(19)
(11)EP 2 613 609 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 11840033.2

(22)Date of filing:  20.10.2011
(51)International Patent Classification (IPC): 
H05B 33/10(2006.01)
G06Q 50/04(2012.01)
G06Q 10/00(2012.01)
B09B 5/00(2006.01)
H01L 51/50(2006.01)
(86)International application number:
PCT/JP2011/074158
(87)International publication number:
WO 2012/063616 (18.05.2012 Gazette  2012/20)

(54)

COLLECTION AND RECYCLING SYSTEM FOR ORGANIC EL LIGHTING APPARATUS

SAMMEL- UND VERWERTUNGSSYSTEM FÜR ORGANISCHE EL-BELEUCHTUNGSVORRICHTUNGEN

SYSTÈME DE COLLECTE ET DE RECYCLAGE POUR APPAREIL D'ÉCLAIRAGE EL ORGANIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 08.11.2010 JP 2010249736

(43)Date of publication of application:
10.07.2013 Bulletin 2013/28

(73)Proprietor: Nec Lighting, Ltd.
Tokyo 105-0014 (JP)

(72)Inventor:
  • SAKAGUCHI, Yoshikazu
    Tokyo 1050014 (JP)

(74)Representative: Gill, David Alan 
WP Thompson 138 Fetter Lane
London EC4A 1BT
London EC4A 1BT (GB)


(56)References cited: : 
EP-A1- 2 241 381
JP-A- 2000 181 958
JP-A- 2003 157 372
US-A1- 2009 321 511
WO-A1-2009/087908
JP-A- 2000 181 958
US-A1- 2008 059 970
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a collecting/renewing system of an organic EL lighting device.

    Background Art



    [0002] In an organic EL panel used in an organic EL lighting device, on a transparent supporting board including a transparent conductive film such as ITO as an anode, for example, a hole injecting layer, a hole transporting layer, a RGB emitting layer, a hole block layer, and an electron transporting layer are formed; and, furthermore, an electron injecting material and a cathode electrode are formed to form an organic EL element part. Then, a sealing/heat-transferring agent, etc. are applied thereon, and, for example, an opposing glass (sealing cap) is bonded to a peripheral part thereof with a sealing agent, thereby blocking it from the external environment.

    [0003] Generally, a sputtering apparatus is used for formation of a transparent electrode, a vapor deposition apparatus is used for formation of an organic film, and an application apparatus such as an ODF, screen, ink-jet (IJ), or dispenser is used for formation of the sealing agent or the heat transferring agent. For example, IJ or a slit applying apparatus is used for a polymer-based organic EL element; and, for example, a CVD apparatus is used for carrying out film sealing. Furthermore, when preceding processes including board cleaning thereof, patterning steps, etc. and post-processes including formation into modules, etc. are included, an extremely large number of steps are carried out as well as semiconductor and FPD.

    [0004] When organic EL lighting is viewed from the aspect of a business, organic EL panels require various materials such as organic materials, inorganic materials, metals, and adhesive agents. Moreover, used members and used materials are extremely expensive, and manufacturing apparatuses thereof are also expensive. When the cost of materials used in manufacturing, fixed cost, depreciation cost, etc. are taken into consideration, the price or selling price thereof is about several times higher compared with that of an existing lighting device. Therefore, it is not easy to establish a profitable business using organic EL parts. Specifically, when a list showing the breakdown of manufacturing cost is viewed, fixed cost is around 30%, and variable cost is around 65%.

    [0005] Furthermore, in view of details of the manufacturing cost, most of the variable cost is occupied by material cost of direct material cost, which is a main cause of the high manufacturing cost. The material cost rate is high as described above, and the unit prices of materials per se are extremely high. Therefore, it is thought to be almost impossible that EL lighting can used to establish a profitable business having normal manufacturing, distribution and sales channels.

    [0006] Look at the list showing the breakdown of manufacturing cost, organic EL element materials occupy around 70%, an anode transparent electrode board is next to that and is around 20%, and sealing members such as sealing boards are around 5%. Therefore, reducing the cost of the organic EL element materials, anode boards, and sealing members is important for reducing the cost of the organic EL panel. A measure for reducing the organic EL element material cost rate will be reviewed. It is difficult to directly reutilize organic materials after brightness has deteriorated. However, an organic metal complex using a noble metal such as platinum (Pt) or iridium (Ir) as a central metal is used as a light emitting material dopant; lithium (Li), which is a rare earth metal and is becoming more difficult to obtain since demands therefor have been significantly increased recently for lithium ion batteries, is used as an electron injecting material; and a high-purity metal of, for example, aluminum (Al) or silver (Ag) is used in a cathode. Reducing the cost of the material cost by cost reduction and a quantity effect upon material production and collecting/recycling or diverting the materials can largely contribute to cost reduction. The anode-equipped transparent electrode board and the sealing members can be reutilized, which can largely contribute to cost reduction.

    [0007] A method of collecting a metal contained in a light emitting element utilizing electroluminescence is disclosed in Patent Literature 1.

    Citation List


    Patent Literature



    [0008]  Patent Literature 1: JP2008-144269A

    [0009] Also JP 2000181958 A discloses a recycle system arranged to synthetically manage the recycle process in relation to component materials up to, and including, a final discard step and including recycle information storing means, a recycle/recovery predicting means and means for setting a recycle production plan.

    Summary of Invention


    Technical Problem



    [0010] However, in the technique disclosed in Patent Literature 1, the metal contained in the light emitting element utilizing electroluminescence is merely collected, and collection as a whole organic EL lighting device is not taken into consideration.

    [0011] The present invention has been accomplished in view of the problem of the techniques as described above, and it is an object to provide a system for collecting/recycling organic EL lighting device that is capable of reducing cost, effectively utilizing resources, and reducing the amount of discarded objects and is friendly to the environment of the earth.

    Solution to Problem



    [0012] According to the present invention there is provided a collecting/ recycling system of an organic EL lighting device using an organic EL panel comprising:

    information collecting means that obtain the status of the organic EL panel used in a market;

    information processing means that processes and stores, as collection/ recycling information, information about a re-utilizable member, part and material of the organic EL panel;

    collection/ recycling predicting means that predict the timing and quantity of the re-utilizable member, part and material of the organic EL panel whose status has been obtained by said information collecting means, to be distributed to a recycling step based on the collection/ recycling information stored in said information processing means; and

    production plan setting means that set a production plan of a recycled organic EL panel for recycling an organic EL using part or all the re-utilizable member/ part/ material based on the timing and quantity predicted by said collection/ recycling predicting means;

    wherein said information collecting means: captures pass-over of the product life of the organic EL panel as a status of usage of the organic EL panel by using a timekeeping timer, a count-up counter, an optical sensor to observe brightness reduction, and information processing devices thereof which are incorporated in the system.


    Advantageous Effects of Invention



    [0013] As explained above, in the present invention, organic EL panels can be effectively collected and reutilized; therefore, manufacturing costs can be reduced, and the sales price thereof can be reduced as a result. Therefore, the price that is equivalent to that of other lighting devices can be achieved, which makes it profitable as a business. Moreover, by virtue of reduction in the amount of new energy consumption and reduction in the amount of discarded objects, this is friendly to the environment of the earth and is effective for preventing contamination.

    [0014] Obtaining information regarding history of products becomes easy, referencing the history information for designing new products is useful for improving reliability of the products, and improvements such as extended lives of products can be made.

    [0015] Moreover, while organic EL panels are reutilized, members can be shared in designing stages of products, and designing of the products in which recycling processes are easy is facilitated.

    [0016] Furthermore, for a lighting business of the organic EL lighting panels, the total volumes of the organic EL panels of, for example: the shipped volume of the organic EL panels, the volumes distributed to a market such as an in-use volume in the market, the collection rate of a life-passed-over products after usage, and the renewable volume/rate including those of parts are found out, and an optimal production plan can be made. The volume of shipment is small and there is almost no collection/ recycle at the beginning of the above described market; however, by estimating the probability of recycled panels and modules including parts in advance, set prices can be prevented, and price competitiveness can be obtained against other lighting devices.

    Brief Description of Drawings



    [0017] 

    [Figure 1] Figure 1 is a graph showing price rate transitions of the cases in which collected/renewed products are mixed with shipment/new products.

    [Figure 2] Figure 2 is a drawing showing one exemplary embodiment of a collecting/ recycling system of organic EL lighting devices.

    [Figure 3] Figure 3 is a drawing showing a specific business method in the collecting/renewing system of the organic EL lighting device shown in Figure 2.

    [Figure 4] Figure 4 is a drawing showing a specific business method in the collecting/renewing system of the organic EL lighting device shown in Figure 2

    [Figure 5] Figure 5 is a drawing showing a specific business method in the collecting/renewing system of the organic EL lighting device shown in Figure 2

    [Figure 6] Figure 6 is a drawing showing an example of a disassembling process of the organic EL panel used in the present invention.

    [Figure 7] Figure 7 is a drawing showing an example of the recycling process of the organic EL panel used in the present invention.


    Description of Embodiments



    [0018] Hereinafter, exemplary embodiments will be explained with reference to drawings.

    [0019] First, a cost composition was analyzed in order to solve the above described problem. In view of cost composition rates of an organic EL panel, a variable cost rate (material cost rate) is around 65%, a fixed cost rate (amortization cost, etc.) is around 30%, wherein these two rates are extremely large. Therefore, reducing the material cost rate is the most effective for improving a business environment. The most effective means for reducing the material cost rate is to reduce material cost; however, it is almost impossible since the number of material suppliers related to organic EL is extremely small. As another means, so-called recycling is carried out by collecting and recycling organic EL panels, which have been shipped to a market, when the panels reach the end of the lives thereof.

    [0020] Herein, the reutilization rate of incorporation of collected products thereinto and price transitions with respect to the prices thereof of the case in which all of the products in that case were new were studied with respect to the total shipment number of organic EL panels.

    [0021] Figure 1 is a graph showing price rate transitions of the cases in which collected/renewed products are mixed with shipment/new products.

    [0022] As shown in Figure 1, the price of organic EL panels in the case in which all of the shipped panels had been collected and 70% thereof in terms of the cost thereof in comparison with the price thereof could be renewed and reused was reduced to about half of the case in which all products were newly manufactured. In view of this, it is recognized that way to improve collection efficiency and the way to carry out recycling and reusing organic panels is important.

    [0023] Therefore, member cost is reduced by collecting and recycling organic EL panels used in organic EL lighting devices when the product lives (brightness lives) thereof have elapsed and reutilizing or recycling members, and part of processes is omitted. In this case, the organic EL panels may be sold in stores or rented or leased like conventional cases.

    [0024] The collection rate of the organic EL panels can be increased by collecting the organic EL panels, which have been sold in stores, convenience stores, etc., by carry-in reversely in the stores, etc. The panels may be collected by collection boxes, postal/delivery services, etc. (freight collect may be employed as a means for increasing the collection rate), specified agents and representatives may carry out management from sales to collection, or a management department (company) may be provided to make rental or lease contracts.

    [0025] In this process, in order to collect the organic EL panels, which have been manufactured, sold, used, and have passed over the product (brightness) lives thereof, at high efficiency and distribute them to recycling steps, a traceability system capable of managing the status of usage of the organic EL panels after manufacturing and sales is built. Moreover, a recycling system capable of systematically producing the collected organic EL panels as recycled/reused/reutilized products. In an actual plan, if the status of the organic EL panels used in a market is captured in a temporal manner in real-time, the timing of collection and the volume of collection can be estimated from the product life time; therefore, production plans of the rates, production number, etc. of recycled products and new products can be made appropriate. As a result, the organic EL panels in the market can be collected and efficiently systematically utilized as parts/materials of renewed products, and, as a whole organic EL lighting business, the price of the organic EL panels can be caused to be equivalent to or less than those of other lighting devices.

    [0026] Figure 2 is a drawing showing one exemplary embodiment of a system for collecting/ recycling organic EL lighting devices.

    [0027] As shown in Figure 2, the present exemplary embodiment includes information collecting section 10, information processing section 20, collection/ recycling predicting section 30, and production plan setting section 40.

    [0028] Information collecting section 10 obtains the status of the organic EL panels used in the market by finding out and managing the information and total volume of the organic EL panels as regard: the production, shipment, and sales volumes of the organic EL panels and the status of usage of in the market; the volume distributed in the market such as an in-use volume; the collection rate of the products whose product lives have expired after being used; the recycling rate and volume for disassembling and reutilizing including parts and materials of the panels; and the volume to be discarded.

    [0029] Information processing section 20 processes the information about reutilizeable members, parts, and materials of the organic EL panels as collection/ recycling information and stores the information in database 21.

    [0030] Based on the collection/ recycling information stored in database 21 of information processing section 20, collection/ recycling predicting section 30 predicts the timing and quantity of the reutilizable members, parts, and materials of the organic EL panels, whose the status has been obtained by information collecting section 10, to be distributed to a recycling step.

    [0031] Production plan setting section 40: sets a production plan of recycled organic EL panels using the reutilizable members, parts, and materials based on the timing and quantity predicted by collection/renewal predicting section 30; finds out the volume of the organic EL panels to be newly produced and sold and the volume to be collected, recycled, and sold; sets a production plan; and sets prices.

    [0032] Hereinafter, a specific business method in a collecting/ recycling system of the organic EL lighting device configured in the above described manner will be explained.

    [0033] Figure 3 to Figure 5 are drawings showing the specific business method in the system for collecting/ recycling organic EL lighting device shown in Figure 2.

    [0034] First, a timekeeping timer, a count-up counter, an optical sensor, which observes brightness reduction, etc. and information processing devices thereof are incorporated, and the status of usage of the organic EL panel is captured so as to recognize pass-over of the product life (brightness life) of the organic EL panel. The information thereof is configured to enable recognition of the product life (brightness life) by blinking the organic EL panel or by displaying in a display device at the place of a user who uses the organic EL panel. The state of usage of the organic EL panel is obtained by information collecting section 10; however, a rental/lease system may be employed, and the status of usage may be managed by a rental/lease company. If a specified agent/ representative system is employed, a company of may carry out the management.

    [0035] Comprehensive information management is carried out by a producing/recycling company of the organic EL lighting device. In information processing section 20, which is owned by the producing/ recycling company of the organic EL lighting device, the information about the reutilizable members, parts, and materials of the organic EL panel is stored in database 21 as collection/ recycling information. In collection/ recycling predicting section 30, based on the collection/ recycling information stored in database 21 of information processing section 20, the transfer volume/timing, etc. of the organic EL panel in production, sales, user, collection, and recycling are captured and predicted in real time for the reutilizable members, parts, and materials of the organic EL panel for whose status has been obtained by information collecting section 10. Then, in production plan setting section 40, which is owned by the producing/recycling company of the organic lighting device, based on the timing and quantity predicted by collection/ recycling predicting section 30, a production plan of recycled organic EL panels using the reutilizable members, parts, and materials is set, and the volume of organic EL panels to be newly produced and sold and the volume thereof to be collected, recycled, and sold are understood to set a production plan and set prices. A sales and collection system is operated by a lease or rental company or department, wherein the status of usage by the user and the status of stock are reliably captured. Note that the management of the status of steps of production, sales, user, collection, and recycling may be carried out by the company which manages/operates the information as described above, or that the management may be carried out by a department of a production company which manages/operates the information.

    [0036] Hereinafter, a disassembling process of the collected organic EL panel will be explained.

    [0037] Figure 6 is a drawing showing an example of the disassembling process of the organic EL panel used in the present invention.

    [0038] As shown in Figure 6, the collected organic EL panel is subjected to recycling of members and materials in a member recycling route. In the recycling step, the collected organic EL panel is disassembled and separated into reusable members/parts, reutilizable members/parts, and materials to be recycled. Specifically, circuits and wiring members are separated and collected from the collected organic EL panel, whose product/brightness life has expired, and distributed for reutilization. The organic EL panel is subjected to mutual peel-off between an organic El element board and a sealing board, and the boards are sent to recycling steps respectively. In the organic EL element board, organic layers and electron injection layers and metal cathodes stacked thereon are separated from the board by using a solvent and alkaline cleaning. The separated and collected materials can be distributed to recycling of noble metals such as Ir and Pt or recycling steps of Li, Al, Ag, etc. The organic El element board thereafter can be recycled and reutilized as a board with a transparent electrode (ITO) after steps of dry ashing, etc. The other one, i.e., the sealing board is subjected to peel-off of a seal member between boards by solvent cleaning, dry ashing, etc. and is recycled and reutilized as a sealing board.

    [0039] Hereinafter, a recycling process of the organic EL panel will be explained.

    [0040] Figure 7 is a drawing showing an example of the recycling process of the organic EL panel used in the present invention.

    [0041] As shown in Figure 7, when the organic El panel is to be recycled, first, an organic layer using an organic EL material of collected and recycled Ir or Pt is formed on the recycled transparent-electrode-equipped board by vacuum vapor deposition or application. Then, an electron injection layer is generated by using recycled Li, and a cathode is formed by using recycled Al or Ag, thereby preparing organic EL elements. Then, a sealing agent, a heat-transfer material, etc. are applied to the recycled sealing board, and the board is bonded with the organic EL element board to provide an organic EL panel. Recycled wiring and circuits are further attached to the organic El panel to complete a recycled organic EL module.

    [0042] In the present exemplary embodiment, recycled products are used as all of the materials and members; however, an optimum distribution may be employed, for example, by partially using recycled products and partially using new products depending on characteristics, owned members, etc.

    (Another Exemplary Embodiment)



    [0043] As another exemplary embodiment, it is conceivable to employ a configuration of incorporating a timekeeping timer, information processing means thereof, and communication means, and capturing the status of usage of the organic EL panel through, for example, an Internet line so that pass-over of the product life (brightness life) of the organic EL panel can be recognized. Information management/operation may be carried out by a producing/recycling company or may be carried out by a department or company which carries out information management/operation. The information of pass-over of the life is delivered to and recognized by a user who uses the organic El panel. As a way to determine whether the product life has expired, the organic El panel may be blinked or an attempt can be made activate the device display as well as the above description. Also, contact to communication means such as a personal computer or a mobile phone may be made. As collection of the organic El panel, the panel may be directly set to the producing/recycling company by the postal service or the like, or the panel may be collected by the operating department/company.

    [0044] Separation of the collected organic EL panel, recycling of members, and panel recycling steps can be carried out in a manner similar to that described above. If members are shared by various organic EL lighting models in designing stages of, recycling efficiency is improved, and the effect of price reduction is also large.

    [0045] Examples of utilization of a surface emitting device include backlights of, for example, organic EL lighting devices and liquid crystal displays.


    Claims

    1. A collecting/ recycling system of an organic EL lighting device using an organic EL panel comprising:

    information collecting means that obtain the status of the organic EL panel used in a market;

    information processing means that processes and stores, as collection/ recycling information, information about a re-utilizable member, part and material of the organic EL panel;

    collection/ recycling predicting means that predict the timing and quantity of the re-utilizable member, part and material of the organic EL panel whose status has been obtained by said information collecting means, to be distributed to a recycling step based on the collection/ recycling information stored in said information processing means; and

    production plan setting means that set a production plan of a recycled organic EL panel for recycling an organic EL using part or all the re-utilizable member/ part/ material based on the timing and quantity predicted by said collection/ recycling predicting means;

    wherein said information collecting means: captures pass-over of the product life of the organic EL panel as a status of usage of the organic EL panel by using a timekeeping timer, a count-up counter, an optical sensor to observe brightness reduction, and information processing devices thereof which are incorporated in the system.


     
    2. The collecting/ recycling system of an organic EL lighting device according to claim 1, wherein
    said information collecting means finds out and manages information and a total volume of the organic EL panel as regards: production, shipment and sales volume of the organic EL panel; status of usage in the market; volume distributed in the market such as in-use volume; collection rate of a product that has passed over a life thereof after usage; recycling rate and volume for disassembling and reutilizing including a part and material of the panel; and a volume to be discarded; and
    said production plan setting means: finds out the volume of organic EL panels to be newly produced and sold and the volume of organic EL panels to be collected, recycled, and sold; sets the production plan that includes the organic EL panels to be newly produced and sold and the organic EL panels to be collected, recycled and sold; and carries out price setting.
     
    3. The collecting/ recycling system of an organic EL lighting device according to claim 1, wherein
    said information means informs pass-over of the product life of the organic EL panel by blinking the organic EL panel or by displaying in a display device.
     


    Ansprüche

    1. Sammel/Recycling-System einer organischen EL-Beleuchtungsvorrichtung mit einer organischen EL-Tafel, das Folgendes umfasst:

    ein Informationssammelmittel, das den Status der in einem Markt benutzten organischen EL-Tafel einholt;

    ein Informationsverarbeitungsmittel, das als Sammel/Recycling-Informationen Informationen über ein wiederverwendbares Element, Teil und Material der organischen EL-Tafel verarbeitet und speichert;

    ein Sammel/Recycling-Vorhersagemittel, das Zeit und Menge des wiederverwendbaren Elements, Teils und Materials der organischen EL-Tafel vorhersagt, deren Status von dem genannten Informationssammelmittel eingeholt wurde, zur Weiterleitung zu einem Recycling-Schritt auf der Basis der in dem genannten Informationsverarbeitungsmittel gespeicherten Sammel/Recycling-Informationen; und

    ein Produktionsplaneinstellmittel, das einen Produktionsplan einer recycelten organischen EL-Tafel für das Recycling einer organischen EL unter Verwendung aller oder eines Teils der wiederverwendbaren Elemente/Teile/Materialien auf der Basis der von dem genannten Sammel/Recycling-Vorhersagemittel vorhergesagten Zeit und Menge einstellt;

    wobei das genannte Informationssammelmittel eine Überschreitung der Produktlebensdauer der organischen EL-Tafel als einen Gebrauchsstatus der organischen EL-Tafel anhand der Benutzung eines Zeitmessmittels, eines Zählers, eines optischen Sensors zum Beobachten von Helligkeitsreduzierung und in dem System integrierten Informationsverarbeitungsgeräten davon erfasst.


     
    2. Sammel/Recycling-System einer organischen EL-Beleuchtungsvorrichtung nach Anspruch 1, wobei
    das genannte Informationssammelmittel Informationen und ein Gesamtvolumen der organischen EL-Tafel in Bezug auf Folgendes ermittelt und verwaltet: Produktions-, Transport- und Verkaufsvolumen der organischen EL-Tafel; Gebrauchsstatus im Markt; im Markt verteiltes Volumen wie Gebrauchsvolumen; Sammelrate eines Produkts, das nach dem Gebrauch eine Lebensdauer überschritten hat; Recycling-Rate und Volumen zum Zerlegen und Wiederverwenden von Teilen und Materialien der Tafel; und ein zu entsorgendes Volumen; und
    das genannte Produktionsplaneinstellmittel das Volumen von neu zu produzierenden und zu verkaufenden organischen EL-Tafeln sowie das Volumen von zu sammelnden, zu recycelnden und zu verkaufenden organischen EL-Panels ermittelt; den Produktionsplan einstellt, der die neu zu produzierenden und zu verkaufenden organischen EL-Tafeln und die zu sammelnden, zu recycelnden und zu verkaufenden organischen EL-Tafeln beinhaltet; und eine Preisfindung durchführt.
     
    3. Sammel/Recycling-System einer organischen EL-Beleuchtungsvorrichtung nach Anspruch 1, wobei
    das genannte Informationsmittel die Überschreitung der Produktlebensdauer der organischen EL-Tafel durch Blinkenlassen der organischen EL-Tafel oder durch Anzeigen in einem Anzeigegerät mitteilt.
     


    Revendications

    1. Un système de collecte/recyclage d'un dispositif d'éclairage EL organique utilisant un panneau EL organique comprenant :

    un moyen de collecte d'informations qui obtient l'état du panneau EL organique utilisé dans un marché,

    un moyen de traitement d'informations qui traite et conserve en mémoire, sous la forme d'informations de collecte/recyclage, des informations relatives à un élément, une partie et un matériau réutilisables du panneau EL organique,

    un moyen de prédiction de collecte/recyclage qui prédit l'heure et la quantité de l'élément, de la partie et du matériau réutilisables du panneau EL organique dont l'état a été obtenu par ledit moyen de collecte d'informations à distribuer à une opération de recyclage en fonction des informations de collecte/recyclage conservées en mémoire dans ledit moyen de traitement d'informations, et

    un moyen d'établissement de plan de production qui établit un plan de production d'un panneau EL organique recyclé destiné au recyclage d'un EL organique en utilisant une partie ou la totalité de l'élément/partie/matériau réutilisables en fonction de l'heure et de la quantité prédite par ledit moyen de prédiction de collecte/recyclage,

    où ledit moyen de collecte d'informations : capture le passage de la vie de produit du panneau EL organique sous la forme d'un état d'utilisation du panneau EL organique au moyen d'une horloge de chronométrage, d'un compteur progressif, d'un capteur optique de façon à observer une réduction de luminosité, et des dispositifs de traitement d'informations de ceux-ci qui sont incorporés dans le système.


     
    2. Le système de collecte/recyclage d'un dispositif d'éclairage EL organique selon la Revendication 1, où
    ledit moyen de collecte d'informations trouve et gère des informations et un volume total du panneau EL organique concernant : la production, l'expédition et le volume de vente du panneau EL organique, l'état d'utilisation dans le marché, le volume distribué dans le marché tel que volume en utilisation, vitesse de collecte d'un produit qui a dépassé une vie de celui-ci après utilisation, vitesse et volume de recyclage à des fins de désassemblage et réutilisation comprenant une partie et un matériau du panneau, et un volume à rejeter, et
    ledit moyen d'établissement de plan de production : trouve le volume de panneaux EL organiques à produire et vendre nouvellement et le volume de panneaux EL organiques à collecter, recycler et vendre, établit le plan de production qui comprend les panneaux EL organiques à produire et vendre nouvellement et les panneaux EL organiques à collecter, recycler et vendre, et effectue une fixation de prix.
     
    3. Le système de collecte/recyclage d'un dispositif d'éclairage EL organique selon la Revendication 1, où
    ledit moyen d'information informe du passage de la vie de produit du panneau EL organique par le clignotement du panneau EL organique ou par l'affichage dans un dispositif d'affichage.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description