(19)
(11)EP 2 618 169 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
02.09.2020 Bulletin 2020/36

(21)Application number: 12190548.3

(22)Date of filing:  30.10.2012
(51)International Patent Classification (IPC): 
G01R 33/00(2006.01)
G01R 33/09(2006.01)

(54)

Magnetic Sensor

Magnetischer Sensor

Capteur magnétique


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.01.2012 JP 2012007663

(43)Date of publication of application:
24.07.2013 Bulletin 2013/30

(73)Proprietor: Alps Alpine Co., Ltd.
Tokyo 145-8501 (JP)

(72)Inventors:
  • Obana, Masayuki
    Tokyo 145-8501 (JP)
  • Ando, Hideto
    Tokyo 145-8501 (JP)
  • Sugihara, Shinji
    Tokyo 145-8501 (JP)

(74)Representative: Schmitt-Nilson Schraud Waibel Wohlfrom Patentanwälte Partnerschaft mbB 
Pelkovenstraße 143
80992 München
80992 München (DE)


(56)References cited: : 
WO-A1-2011/089978
US-A1- 2009 290 264
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a magnetic sensor in which hysteresis and linearity are improved.

    [0002] This application claims benefit of Japanese Patent Application No. 2012-007663 filed on January 18, 2012.

    [0003] A magnetic sensor using magneto-resistive sensors can be used as, for example, a terrestrial magnetic sensor which detects terrestrial magnetism incorporated into a portable apparatus such as a mobile phone.

    [0004] However, when an exceptionally strong magnetic field acts in a magnetic sensor which is provided with a bias layer used to supply a bias magnetic field to element sections from the outside, problems occur in that outputs (middle point potential differences) are changed after the applied magnetic field is removed and in that hysteresis and linearity deteriorate because the magnetization of the bias layer is destroyed or easily fluctuated due to the action of the strong magnetic field.

    [0005] WO2009/084433 and WO2011/089978 are examples of the related art.

    [0006] US 2009/290264 A1 discloses a magnetoresistive device of the current perpendicular to plane (CPP) structure and a magnetic disk system. The magnetoresistive device comprises a magnetoresistive unit, and a first, substantially soft magnetic shield layer positioned below and a second, substantially soft magnetic shield layer positioned above, which are located and formed such that the magnetoresistive effect is sandwiched between them frorn above and below, with a sense current applied in the stacking direction.

    [0007] The present invention relates a magnetic sensor according to the appended claims.

    [0008] The present invention provides a magnetic sensor in which hysteresis and linearity are improved.

    [0009] According to the invention, when the electrode layer is arranged on the upper surface of the element section which faces the joint section and from which the protection layer is removed, it is possible to cause the corresponding section to not have sensitivity as the element section. Further, according to an aspect of the invention, the element section is formed in a long shape in the X1-X2 direction without using a bias layer, thus the element section can be arranged other than magnetic field detection, and it is possible to appropriately obtain the shape anisotropy effect. As described above, compared to the related art, the tolerance of the strong magnetic field is excellent and it is possible to improve hysteresis and linearity.

    [0010] In the invention, the electrode layer may be arranged in a state in which a part of the protection layer remains. In the configuration, in which, from the bottom, the fixed magnetic layer, the non-magnetic material layer, the free magnetic layer, and the protection layer are laminated in order, the free magnetic layer is not planed, the shape anisotropy effect is effectively exhibited, thus the magnetization direction of the free magnetic layer in the non-magnetic field state is stabilized in a state in which the magnetization direction appropriately faces the X1-X2 direction, and it is possible to appropriately improve hysteresis and linearity properties.

    [0011] Further, according to the aspect of the invention, the electrode layer may be arranged on an upper surface of the element section in the X1-X2 direction at an interval, and the interval may be the section where the third section of the first soft magnetic body faces the second section of the second soft magnetic body via the gap, and the first section of each of the soft magnetic bodies may face the electrode layer in the thickness direction in a contactless state. The electrode layer may be simply arranged. In addition, a section which causes current to flow into the element section corresponds to only the section which faces each of the soft magnetic bodies through the gap, thus it is possible to appropriately improve hysteresis and linearity.

    Fig. 1 is a schematic diagram (plan view) illustrating a magnetic sensor according to an embodiment;

    Fig. 2 is a partially enlarged plan view illustrating the magnetic sensor in which a part of a first magneto-resistive sensor and a fourth magneto-resistive sensor is enlarged;

    Fig. 3 is a partially enlarged plan view illustrating the magnetic sensor in which a part of a second magneto-resistive sensor and a third magneto-resistive sensor is enlarged;

    Fig. 4 is a partially enlarged plan view illustrating a magnetic sensor, in which a part of the first magneto-resistive sensor and the fourth magneto-resistive sensor is enlarged, according to an embodiment which is different from Fig. 2;

    Fig. 5 is a partially enlarged longitudinal section view illustrating the magneto-resistive sensor taken along the A-A line of Fig. 2 and viewed from the arrow direction;

    Fig. 6 is a partially enlarged longitudinal section view illustrating the magnetic sensor taken along B-B line of Fig. 2 and viewed from the arrow direction;

    Fig. 7 is a partially enlarged plan view illustrating a magnetic sensor according to a comparative example; and

    Fig. 8A is a graph illustrating the relationship between a gap and middle point deviation (hysteresis) according to an example and the comparative example, and Fig. 8B is a graph illustrating the relationship between a gap and linearity in according to the example and the comparative example.



    [0012] Fig. 1 is a schematic diagram (plan view) illustrating a magnetic sensor according to an embodiment. Fig. 2 is a partially enlarged plan view illustrating the magnetic sensor in which a part of a first magneto-resistive sensor and a fourth magneto-resistive sensor is enlarged. Fig. 3 is a partially enlarged plan view illustrating the magnetic sensor in which a part of a second magneto-resistive sensor and a third magneto-resistive sensor is enlarged. Fig. 4 is a partially enlarged plan view illustrating a magnetic sensor, in which a part of a first magneto-resistive sensor and a fourth magneto-resistive sensor is enlarged according to an embodiment which is different from Fig. 2. Fig. 5 is a partially enlarged longitudinal section view illustrating the magneto-resistive sensor taken along the A-A line of Fig. 2 and viewed from the arrow direction. Fig. 6 is a partially enlarged longitudinal section view illustrating the magnetic sensor taken along the B-B line of Fig. 2 and viewed from the arrow direction.

    [0013] A magnetic sensor S which includes magneto-resistive sensors according to an embodiment is provided as a terrestrial magnetic sensor which is mounted on a portable apparatus, for example, a mobile phone.

    [0014] An X1-X2 direction and a Y1-Y2 direction shown in each drawing indicate two directions which are perpendicular to each other in a horizontal plane, and a Z direction indicates a direction which is perpendicular to the horizontal plane.

    [0015] As shown in Fig. 1, in the magnetic sensor S, a magneto-resistive sensor forming region 13 is divided into four regions by the X1-X2 direction and the Y1-Y2 direction based on the center 13a, and a first magneto-resistive sensor 1, a second magneto-resistive sensor 2, a third magneto-resistive sensor 3, and a fourth magneto-resistive sensor 4 are formed in the respective regions. Meanwhile, as described later, each of the magneto-resistive sensors 1 to 4 is formed in a meander shape in such a way that element sections and electrode layers in a row. However, in Fig. 1, the shape within each of the magneto-resistive sensors 1 to 4 is abbreviated and shown.

    [0016] As shown in Fig. 1, the first magneto-resistive sensor 1 and the third magneto-resistive sensor 3 are connected to an input terminal (Vdd) 5. In addition, the second magneto-resistive sensor 2 and the fourth magneto-resistive sensor 4 are connected to a ground terminal (GND) 6. In addition, a first output terminal (V1) 7 is connected between the first magneto-resistive sensor 1 and the second magneto-resistive sensor 2. In addition, a second output terminal (V2) 8 is connected between the third magneto-resistive sensor 3 and the fourth magneto-resistive sensor 4. As described above, a bridge circuit is configured with the first magneto-resistive sensor 1, the second magneto-resistive sensor 2, the third magneto-resistive sensor 3, and the fourth magneto-resistive sensor 4.

    [0017] Each of the magneto-resistive sensors 1 to 4 includes a plurality of element sections, a plurality of electrode layers, and a plurality of soft magnetic bodies which do not come in contact with the respective element sections and the respective electrode layers.

    [0018] Fig. 2 shows the first magneto-resistive sensor 1 and the fourth magneto-resistive sensor 4 which are enlarged.

    [0019] As shown in Fig. 2, the plurality of element sections 9 are arranged at intervals in the Y1-Y2 direction. Each of the element sections 9 is configured with a non-bias structure (a structure in which a hard bias layer is not provided), and is formed to be extended in a straight line shape or a strip shape in the X1-X2 direction. The width dimension of each of the element sections 9 (the dimension in the Y1-Y2 direction) is approximately 0.5 to 5 µm, the height dimension of each of the element sections 9 (the dimension in the X1-X2 direction) is approximately 2 to 300 µm, and the aspect ratio of each of the element sections 9 (height dimension/width dimension) is approximately 4 to 600.

    [0020] Each of the element sections 9 is formed on the insulated foundation layer 19 of the surface of a substrate 15 as shown in Fig. 5 (partial longitudinal section view).

    [0021] Each of the element sections 9 is formed in such a way that, for example, from the bottom, a non-magnetic foundation layer 60, a fixed magnetic layer 61, a non-magnetic layer 62, a free magnetic layer 63, and a protection layer 64 are laminated in order. Each of the layers included in the element section 9 is formed by, for example, sputtering.

    [0022] In the embodiment shown in Fig. 5, the fixed magnetic layer 61 has a laminated ferri structure which includes a first magnetic layer 61a, a second magnetic layer 61b, and a non-magnetic interlayer 61c interposed between the first magnetic layer 61a and the second magnetic layer 61b. Each of the magnetic layers 61a and 61b is formed of a soft magnetic material such as a CoFe alloy (cobalt ferroalloy). The non-magnetic interlayer 61c is formed of Ru. The non-magnetic layer 62 is formed of a non-magnetic material such as Cu (copper). The free magnetic layer 63 is formed of a soft magnetic material such as a NiFe alloy (nickel ferroalloy). The protection layer 64 is formed of Ta (tantalum).

    [0023] In the embodiment, the fixed magnetic layer 61 is the laminated ferri structure, that is, a self-pin end shape in which the first magnetic layer 61a and the second magnetic layer 61b are magnetized and fixed in anti-parallel. In the self-pin end shape shown in Fig. 5, an anti-ferromagnetic layer is not used. Therefore, each of the magnetic layers 61a and 61c which are included in the fixed magnetic layer 61 is magnetized and fixed without performing a heat treatment in the magnetic field. Meanwhile, it is sufficient that the magnetization fixing power of each of the magnetic layers 61a and 61b has an amplitude in which magnetization fluctuation does not occur even when an external magnetic field is acting.

    [0024] However, the laminated structure of the element section 9 shown in Fig. 5 is an example. For example, a configuration which has a laminated structure in which, from the bottom, an anti-ferromagnetic layer, a fixed magnetic layer, a non-magnetic layer, a free magnetic layer, and a protection layer are laminated in order can be provided. In this configuration, the magnetization direction of the fixed magnetic layer can be fixed by generating an exchange-coupled magnetic field (Hex) between the anti-ferromagnetic layer and the fixed magnetic layer. In addition, a laminated structure, in which, from the bottom, the free magnetic layer 63, the non-magnetic material layer 62, the fixed magnetic layer 61, and the protection layer 64 are laminated in order may be provided. In addition, the fixed magnetic layer 61 can be configured such that the first magnetic layer 61a and the second magnetic layer 61b have the same magnetization amplitude and that the magnetization directions thereof are anti-parallel.

    [0025] The fixed magnetization direction of the second magnetic layer 61b (P; sensitivity axis direction) included in each element section 9 is the Y2 direction (refer to Figs. 2 and 5). The fixed magnetization direction (P) is the fixed magnetization direction of the fixed magnetic layer 61.

    [0026] As shown in Fig. 2, the electrode layers 16 are arranged on the upper surface of each element section 9 at intervals of T1 in the X1-X2 direction.

    [0027] As shown in Fig. 5, at the location in which each electrode layer 16 is formed, a part of the protection layer 64 is cut, and the electrode layer 16 is formed on a depressed section 64a which is formed as a result of cutting.

    [0028] The electrode layer 16 is formed of a non-magnetic conductive material which has lower electrical resistance than those of the element section 9 and the protection layer 64. Although the material of the electrode layer 16 is not particularly limited thereto, the electrode layer 16 is formed using a single layer formed of a non-magnetic conductive material, such as Al, Cu, Ti or Cr, or the laminated structure thereof. For example, the electrode layer 16 is formed of a laminated structure including Cu and Al.

    [0029] As shown in Fig. 2, the width dimension of each electrode layer 16 (dimension of Y1-Y2) is greater than the width dimension of each element section 9. Therefore, the electrical resistance of the electrode layer 16 can be reduced. In addition, when each of the electrode layers 16 is formed on the upper surface of each element section 9, the margin of the alignment can be widely obtained.

    [0030] Further, as described above, a part of the protection layer 64 can be cut by performing, for example, etching. The process of cutting a part of the protection layer 64 is performed to particularly cut an oxidation layer on the surface of the protection layer 64. Therefore, the conductivity between the element section 9 and the electrode layer 16 can be excellent. In addition, when the surface of the protection layer 64 is cut by performing etching, it is preferable to control such that a part of the protection layer 64 remains as shown in Fig. 5. Therefore, the free magnetic layer 63 is not affected by the etching and is not removed.

    [0031] As shown in Fig. 2, the plurality of element sections 9 are arranged in parallel in the Y1-Y2 direction, and the end portions of each element section 9 in the X1-X2 direction are electrically connected by the electrode layers (conductive layers) 16, thereby forming a meander shape.

    [0032] As shown in Fig. 2, each soft magnetic body 12 is configured to include a first section 12e which is extended in the Y1-Y2 direction, a second section 12f which is extended in the X1 direction from the Y2 side end portion of the first section 12e and which is arranged on the Y2 side of the element section 9 in a plan view, and a third section 12g which is extended in the X2 direction from the Y1 side end portion of the first section 12e and which is arranged on the Y1 side of the element section 9 in a plan view. Each soft magnetic body 12 is formed of NiFe, CoFe, CoFeSiB, or CoZrNb.

    [0033] The first section 12e of each soft magnetic body 12 is separated from each electrode layer 16 and arranged above the electrode layer 16 while intersecting the electrode layer, as shown in Fig. 2. As shown in Fig. 5, an insulation layer 25 is interposed between the first section 12e and the electrode layer 16, and the first section 12e does not electrically come into contact with the electrode layer 16.

    [0034] Here, in two soft magnetic bodies 12 which are adjacent in the X1-X2 direction in Fig. 2, a soft magnetic body 12 which is arranged on the X1 side is defined as a first soft magnetic body 12a, and a soft magnetic body 12 which is arranged on the X2 side is defined as a second soft magnetic body 12b. In Fig. 2, numerical symbols 12a and 12b are attached to only a group of soft magnetic bodies 12. Meanwhile, the soft magnetic body 12 which is defined as the second soft magnetic body 12b in Fig. 2 becomes the first soft magnetic body 12a because the soft magnetic body 12 is located on the X1 side with respect to a soft magnetic body 12 which is adjacent on the X2 side when viewed from the soft magnetic body 12. That is, with respect to each soft magnetic body, when a pair configured with a soft magnetic body which is adjacent on the left side thereof is considered, the soft magnetic body corresponds to the soft magnetic body 12b. When a pair configured with a soft magnetic body which is adjacent on the right side thereof is considered, the soft magnetic body corresponds to the soft magnetic body 12a. Therefore, from among the soft magnetic bodies 12 arranged in the X1-X2 direction at intervals, all the soft magnetic bodies 12, excepting a soft magnetic body 12 which is arranged furthest to the X1 side and a soft magnetic body 12 which is arranged furthest to the X2 side, may be either the first soft magnetic body 12a or the second soft magnetic body 12b.

    [0035] Further, when the first soft magnetic body 12a and the second soft magnetic body 12b which are symbolized in Fig. 2 are viewed as representatives, a part of the third section 12g of the first soft magnetic body 12a faces a part of the second section 12f of the second soft magnetic body 12b in the Y1-Y2 direction through a gap G. As shown in Fig. 2, no electrode layer 16 is arranged at a location where the third section 12g of the first soft magnetic body 12a faces the second section 12f of the second soft magnetic body 12b through the gap G. That is, in a plan view, the gap G is located at the location corresponding to the interval T1 between the electrode layers 16.

    [0036] As shown in Fig. 2, when an external magnetic field H1 acts toward the X2 direction, the external magnetic field H1 forms a magnetic path M1 of an arrow which passes through the soft magnetic bodies 12 and between the soft magnetic bodies 12 and 12. At this time, as shown in Fig. 6, an external magnetic field H2 leaks to the element section 9 from the third section 12g of the first soft magnetic body 12a to the second section 12f of the second soft magnetic body 12b in the Y2 direction, thus the external magnetic field H2 acts on the element section 9.

    [0037] As described above, the external magnetic field H1 in the X2 direction is converted into the external magnetic field in the Y2 direction using the soft magnetic bodies 12, thereby acting on the element section 9.

    [0038] As described above, the sensitivity axis direction (P) of each element section 9 is the Y2 direction. In addition, the magnetization direction of the free magnetic layer 63 is the X1-X2 direction due to the shape anisotropy of the element section 9. Further, since the external magnetic field H2 acts each element section 9 in the Y2 direction, the magnetization direction of the free magnetic layer 63 faces the Y2 direction. As a result, the magnetization direction of the fixed magnetic layer 61 is the same as the magnetization direction of the free magnetic layer 63, thus electrical resistance is reduced.

    [0039] Fig. 3 is a partially enlarged plan view illustrating the second magneto-resistive sensor 2 and the third magneto-resistive sensor 3 according to the embodiment.

    [0040] The difference between the second magneto-resistive sensor 2 and the third magneto-resistive sensor 3 shown in Fig. 3 and the first magneto-resistive sensor 1 and the fourth magneto-resistive sensor 4 shown in Fig. 2 is the configuration of a soft magnetic body 14. That is, the configurations of the element section 9 and the electrode layer 16 are not changed from those shown in Fig. 2.

    [0041] As shown in Fig. 3, each of the soft magnetic bodies 14 includes a first section 14e which is extended in the Y1-Y2 direction, a fourth section 14f which is extended from the Y2 side end portion of the first section 14e to the X2 direction and which is arranged on the Y2 side of the element section 9 in a plan view, and a fifth section 14g which is extended from the Y1 side end portion of the first section 14e to the X1 direction and which is arranged on the Y1 side of the element section 9 in a plan view.

    [0042] Here, in two soft magnetic bodies 14 which are adjacent in the X1-X2 direction in Fig. 3, a soft magnetic body 14 which is arranged on the X1 side is defined as a third soft magnetic body 14c, and a soft magnetic body 14 which is arranged on the X2 side is defined as a fourth soft magnetic body 14d. In Fig. 3, numerical symbols 14c and 14d are attached to only a group of soft magnetic bodies 14. Meanwhile, the soft magnetic body 14 which is defined as the fourth soft magnetic body 14d in Fig. 3 becomes the third soft magnetic body 14c because the soft magnetic body 14 is located on the X1 side with respect to a soft magnetic body 14 which is adjacent on the X2 side when viewed from the soft magnetic body 14. Therefore, from among the soft magnetic bodies 14 arranged in the X1-X2 direction at intervals, all the soft magnetic bodies 14, excepting a soft magnetic body 14 which is arranged on the most X1 side and a soft magnetic body 14 which is arranged on the most X2 side, may be either the third soft magnetic body 14c or the fourth soft magnetic body 14d.

    [0043] Further, when the third soft magnetic body 14c and the fourth soft magnetic body 14d which are symbolized in Fig. 3 are viewed as representatives, a part of the fourth section 14f of the third soft magnetic body 14c faces a part of the fifth section 14g of the fourth soft magnetic body 14d in the Y1-Y2 direction through a gap G. As shown in Fig. 3, no electrode layer 16 is arranged at a location where the fourth section 14f of the third soft magnetic body 14c faces the fifth section 14g of the fourth soft magnetic body 14d through the gap G.

    [0044] As shown in Fig. 3, when an external magnetic field H1 is operated toward the X2 direction, the external magnetic field H1 forms a magnetic path M2 of an arrow which passes through the soft magnetic bodies 14 and between the soft magnetic bodies 14 and 14. At this time, an external magnetic field H3 leaks to the element section 9 from the fourth section 14f of the third soft magnetic body 14c to the fifth section 14g of the fourth soft magnetic body 14d in the Y1 direction, thus the external magnetic field H3 affects the element section 9.

    [0045] As described above, in the second magneto-resistive sensor 2 and the third magneto-resistive sensor 3, the external magnetic field H1 in the X2 direction is converted into the external magnetic field in the Y1 direction using the soft magnetic bodies 14, thereby affecting the element section 9.

    [0046] As described above, the sensitivity axis direction (P) of each element section 9 is the Y2 direction. In addition, the magnetization direction of the free magnetic layer 63 is the X1-X2 direction due to the shape anisotropy of the element section 9. Further, since the external magnetic field H3 affects each element section 9 in the Y1 direction, the magnetization direction of the free magnetic layer 63 faces the Y1 direction. As a result, the magnetization direction of the fixed magnetic layer 61 is opposite to the magnetization direction of the free magnetic layer 63, thus electrical resistance is increased.

    [0047] As described above, when the electrical resistance of the first magneto-resistive sensor 1 and the fourth magneto-resistive sensor 4 is reduced, the electrical resistance of the second magneto-resistive sensor 2 and the third magneto-resistive sensor 3 is increased, thus it is possible to obtain different outputs using the bridge circuit shown in Fig. 1.

    [0048] Here, a magnetic sensor according to a comparative example will be described. Fig. 7 illustrates the magnetic sensor according to the comparative example. Fig. 7 illustrates a first magneto-resistive sensor and a fourth magneto-resistive sensor. The configuration of an element section 71 shown in Fig. 7 is the same as that of Fig. 5. In addition, the configuration of a soft magnetic body 12, and the materials of the soft magnetic body 12, the element section 71, and an electrode layer 72 are the same as in the embodiment. The second magneto-resistive sensor 2 and the third magneto-resistive sensor 3 according to the comparative example are configured by combining the element section 71 and the electrode layer 72 shown in Fig. 7 with the soft magnetic body 14 shown in Fig. 3.

    [0049] The difference between the comparative example shown Fig. 7 and the embodiment shown in Fig. 2 is that the element section 9 is formed in the X1-X2 direction in a long shape in the embodiment shown in Fig. 2 but a plurality of element sections 71 are separated in the X1-X2 direction at intervals in the comparative example shown in Fig. 7. Further, in Fig. 7, the electrode layer 72 electrically connects each of the element sections 71.

    [0050] As shown in Fig. 7, if it is assumed that the external magnetic field H1 is operated in the X2 direction, the external magnetic field H2 is operated in the Y2 direction in the element sections 71 which are included in the first magneto-resistive sensor and the fourth magneto-resistive sensor.

    [0051] However, in Fig. 7, since the longitudinal dimension of each of the element sections 71 in the X1-X2 direction is short, the shape anisotropy effect is low and the magnetization of the free magnetic layer 63 is easily fluctuated in a non-magnetic field state (the non-magnetic field state referred here indicates a state where the external magnetic field H2 does not affect the element sections 71). As a result, there are problems in that the middle point deviation of hysteresis increase and that it is difficult to obtain appropriate linearity. Although it is considered that a hard bias layer is used in order to solve the problems, the hard bias layer causes the magnetization direction to be displaced under a strong magnetic field, thus a problem occurs that outputs are displaced in a resistance-strong magnetic field.

    [0052] In contrast, in the embodiment, since the element section 9 is formed in the X1-X2 direction in a long shape, the element section 9 can be arranged other than magnetic field detection, thus it is possible to sufficiently obtain the shape anisotropy effect.

    [0053] In addition, the present embodiment includes a configuration below. That is, as shown in Fig. 2, a joint section 12g1 which does not face the second section 12f of the second soft magnetic body 12b in the third section 12g of the first soft magnetic body 12a and a joint section 12f1 which does not face the third section 12g of the first soft magnetic body 12a in the second section 12f of the second soft magnetic body 12b face the element section 9 in the Y1-Y2 direction, respectively, in a plan view. Further, the electrode layers 16a and 16b (the hatched portions in Fig. 2) are arranged on the upper surface of the element section 9 which face each of the joint sections 12f1 and 12g1 in a state in which the protection layer 64 is removed (also referee to Fig. 5).

    [0054] Therefore, in a section which faces the joint sections 12g1 and 12f1 in the Y1-Y2 direction, current flows into the electrode layer 16 prior to the element section 9, thus it is possible to cause the element section 9 to have no sensitivity in the section. It is possible to cause the element section 9 which is not overlapped with the electrode layer 16 to function as an element. Therefore, even when the magnetic field of oblique components (the components which are oblique to both the X1-X2 direction and the Y1-Y2 direction), which leaks toward the element section 9 from the vicinity of the joint sections 12g1 and 12f1, encroaches on the portion of the element section 9 which is in the vicinity of the joint sections 12g1 and 12f1 and which does not have sensitivity, it is difficult to generate a magnetoresistance effect, and the components of the external magnetic field H2, which is parallel to the Y1-Y2 direction, preferentially encroach on the portion (the portion which is not overlapped with the electrode layer 16) of the element section 9 which has sensitivity, thus the magnetoresistance effect is exhibited.

    [0055] In addition, in the embodiment, a bias layer is not used unlike the related art, thus the element section 9 has a non-bias structure.

    [0056] As described above, in the embodiment, the tolerance of the strong magnetic field is excellent compared to the related art, and it is possible to effectively improve hysteresis and linearity compared to the related example or the comparative example.

    [0057] Fig. 4 is a partially enlarged plan view illustrating a magnetic sensor according to another embodiment. In Fig. 4, the electrode layer 16 is not formed on the upper surface of the element section 9 which face the first section 12e of each of the soft magnetic bodies 12 in the thickness direction (height direction). That is, a structure in which the electrode layers 16a and 16b which are hatched in Fig. 2 are formed on the upper surface of the element section 9 is provided.

    [0058] In Fig. 4, even when the magnetic field of oblique components (the components which are oblique to both the X1-X2 direction and the Y1-Y2 direction), which leaks toward the element section 9 from the vicinity of the joint sections 12g1 and 12f1, encroaches on the portion of the element section 9 which is in the vicinity of the joint sections 12g1 and 12f1 and which does not have sensitivity, it is difficult to generate a magnetoresistance effect, and the components of the external magnetic field H2, which is parallel to the Y1-Y2 direction, preferentially encroach on the portion (the portion which is not overlapped with the electrode layer 16) of the element section 9 which has sensitivity, thus the magnetoresistance effect is exhibited. Further, in Fig. 4, the element section 9 has the non-bias structure in which the element section 9 is formed in the X1-X2 direction in a long shape, thus it is possible to obtain the shape anisotropy effect. Therefore, also in the configuration shown in Fig. 4, the tolerance of the strong magnetic field is excellent compared to the related art, and it is possible to effectively improve hysteresis and linearity compared to the related example or the comparative example.

    [0059] However, if the electrode layer 16 employs the electrode layer 16 shown in Figs. 2 and 3, which is provided in the portion facing the first section 12e of each of the soft magnetic bodies 12, and which integrates the electrode layers 16a and 16b, the electrode layer 16 can be easily formed. In addition, in Figs. 2 and 3, the electrode layer 16 is overlapped with the whole area on the element section 9 for which sensitivity is not necessary, thus it is possible to more effectively improve hysteresis and linearity.

    [0060] In the embodiment, if the electrode layer 16 is electrically connected to the element section 9 in an appropriate manner, the protection layer 64 may not necessarily be cut. However, since the oxidation layer is formed on the surface of the protection layer 64, the electrode layer 16 can be electrically connected to the element section 9 in an appropriate manner in such a way that the oxidation layer is cut and the electrode layer 16 is formed. In addition, it is preferable that the free magnetic layer 63 not be cut by remaining a part of the protection layer 64 than the free magnetic layer 63 is exposed by cutting all the protection layer 64. Therefore, the shape anisotropy effect is appropriately exhibited, thus the magnetization direction of the free magnetic layer 63 in the non-magnetic field state is stabilized in a state in which the magnetization direction appropriately faces the X1-X2 direction, and it is possible to effectively improve hysteresis and linearity properties.

    Example



    [0061] The middle point deviation of hysteresis and linearity properties are obtained when the gap G is changed using the example shown in Figs. 2 and 3 and the comparative example shown in Fig. 7.

    [0062] In an experiment, the same-sized external magnetic field facing the X1-X2 direction was applied to each of the magnetic sensor of the example and the magnetic sensor of the comparative example, and hysteresis loops were obtained and middle point deviations were measured at that time. Further, a maximum deviation ratio of an output line to an ideal output line (straight line), obtained when the external magnetic field was operated and the output was gradually raised, was measured. The results of the experiment are shown in Table 1 below.
    Table 1
     Gap (µm)Middle point deviation
    Example 1.5 1.94
    3 2.33
    4.5 2.62
    Comparative example 1.5 6.04
    3 6.65
    4.5 7.67
     
     Gap (µm)Linearity
    Example 1.5 0.59
    3 0.80
    4.5 0.86
    Comparative example 1.5 0.81
    3 1.79
    4.5 1.36


    [0063] Figs. 8A and 8B graphically show Table 1. It is preferable that either middle point deviation in Fig. 8A or linearity in Fig. 8B be close to 0 (mv) and 0 (%).

    [0064] As shown in the results of the experiment in Figs. 8A and 8B, it was understood that, with respect to either the middle point deviation or linearity, it is possible to improve hysteresis and linearity in the example, compared to the comparative example.

    [0065] It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims.


    Claims

    1. A magnetic sensor comprising:

    a non-bias structured element section (9) that has a laminated structure in which, from a bottom, a fixed magnetic layer (61), a non-magnetic material layer (62), a free magnetic layer (63), and a protection layer (64) are laminated in order or in which, from the bottom, the free magnetic layer (63), the non-magnetic material layer (62), the fixed magnetic layer (61), and the protection layer (64) are laminated in order, and that is formed in such a way as to be extended in an X1-X2 direction;

    characterized by

    a plurality of soft magnetic bodies (12,14) that are arranged on the element section (9) in a contactless manner,

    wherein a sensitivity axis direction of the element section (9) is a Y1-Y2 direction which is perpendicular to the X1-X2 direction,

    wherein each of the soft magnetic bodies (12,14) is extended in the Y1-Y2 direction, and includes a first section (12e,14e) which faces the element section (9) in a thickness direction in a contactless manner, a second section (12f) which is extended from a Y2 side end portion of the first section (12e,14e) to the X1 direction and is arranged on the Y2 side of the element section (9) in a plan view, and a third section (12g) which is extended from a Y1 side end portion of the first section (12e, 14e) to the X2 direction and is arranged on the Y1 side of the element section (9) in a plan view,

    wherein , the plurality of soft magnetic bodies (12) comprises a first soft magnetic body (12a) and a second soft magnetic body (12b) which are adjacent in the X1-X2 direction, a part of the third section (12g) of the first soft magnetic body (12a) which is arranged on the X1 side faces a part of the second section (12f) of the second soft magnetic body (12b) which is arranged on the X2 side via a gap (G) in the Y1-Y2 direction,

    wherein a joint section (12g1) of the third section (12g) of the first soft magnetic body (12a), which does not face the second section (12f) of the second soft magnetic body (12b), and a joint section (12f1) of the second section (12f) of the second soft magnetic body (12b), which does not face the third section (12g) of the first soft magnetic body (12a), respectively face the element section (9) in the Y1-Y2 direction in a plan view, and

    wherein, on the element section (9) which faces the joint sections (12g1, 12f1), an electrode layer (16) into which current flows is arranged.


     
    2. The magnetic sensor according to Claim 1,
    wherein the electrode layer (16) is arranged in a state in which a part of the protection layer (64) exists at the position of the electrode layer (16).
     
    3. The magnetic sensor according to Claim 1 or 2,
    wherein the electrode layer (16) is arranged on an upper surface of the element section (9) in the X1-X2 direction at an interval, and the interval is the section where the third section (12g) of the first soft magnetic body (12a) faces the second section (12f) of the second soft magnetic body (12b) via the gap (G), and
    wherein the first section (12e,14e) of each of the soft magnetic bodies (12,14) faces the electrode layer (16) in the thickness direction in a contactless state.
     
    4. The magnetic sensor according to any one of Claims 1 to 3,
    wherein a plurality of element sections (9) comprising a plurality of the non-bias structured element section (9) as defined in claim 1 that are formed to be extended in the X1-X2 direction are provided in the Y1-Y2 direction at intervals, and end portions of the respective element sections (9) in the X1-X2 direction are connected through a conductive layer (16).
     
    5. The magnetic sensor according to any one of Claims 1 to 4, further comprising:

    a first magneto-resistive sensor (1), a second magneto-resistive sensor (2), a third magneto-resistive sensor (3), a fourth magneto-resistive sensor (4), each having a non-bias structured

    element section (9) as defined in claim 1 which has the same laminated structure and sensitivity axis direction,

    wherein each of the soft magnetic bodies (12), arranged in the first magneto-resistive sensor (1) and the fourth magneto-resistive sensor (4), includes the first soft magnetic body (12a) and the second soft magnetic body (12b),

    wherein each of the soft magnetic bodies (14), arranged in the second magneto-resistive sensor (2) and the third magneto-resistive sensor (3), includes a sixth section (14e) which is extended in the Y1-Y2 direction and faces the element section (9) in the thickness direction in a contactless manner, a fourth section (14f) which is extended from the Y2 side portion of the sixth section (14e) to the X2 direction and arranged on the Y2 side of the element section (9) in a plan view, and a fifth section (14e) which is extended from the Y1 side end portion of the sixth section (14e) to the X1 direction and arranged on the Y1 side of the element section (9) in a plan view,

    wherein, the plurality of soft magnetic bodies (14) comprises a third soft magnetic body (14c) and a fourth soft magnetic body (14d) which are adjacent in the X1-X2 direction, a part of the fourth section (14f) of the third soft magnetic body (14c) arranged on an X1 side faces a part of the fifth section (14g) of the fourth soft magnetic body (14d) arranged on the X2 side in the Y1-Y2 direction via the gap (G), and

    wherein a bridge circuit is configured in such a way that the first magneto-resistive sensor (1) is connected to the second magneto-resistive sensor (2) in series through a first output unit, the third magneto-resistive sensor (3) is connected to the fourth magneto-resistive sensor (4) in series through a second output unit, the first magneto-resistive sensor (1) is connected to the third magneto-resistive sensor (3) through an input unit, and the second magneto-resistive sensor (2) is connected to the fourth magneto-resistive sensor (4) through a ground.


     


    Ansprüche

    1. Magnetsensor, aufweisend:

    einen nicht vorgespannten strukturierten Elementabschnitt (9), der eine La - minatstruktur aufweist, bei der von unten eine fixierte Magnetschicht (61), eine nichtmagnetische Materialschicht (62), eine freie Magnetschicht (63) und eine Schutzschicht (64) der Reihe nach laminiert sind oder bei der von unten die freie Magnetschicht (63), die nichtmagnetische Materialschicht (62), die fixierte Magnetschicht (61) und die Schutzschicht (64) der Reihe nach laminiert sind, und der derart ausgebildet ist, dass er sich in einer X1-X2-Richtung erstreckt;

    gekennzeichnet durch

    eine Mehrzahl von weichmagnetischen Körpern (12, 14), die berührungslos auf dem Elementabschnitt (9) angeordnet sind,

    wobei eine Empfindlichkeitsachsenrichtung des Elementabschnitts (9) eine Y1-Y2-Richtung ist, die zu der X1-X2-Richtung senkrecht ist,

    wobei sich jeder der weichmagnetischen Körper (12, 14) in der Y1-Y2-Rich - tung erstreckt und einen ersten Abschnitt (12e, 14e), der dem Elementab - schnitt (9) in einer Dickenrichtung berührungslos gegenüberliegt, einen zweiten Abschnitt (12f), der sich von einem Y2-seitigen Endbereich des ers - ten Abschnitts (12e, 14e) in der X1-Richtung erstreckt und in einer Draufsicht auf der Y2-Seite des Elementabschnitts (9) angeordnet ist, sowie einen dritten Abschnitt (12g) aufweist, der sich von einem Y1-seitigen End - bereich des ersten Abschnitts (12e, 14e) in der X2-Richtung erstreckt und in einer Draufsicht auf der Y1-Seite des Elementabschnitts (9) angeordnet ist, wobei die Mehrzahl von weichmagnetischen Körpern (12) einen ersten weichmagnetischen Körper (12a) und einen zweiten weichmagnetischen Körper (12b) aufweist, die einander in der X1-X2-Richtung benachbart sind, wobei ein auf der X1-Seite angeordneter Teil des dritten Abschnitts (12g) des ersten weichmagnetischen Körpers (12a) einem auf der X2-Seite ange - ordneten Teil des zweiten Abschnitts (12f) des zweiten weichmagnetischen Körpers (12b) über einen Spalt (G) in der Y1-Y2-Richtung hinweg gegen - überliegt,

    wobei ein dem zweiten Abschnitt (12f) des zweiten weichmagnetischen Kör - pers (12b) nicht gegenüberliegender Verbindungsabschnitt (12g1) des drit - ten Abschnitts (12g) des ersten weichmagnetischen Körpers (12a) und ein dem dritten Abschnitt (12g) des ersten weichmagnetischen Körpers (12a) nicht gegenüberliegender Verbindungsabschnitt (12f1) des zweiten Ab - schnitts (12f) des zweiten weichmagnetischen Körpers (12b) in der Draufsicht jeweils dem Elementabschnitt (9) in der Y1-Y2-Richtung gegenüberlie - gen, und

    wobei auf dem Elementabschnitt (9), der den Verbindungsabschnitten (12g1, 12f1) gegenüberliegt, eine Elektrodenschicht (16) angeordnet ist, in die Strom fließt.


     
    2. Magnetsensor nach Anspruch 1,
    wobei die Elektrodenschicht (16) in einem Zustand angeordnet ist, in dem ein Teil der Schutzschicht (64) an der Position der Elektrodenschicht (16) vorhanden ist.
     
    3. Magnetsensor nach Anspruch 1 oder 2,
    wobei die Elektrodenschicht (16) auf einer oberen Oberfläche des Element - abschnitts (9) in der X1-X2-Richtung in einem Intervall angeordnet ist und das Intervall der Abschnitt ist, in dem der dritte Abschnitt (12g) des ersten weichmagnetischen Körpers (12a) dem zweiten Abschnitt (12f) des zweiten weichmagnetischen Körpers (12b) über den Spalt (G) hinweg gegenüber - liegt, und
    wobei der erste Abschnitt (12e, 14e) jedes der weichmagnetischen Körper (12, 14) der Elektrodenschicht (16) in der Dickenrichtung berührungslos gegenüberliegt.
     
    4. Magnetsensor nach einem der Ansprüche 1 bis 3,
    wobei eine Mehrzahl von Elementabschnitten (9), die eine Mehrzahl der nicht vorgespannten strukturierten Elementabschnitte (9) gemäß Anspruch 1 beinhalten, welche zur Erstreckung in der X1-X2-Richtung ausgebildet sind, in der Y1-Y2-Richtung in Intervallen vorgesehen sind und Endbereiche der jeweiligen Elementabschnitte (9) in der X1-X2-Richtung durch eine lei - tende Schicht (16) verbunden sind.
     
    5. Magnetsensor nach einem der Ansprüche 1 bis 4, weiterhin aufweisend:

    einen ersten Magnetowiderstandssensor (1), einen zweiten Magnetowiderstandssensor (2), einen dritten Magnetowiderstandssensor (3), einen vierten Magnetowiderstandssensor (4), die jeweils einen nicht vorgespannten strukturierten Elementabschnitt (9) gemäß Anspruch 1 aufweisen, der die gleiche Laminatstruktur und Empfindlichkeitsachsenrichtung aufweist,

    wobei jeder der in dem ersten Magnetowiderstandssensor (1) und dem vier - ten Magnetowiderstandssensor (4) angeordneten weichmagnetischen Kör - per (12) den ersten weichmagnetischen Körper (12a) und den zweiten weichmagnetischen Körper (12b) beinhaltet,

    wobei jeder der in dem zweiten Magnetowiderstandssensor (2) und dem dritten Magnetowiderstandssensor (3) angeordneten weichmagnetischen Körper (14) einen sechten Abschnitt (14e), der sich in der Y1-Y2-Richtung erstreckt und dem Elementabschnitt (9) in der Dickenrichtung berührungslos gegenüberliegt, einen vierten Abschnitt (14f), der sich von dem Y2-seitigen Bereich des sechsten Abschnitts (14e) in der X2-Richtung erstreckt und in einer Draufsicht auf der Y2-Seite des Elementabschnitts (9) angeordnet ist, sowie einen fünften Abschnitt (14e) aufweist, der sich vom Y1-seitigen End - bereich des sechsten Abschnitts (14e) in der X1-Richtung erstreckt und in einer Draufsicht auf der Y1-Seite des Elementabschnitts (9) angeordnet ist, wobei die Mehrzahl von weichmagnetischen Körpern (14) einen dritten weichmagnetischen Körper (14c) und einen vierten weichmagnetischen Körper (14d) aufweist, die einander in der X1-X2-Richtung benachbart sind, wobei ein auf einer X1-Seite angeordneter Teil des vierten Abschnitts (14f) des dritten weichmagnetischen Körpers (14c) einem auf der X2-Seite ange - ordneten Teil des fünften Abschnitts (14g) des vierten weichmagnetischen Körpers (14d) in der Y1-Y2-Richtung über den Spalt (G) hinweg gegenüber - liegt, und

    wobei eine Brückenschaltung derart ausgebildet ist, dass der erste Magne - towiderstandssensor (1) über eine erste Ausgangseinheit mit dem zweiten Magnetowiderstandssensor (2) in Reihe geschaltet ist, der dritte Magnetowi - derstandssensor (3) über eine zweite Ausgangseinheit mit dem vierten Ma - gnetowiderstandssensor (4) in Reihe geschaltet ist, der erste Magnetowi - derstandssensor (1) über eine Eingangseinheit mit dem dritten Magnetowi - derstandssensor (3) in Reihe geschaltet ist, und der zweite Magnetowider - standssensor (2) über Masse mit dem vierten Magnetowiderstandssensor (4) verbunden ist.


     


    Revendications

    1. Capteur magnétique comprenant :

    une section d'élément structurée sans polarisation (9) qui possède une structure stratifiée dans laquelle, depuis le bas, une couche magnétique fixe (61), une couche de matériau non magnétique (62), une couche magnétique libre (63) et une couche de protection (64) sont stratifiées dans l'ordre, ou dans laquelle, depuis le bas, la couche magnétique libre (63), la couche de matériau non magnétique (62), la couche magnétique fixe (61) et la couche de protection (64) sont stratifiées dans l'ordre, et qui est formée de manière à pouvoir s'étendre dans une direction X1-X2 ;

    caractérisé en ce qu'il comporte

    une pluralité de corps magnétiques doux (12, 14) disposés sur la section d'élément (9) sans contact,

    où une direction de l'axe de sensibilité de la section d'élément (9) est une direction Y1-Y2 qui est perpendiculaire à la direction X1-X2,

    où chacun des corps magnétiques doux (12, 14) s'étend dans la direction Y1-Y2, et comprend une première section (12e, 14e) qui fait face à la section d'élément (9) dans le sens de l'épaisseur sans contact, une deuxième section (12f) qui s'étend depuis une partie d'extrémité côté Y2 de la première section (12e, 14e) vers la direction X1 et qui est disposée sur le côté Y2 de la section d'élément (9) selon une vue en plan, et une troisième section (12g) qui s'étend depuis une partie d'extrémité côté Y1 de la première section (12e, 14e) vers la direction X2 et qui est disposée sur le côté Y1 de la section d'élément (9) selon une vue en plan,

    où la pluralité de corps magnétiques doux (12) comprend un premier corps magnétique doux (12a) et un deuxième corps magnétique doux (12b) qui sont adjacents dans la direction X1-X2, une partie de la troisième section (12g) du premier corps magnétique doux (12a) qui est disposée sur le côté X1 fait face à une partie de la deuxième section (12f) du deuxième corps magnétique doux (12b) qui est disposée sur le côté X2 via un écart (G) dans la direction Y1-Y2,

    où une section de raccord (12g1) de la troisième section (12g) du premier corps magnétique doux (12a), qui ne fait pas face à la deuxième section (12f) du deuxième corps magnétique doux (12b),
    et une section de raccord (12f1) de la deuxième section (12f) du deuxième corps magnétique doux (12b), qui ne fait pas face à la troisième section (12g) du premier corps magnétique doux (12a), font face respectivement à la section d'élément (9) dans la direction Y1-Y2 selon une vue en plan, et

    où, sur la section d'élément (9) qui fait face aux sections de raccord (12g1, 12f1), est disposée une couche formant électrode (16) à travers laquelle le courant passe.


     
    2. Le capteur magnétique selon la revendication 1,
    dans lequel la couche formant électrode (16) est disposée dans un état où une partie de la couche de protection (64) se trouve à la position de la couche formant électrode (16).
     
    3. Le capteur magnétique selon la revendication 1 ou 2,
    dans lequel la couche formant électrode (16) est disposée sur une surface supérieure de la section d'élément (9) dans la direction X1-X2 selon un intervalle, et l'intervalle est la section où la troisième section (12g) du premier corps magnétique doux (12a) fait face à la deuxième section (12f) du deuxième corps magnétique doux (12b) via l'écart (G) et
    dans lequel la première section (12e, 14e) de chacun des corps magnétiques doux (12, 14) fait face à la couche formant électrode (16) dans le sens de l'épaisseur dans un état sans contact.
     
    4. Le capteur magnétique selon l'une quelconque des revendications 1 à 3, dans lequel une pluralité de sections d'élément (9) comprenant une pluralité de sections d'élément structurées sans polarisation (9) telles que celle définie à la revendication 1 qui sont formées de manière à s'étendre dans la direction X1-X2 sont présentes dans la direction Y1-Y2, par intervalles, et où les parties d'extrémité des sections d'élément respectives (9) dans la direction X1-X2 sont reliées par l'intermédiaire d'une couche conductrice (16).
     
    5. Le capteur magnétique selon l'une quelconque des revendications 1 à 4, comprenant en outre :

    un premier capteur magnétorésistif (1), un deuxième capteur magnétorésistif (2), un troisième capteur magnétorésistif (3), un quatrième capteur magnétorésistif (4), chacun possédant une section d'élément structurée sans polarisation (9) telle que définie à la revendication 1, ayant la même structure stratifiée et la même direction d'axe de sensibilité,

    où chacun des corps magnétiques doux (12), disposés dans le premier capteur magnétorésistif (1) et le quatrième capteur magnétorésistif (4), inclut le premier corps magnétique doux (12a) et le deuxième corps magnétique doux (12b),

    où chacun des corps magnétiques doux (14), disposés dans le deuxième capteur magnétorésistif (2) et le troisième capteur magnétorésistif (3), inclut une sixième section (14e) qui s'étend dans la direction Y1-Y2 et fait face à la section d'élément (9) dans le sens de l'épaisseur sans contact, une quatrième section (14f) qui s'étend depuis la partie côté Y2 de la sixième section (14e) vers la direction X2 et est disposée sur le côté Y2 de la section d'élément (9) selon une vue en plan, et une cinquième section (14e) qui s'étend depuis la partie d'extrémité côté Y1 de la sixième section (14e) vers la direction X1 et est disposée sur le côté Y1 de la section d'élément (9) selon une vue en plan,

    où la pluralité de corps magnétiques doux (14) comprend un troisième corps magnétique doux (14c) et un quatrième corps magnétique doux (14d) qui sont adjacents dans la direction X1-X2, une partie de la quatrième section (14f) du troisième corps magnétique doux (14c) disposée sur un côté X1 fait face à une partie de la cinquième section (14g) du quatrième corps magnétique doux (14d) disposée sur le côté X2 dans la direction Y1-Y2 via l'écart (G), et

    où un circuit en pont est configuré de telle sorte que le premier capteur magnétorésistif (1) est relié au deuxième capteur magnétorésistif (2) en série par l'intermédiaire d'une première unité de sortie, le troisième capteur magnétorésistif (3) est relié au quatrième capteur magnétorésistif (4) en série par l'intermédiaire d'une deuxième unité de sortie, le premier capteur magnétorésistif (1) est relié au troisième capteur magnétorésistif (3) par l'intermédiaire d'une unité d'entrée, et le deuxième capteur magnétorésistif (2) est relié au quatrième capteur magnétorésistif (4) par l'intermédiaire d'un élément de mise à la terre.


     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description