314) et second (312) symboles représente une distance au sol.


     
    14. Procédé selon la revendication 9, comprenant en outre l'étape suivante :

    fournir un second symbole (312) en mode circulation au sol indiquant une distance de l'aéronef par rapport à l'axe central de la piste (212 ; 310), où la distance entre les premier (314) et second (312) symboles est déterminée par une taille de l'aéronef.


     
    15. Procédé selon la revendication 9, comprenant en outre l'étape suivante :

    fournir au moins un second symbole (312) en mode circulation au sol indiquant une distance de l'aéronef par rapport à l'axe central de la piste (212 ; 310), où la distance entre les premier (314) et second (312) symboles est reçue via une interface d'utilisateur depuis l'équipage.


     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description