(19)
(11)EP 2 631 995 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.12.2018 Bulletin 2018/49

(21)Application number: 11834067.8

(22)Date of filing:  20.10.2011
(51)Int. Cl.: 
H01R 13/635  (2006.01)
B60L 11/18  (2006.01)
H01M 10/42  (2006.01)
H01R 13/627  (2006.01)
H01R 13/53  (2006.01)
H01M 10/46  (2006.01)
(86)International application number:
PCT/JP2011/005898
(87)International publication number:
WO 2012/053221 (26.04.2012 Gazette  2012/17)

(54)

ELECTRIC VEHICLE CHARGING DEVICE

LADEVORRICHTUNG FÜR EIN ELEKTROFAHRZEUG

DISPOSITIF DE CHARGE POUR VÉHICULE ÉLECTRIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 20.10.2010 JP 2010235335

(43)Date of publication of application:
28.08.2013 Bulletin 2013/35

(73)Proprietor: Panasonic Intellectual Property Management Co., Ltd.
Osaka-shi, Osaka 540-6207 (JP)

(72)Inventors:
  • KIMURA, Norihiko
    Osaka 540-6207 (JP)
  • SUGIHARA, Kenji
    Osaka 540-6207 (JP)
  • TERADA, Tomohiro
    Osaka 540-6207 (JP)

(74)Representative: Schwabe - Sandmair - Marx 
Patentanwälte Rechtsanwalt Partnerschaft mbB Joseph-Wild-Straße 20
81829 München
81829 München (DE)


(56)References cited: : 
DE-A1- 10 333 403
JP-A- 6 310 214
JP-A- 10 262 340
JP-A- 2002 075 525
JP-A- 2010 136 494
US-A- 4 109 989
JP-A- 4 334 908
JP-A- 7 006 814
JP-A- 2000 139 031
JP-A- 2009 077 535
JP-A- 2010 136 494
US-A- 5 350 312
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to an electric vehicle charging apparatus including a vehicle-side connector for battery charging, and a feeder connector that supplies electric energy from outside of an electric vehicle.

    Background Art



    [0002] With a view to realizing a low-carbon economy, there has been an interest in recent years in electric vehicles (EVs) that run solely by means of an electric motor, as well as in plug-in hybrid vehicles that are able to run by means of either of an engine and an electric motor.

    [0003] Such electric vehicles and plug-in hybrid vehicles are equipped with an electric motor for generating a drive force that is transmitted to the tires. The energy for driving this electric motor is supplied from a battery on-board the vehicle. This battery is chargeable from outside of the vehicle. The term "electric vehicle" is hereinafter described as a concept inclusive of plug-in hybrid vehicles as well.

    [0004] The battery is charged from outside of the vehicle by connecting a feeder connector, which a feeding stand installed externally to the vehicle is equipped with, to a vehicle-side connector that the vehicle has.

    [0005] As related electric vehicle charging apparatuses, there are those where the connection state between a vehicle-side connector and a feeder connector is detected with a sensor, and where, based on the connection state detected by the sensor and on information regarding the powertrain of the electric vehicle, a control section of the electric vehicle effects control in such a manner as to separate the feeder connector and the vehicle-side connector if the electric vehicle tries to start moving while the feeder connector is still connected (e.g., Patent Literature 1).

    [0006] Patent Literature 2 discloses that electric connector device comprises a sealing diaphragm extending across the mating face of each of the plug and receptacle members. In Patent Literature 2, the diaphragm in the receptacle member is mounted on a spring,
    which will be driven inwardly of the receptacle member by the plug member inserted. Upon unmating of the connector members, the spring recovers the diaphragm to its original condition in a slot, which assumes a sealing condition.

    Citation List


    Patent Literature



    [0007] 

    PTL 1
    Japanese Patent Application Laid-Open No. 2010-136494

    PTL 2
    U.S.Patent No. 4,109,989


    Summary of Invention


    Technical Problem



    [0008] Conventional electric vehicle charging apparatuses do not give specific consideration to how the separation of the feeder connector and the vehicle-side connector is to be carried out. Failing to consider how the separation is to be carried out results in such problems as the following.

    [0009] When an electric vehicle tries to start moving while the feeder connector is still connected, the feeder connector and the vehicle-side connector are forcibly separated while the two are still connected. At this point, a voltage as high as several hundreds of volts is usually applied across the feeder connector and the vehicle-side connector. As the feeder connector and the vehicle-side connector become disengaged, the gas molecules between the electrodes become ionized, causing a current to flow. Consequently, an arc discharge occurs, where a current flows through gas, which is normally nonconductive. When arc discharge occurs, it poses a risk since it can possibly cause damage to the surroundings.

    [0010] Also, Patent Literature 2 merely discloses that the diaphragm to seal is driven by the spring in the slot upon unmating of the connector members. This kind of sealing technique in the common electric connector device could not prevent the arc discharge from occurring, because the diaphragm with the spring could not cause the feeder connector and the vehicle-side connector to break off from each other.

    [0011] An object of the present invention is to provide an electric vehicle charging apparatus capable of preventing the occurrence of an arc discharge when a feeder connector and a vehicle-side connector become disengaged.

    Solution to Problem



    [0012] With the present invention, if disengagement of a feeder connector and a vehicle-side connector from each other is detected by a disengagement detection section when the feeder connector and the vehicle-side connector are not in a state for detachment, the feeder connector and the vehicle-side connector are made to repel each other by means of a repulsion force.

    Advantageous Effects of Invention



    [0013] With an electric vehicle charging apparatus of the present invention, when a disengagement detection section detects disengagement of a feeder connector and a vehicle-side connector from each other, a repulsion force with such a directionality as to cause the feeder connector and the vehicle-side connector to break off from each other is generated, as a result of which the two connectors are quickly disengaged by means of the repulsion force. Such an arrangement produces an advantageous effect where it is possible to prevent the occurrence of an arc discharge.

    Brief Description of Drawings



    [0014] 

    FIG. 1 is a diagram illustrating the structure of an electric vehicle charging apparatus with respect to Embodiment 1 of the present invention;

    FIG. 2 is a diagram showing the structure of each section of an electric vehicle charging apparatus that is in the middle of charging with respect to Embodiment 1 of the present invention;

    FIG. 3 is a diagram showing the structure of each section of an electric vehicle charging apparatus with respect to Embodiment 1 of the present invention where connectors have broken off from each other;

    FIG. 4 is a diagram showing the structure of each section of an electric vehicle charging apparatus with respect to Embodiment 2 of the present invention;

    FIG. 5 is a diagram showing the structure of each section of an electric vehicle charging apparatus that is in the middle of charging with respect to Embodiment 2 of the present invention;

    FIG. 6 is a diagram showing the structure of an electric vehicle charging apparatus with respect to Embodiment 2 of the present invention where connectors have broken off from each other;

    FIG. 7 is a block diagram of an electric vehicle charging apparatus with respect to Embodiment 2 of the present invention;

    FIG. 8 is a diagram showing an operation of an electric vehicle charging apparatus with respect to Embodiment 2 of the present invention; and

    FIG. 9 is a diagram showing an operation of an electric vehicle charging apparatus with respect to a variation of Embodiment 2 of the present invention.


    Description of Embodiments


    (Embodiment 1)



    [0015] An electric vehicle charging apparatus with respect to Embodiment 1 of the present invention is described below with reference to FIGS. 1 through 3. FIGS. 1 through 3 are diagrams each showing the structure of an electric vehicle charging apparatus with respect to Embodiment 1 of the present invention. FIG. 1 is a diagram of an electric vehicle charging apparatus with respect to Embodiment 1 of the present invention, where the various parts are shown disassembled. FIG. 2 is a diagram showing the structure of each section of an electric vehicle charging apparatus in the middle of charging with respect to Embodiment 1 of the present invention. FIG. 3 is a diagram showing the structure of each section of an electric vehicle charging apparatus with respect to Embodiment 1 of the present invention where connectors have broken off from each other.

    [0016] The structure of each section is first described through FIG. 1. Electric vehicle charging apparatus 1 includes: feeder connector 3, which supplies electric energy from outside of the vehicle; and vehicle-side connector 2 that is disposed on the vehicle and that connects with feeder connector 3.

    [0017] As feeder connector 3 and vehicle-side connector 2 connect with each other, electricity is supplied from feeder connector 3, and the battery mounted on the vehicle is charged.

    [0018] Feeding connector 3 includes: spring 34 (corresponding to a repulsion force generation section) that generates a repulsion force with such a directionality as to cause feeder connector 3 and vehicle-side connector 2 to break off from each other; protrusion 323 and protrusion 360 that restrain the repulsion force generated by spring 34; latch section 32 (corresponding to a disengagement detection section) that lifts the restraint on the repulsion force generated by spring 34 upon disengagement of feeder connector 3 and vehicle-side connector 2 from each other. Each section is described in detail below.

    [0019] Vehicle-side connector 2 includes conductive vehicle-side electrode 20, which is electrically connected to the battery mounted on the vehicle. Hole part 21 is formed in the outer circumference of the housing of vehicle-side connector 2. As discussed hereinbelow, this hole part 21 is used to secure vehicle-side connector 2 and feeder connector 3 to each other.

    [0020] Feeder connector 3 includes: conductive feeder-side electrode 30, which transfers the electric energy that is to be supplied to the vehicle; and charging cable 31, which is electrically connected to this feeder-side electrode 30 and transfers the electricity from the charging stand.

    [0021] Feeder connector 3 also includes: latch section 32, which secures feeder connector 3 and vehicle-side connector 2 to each other; protruding section 33 for causing feeder connector 3 and vehicle-side connector 2 to break off from each other; spring 34, which generates a repulsion force; base section 35, which secures spring 34; and feeder connector housing 36, which houses these members. Each section of feeding connector 3 is described in detail below.

    [0022] Feeder-side electrode 30 is a conductive electrode that transfers the electric energy that is to be supplied to the vehicle, and is typically cylindrical. For purposes of illustration only, FIG. 1 shows one electrode. In reality, if AC electric energy is to be supplied, feeder-side electrode 30 may include three electrodes, namely two electrodes and one ground. On the other hand, if DC electric energy is to be supplied, feeder-side electrode 30 may include two electrodes, namely a positive electrode and a negative electrode.

    [0023] Shielding section 300 is an insulating member for shielding feeder-side electrode 30 of feeder connector 3 so that it does not become exposed after feeder connector 3 and vehicle-side connector 2 have broken off from each other. Shielding section 300 may include an actuating mechanism (e.g., an electric motor, and/or the like) and automatically carry out shielding by sensing a break off between feeder connector 3 and vehicle-side connector 2, or it may automatically carry out shielding by means of a spring force, and/or the like, without using electric energy.

    [0024] Charging cable 31 may be a cable including a conductive wire covered with an insulating material. To charging cable 31 is supplied an AC voltage of approximately 100 to 240 V from a household outlet, or, for example, a DC voltage of approximately 400 V from a charging stand.

    [0025] Latch section 32 includes latch stop 321 and latch stop 322 for securing feeding connector 3 and vehicle-side connector 2 to each other. When feeder connector 3 and vehicle-side connector 2 are connected during charging, latch stop 321 engages with hole part 21 formed in vehicle-side connector 2, and latch stop 322 engages with hole 330 formed in protruding section 33, which is described hereinbelow.

    [0026] Approximately halfway between latch stop 321 and latch stop 322 of latch section 32 is formed hole 320. On the side of latch section 32 facing feeder connector housing 36 is formed protrusion 323. Protrusion 323 engages with protrusion 360 formed on feeder connector housing 36. As feeder connector 3 and vehicle-side connector 2 become disengaged, this engagement becomes undone as is discussed hereinbelow. In other words, latch section 32 corresponds to a disengagement detection section.

    [0027] Protruding section 33 is a member for causing feeder connector 3 and vehicle-side connector 2 to break off from each other. Protruding section 33 is in contact with spring 34 at one end, and the opposite end thereof is exposed on the side of feeder connector 3 that connects with vehicle-side connector 2. In the event of an abnormal state, such as when the vehicle starts moving during charging, for example, protruding section 33 protrudes forcefully, thereby breaking off vehicle-side connector 2.

    [0028] Hole 330 and support section 331 are formed in/on protruding section 33. Hole 330 engages with latch stop 322 of latch section 32. Support section 331 is a part for securing latch section 32. A hole is formed in support section 331. The hole formed in support section 331 and hole 320 formed in latch section 32 are so located as to be concentric. A shaft that links the holes to each other is provided along the center axes thereof.

    [0029] Latch section 32 and protruding section 33 are secured to each other by means of this shaft. Latch section 32 and feeder connector housing 36 are secured to each other by means of the engagement between protrusion 323 and protrusion 360. Thus, the repulsion force of spring 34 exerted on protruding section 33 is stored without being released.

    [0030] The above-mentioned shaft is so structured that when a force of a predetermined magnitude or greater is applied thereto, the alignment between hole 320 and the hole formed in support section 331 is broken. Upon disengagement due to an abnormal state between feeder connector 3 and vehicle-side connector 2, the engagement between protrusion 323 and protrusion 360 becomes undone. As a result, due to the repulsion force of spring 34, protrusion section 3 protrudes towards vehicle-side connector 2. Due to this protruding action, feeder connector 3 and vehicle connector 2 break off from each other.

    [0031] By means of a spring force, spring 34 generates a repulsion force with such a directionality as to cause feeder connector 3 and vehicle-side connector 2 to break off from each other. Spring 34 corresponds to a repulsion force generation section.

    [0032] Spring 34 is formed by helically winding a metal wire, and stores a repulsion force when compressed. Spring 34 is so secured as to have one end in contact with base section 35, which is secured inside feeder connector housing 36, and repels in the opposite direction to the end that is in contact with base section 35.

    [0033] Spring 34 contacts protruding section 33 at the opposite end to the end that is in contact with base section 35. As protruding section 33 is pushed in towards base section 35, spring 34 contracts and stores a repulsion force. The repulsion force stored by spring 34 is exerted on protruding section 33. However, this repulsion force is stored without being released due to the engagement between protrusion 323 formed on latch section 32 and protrusion 360 formed on feeder connector housing 36.

    [0034] For spring 34, one may use not only those that use a metal, but also gas springs which utilize the elasticity of compressed gas, or liquid springs which utilize the elasticity of liquids.

    [0035] Latch release section 361 is operated by the user. It is used in order to attach/detach vehicle-side connector 2 and feeder connector 3 to/from each other. Latch release section 361 may be, for example, a push switch where a shaft, which protrudes outward from within feeder connector housing 36, has its motion restricted by a spring force directed outward of feeder connector housing 36 from latch section 32.

    [0036] To attach, latch stop 321 is first displaced in the direction away from hole part 21, after which feeder connector 3 is attached to vehicle-side connector 2. Latch stop 321 must then be made to engage with hole part 21. On the other hand, to detach, latch stop 321 is first displaced in the direction away from hole part 21, after which vehicle-side connector 2 and feeder connector 3 must be detached from each other.

    [0037] Thus, as the user pushes latch release section 361, latch release section 361 applies pressure onto latch stop 322. As a result, latch stop 321 pivots about hole 320 in latch section 32 to be displaced in the direction away from hole part 21.

    [0038] Each section of feeder connector 3 indicated above is housed inside feeder connector housing 36. Feeder connector housing 36 may be made of a reinforced resin with insulating properties. So long as it has insulating properties, a material other than reinforced resin may also be used for feeder connector housing 36. As discussed above, protrusion 360 is formed on the inner surface of feeder connector housing 36.

    [0039] Next, the structure of each section is described through FIGS. 2 and 3.

    [0040] FIG. 2 depicts a state where an electric vehicle is being charged from charging stand 5. Vehicle-side connector 2 and feeder connector 3 are connected.

    [0041] Latch section 32 of feeder connector 3 is secured by engaging feeder connector 3 and vehicle-side connector 2 with each other. Specifically, latch stop 321 engages with hole part 21, and latch stop 322 engages with hole 330. As a result, feeder connector 3 and vehicle-side connector 2 are secured to each other.

    [0042] The repulsion force stored in spring 34 is exerted on protruding section 33. However, this repulsion force is stored without being released because protrusion 323 formed on latch section 32 is engaged by protrusion 360 formed on feeder connector housing 36.

    [0043] FIG. 3 depicts a state where vehicle-side connector 2 and feeder connector 3 have broken off from each other due to an abnormal state, such as when the electric vehicle starts moving during charging, for example. As feeder connector 3 and vehicle-side connector 2 become disengaged from each other, the engagement of latch section 32 becomes undone. As a result, the restraint on the repulsion force stored in spring 34 is released.

    [0044] The releasing of the engagement of latch section 32 is carried out as follows. When vehicle-side connector 2 disengages from feeder connector 3, a force is exerted on latch stop 321 due to a displacement of hole part 21, and this force is transmitted to the shaft that links hole 320 formed in latch section 32 with the hole formed in support section 331. The above-mentioned shaft is so structured that when a force of a predetermined magnitude or greater is applied thereto, the alignment between hole 320 and the hole formed in support section 331 becomes undone. Consequently, latch section 32 becomes disengaged from protruding section 33, as a result of which the engagement between protrusion 323 and protrusion 360 also becomes undone. Because protruding section 33 is released from its immobilization by feeder connector housing 36, the repulsion force of spring 34 is released.

    [0045] Due to this released repulsion force, protruding section 33 protrudes forcefully towards vehicle-side connector 2 from the side of feeder connector 3. The protruding force of protruding section 33 is then transmitted to vehicle-side connector 2, as a result of which vehicle-side connector 2 and feeder connector 3 break off from each other. In conjunction with this break off, shielding section 300 shields feeder-side electrode 30.

    [0046] How great a repulsion force is to be stored in spring 34 is determined by how short the duration of arc generation is to be made. By way of example, let it be assumed that a break off distance of 5 mm or greater must be ensured within 100 msec. In this case, since the mass of feeder connector 3 is known, it is possible to calculate the minimum requisite repulsion force.

    [0047] When spring 34 is made too large, the momentum with which vehicle-side connector 2 breaks off from feeder connector 3 becomes too large. In this case, the momentum with which feeder connector 3 breaks off poses a risk of interfering with people or objects in the vicinity. For this reason, it is preferable that the repulsion force to be stored in spring 34 be set in accordance with predetermined criteria such as those above.

    [0048] Thus, with an electric vehicle charging apparatus of an embodiment of the present invention, as feeder connector 3 and vehicle-side connector 2 become disengaged, latch section 32, which is a disengagement detection section, lifts its restriction of the repulsion force generated by spring 34, which is a repulsion force generation section, as a result of which the two connectors rapidly break off from each other due to the repulsion force. Thus, an advantageous effect is produced where it is possible to prevent the occurrence of an arc discharge.

    [0049] With the present embodiment, a repulsion force with such a directionality as to cause feeder connector 3 and vehicle-side connector 2 to break off from each other is generated from a repulsion force derived from the spring force of spring 34. However, the present invention is by no means limited as such, and a repulsion force may be generated through hydraulics.

    [0050] With the present embodiment, feeder connector 3 is provided with the repulsion force of spring 34 and a mechanism for releasing this repulsion force. However, the present invention is by no means limited as such, and such mechanisms may instead be provided on the side of vehicle-side connector 2.

    (Embodiment 2)



    [0051] An electric vehicle charging apparatus with respect to Embodiment 2 of the present invention is described below with reference to FIGS. 4 through 8. FIGS. 4 through 6 are diagrams showing the structure of an electric vehicle charging apparatus with respect to Embodiment 2 of the present invention. FIG. 4 is a diagram showing the structure of each section of an electric vehicle charging apparatus with respect to Embodiment 2 of the present invention. FIG. 5 is a diagram showing the structure of each section of an electric vehicle charging apparatus in the middle of charging with respect to Embodiment 2 of the present invention.

    [0052] FIG. 6 is a diagram showing the structure of an electric vehicle charging apparatus with respect to Embodiment 2 of the present invention where connectors have broken off from each other. FIG. 7 is a block diagram of an electric vehicle charging apparatus with respect to Embodiment 2 of the present invention. FIG 8 is a chart showing an operation of an electric vehicle charging apparatus with respect to Embodiment 2 of the present invention.

    [0053] Elements with like features as those of Embodiment 1 are designated with like reference numerals, while descriptions thereof are omitted, and only points where they differ are described in detail.

    [0054] A difference between Embodiment 1 and Embodiment 2 lies in the fact that while, with Embodiment 1, a repulsion force with such a directionality as to cause feeder connector 3 and vehicle-side connector 2 to break off from each other is generated by means of spring 34, with Embodiment 2, a repulsion force with such a directionality as to cause feeder connector 3 and vehicle-side connector 2 to break off from each other is generated by means of a magnetic repulsion force.

    [0055] As shown in FIG. 4, vehicle-side connector 2 includes vehicle-side permanent magnet 23, and feeder connector 3 includes feeder-side permanent magnet 37. Vehicle-side permanent magnet 23 and feeder-side permanent magnet 37 are disposed in such a manner that when feeder connector 3 and vehicle-side connector 2 are connected, like poles face each other.

    [0056] By so disposing them, when feeder connector 3 is inserted into vehicle-side connector 2, vehicle-side permanent magnet 23 and feeder-side permanent magnet 37 generate a repulsion force with such a directionality as to cause feeder connector 3 and vehicle-side connector 2 to break off from each other. Vehicle-side permanent magnet 23 and feeder-side permanent magnet 37 correspond to a repulsion force generation section.

    [0057] Since a repulsion force with such a directionality as to cause feeder connector 3 and vehicle-side connector 2 to break off from each other is at work, if one were to try to insert feeder connector 3 into vehicle-side connector 2 in this state to feed power to the vehicle, this would not be possible due to their repelling each other. As such, vehicle-side connector 2 includes electromagnet 24.

    [0058] When feeder connector 3 and vehicle-side connector 2 are connected, electromagnet 24 generates a magnetic force in such a manner that the opposite pole to the poles of vehicle-side permanent magnet 23 and feeder-side permanent magnet 37 so disposed as to face each other is located on the side of electromagnet 24 where feeder connector 3 is.

    [0059] By way of example, if vehicle-side permanent magnet 23 and feeder-side permanent magnet 37 are so disposed that their S-poles face each other, electromagnet 24 generates a magnetic field in such a manner that the N-pole is in the direction where feeder-side permanent magnet 37 is located. On the other hand, if vehicle-side permanent magnet 23 and feeder-side permanent magnet 37 are so disposed that their N-poles face each other, electromagnet 24 generates a magnetic field in such a manner that the S-pole is in the direction where feeder-side permanent magnet 37 is located.

    [0060] This magnetic field is so set that the force with which electromagnet 24 attracts feeder-side permanent magnet 37 is greater than the repelling force between vehicle-side permanent magnet 23 and feeder-side permanent magnet 37.

    [0061] As shown in FIG. 4, it is preferable that the magnetic pole of electromagnet 24 be coplanar with the magnetic pole of vehicle-side permanent magnet 23 that faces feeder-side permanent magnet 37. This is because it makes it easier for the electromagnetic force generated by electromagnet 24 to act on feeder-side permanent magnet 37.

    [0062] Thus, it becomes possible to insert feeder connector 3 into vehicle-side connector 2. Electromagnet 24 is controlled by controller section 42, which is described hereinbelow.

    [0063] Electromagnet 24 is turned off by controller section 42 in the event of an anomaly during charging. As a result, vehicle-side connector 2 and feeder connector 3 break off from each other due to the repelling force. It is possible to provide feeder connector 3 with electromagnet 24. However, anomalies during charging in the context of the present embodiment result mostly from causes associated with vehicle 4, as in when the vehicle starts moving during charging, for example. Therefore, it is preferable that vehicle 4 be provided with electromagnet 24.

    [0064] Shielding section 38 is a member for shielding feeder-side electrode 30 of feeder connector 3 so that it does not become exposed after feeder connector 3 and vehicle-side connector 2 have broken off from each other. Shielding section 38 may include an actuating mechanism (e.g., an electric motor, and/or the like) and automatically carry out shielding by sensing a break off between feeder connector 3 and vehicle-side connector 2, or it may automatically carry out shielding by means of a spring force, and/or the like, without using electric energy.

    [0065] Next, functional blocks of vehicle 4, which includes vehicle-side connector 2, and of charging stand 5, which includes feeder connector 3, are described with reference to FIG. 7.

    [0066] Vehicle 4 includes vehicle-side connector 2. The AC electric energy received at this vehicle-side connector 2 is converted into DC electric energy at charger 40, and stored in battery 41.

    [0067] Vehicle-side connector 2 includes lid section 22, which can be detached by the user and is for covering vehicle-side electrode 20. The user initiates charging by opening lid section 22, and then inserting feeder connector 3.

    [0068] Vehicle 4 also includes controller section 42, which controls each section, and vehicle information collection section 43, which collects various information within the vehicle. Charging stand 5 includes feeder connector 3, which feeds power to vehicle-side connector 2. AC electric energy is supplied to feeder connector 3 from feeding section 50, which is connected to a commercial power source. Each section is described in detail below.

    [0069] Battery 41 stores DC electric energy that is outputted by charger 40. The stored electric energy is used as energy for driving a driving motor that is linked to, and rotates, the axle of the driving wheels of the electric vehicle. By way of example, nickel-hydrogen batteries and lithium-ion batteries may be used for battery 41.

    [0070] Controller section 42 obtains from charger 40 information regarding charging, as well as various information within vehicle 4 from vehicle information collection section 43. Based on the information above, controller section 42 controls the turning on/off of electromagnet 24.

    [0071] This controller section 42 corresponds to a disengagement detection section, and detects disengagement between feeder connector 3 and vehicle-side connector 2 when the travel speed of the vehicle changes from zero to a positive speed, as will be discussed hereinbelow.

    [0072] The various information of vehicle 4 mentioned above refers to, for example, the travel speed of the vehicle. Further, vehicle information collection section 43 detects the state of lid section 22 (e.g., whether or not it is opened), and sends the detection result to controller section 42.

    [0073] Controller section 42 may include a CPU, ROM, RAM, and/or the like. By executing a program stored on ROM (not shown), the CPU performs various operations, the outputting of control signals, and/or the like. In addition, the CPU and MPU use the RAM as a working area while running the program. Detailed operations are described hereinbelow.

    [0074] Charging stand 5 includes feeder connector 3, which feeds power to vehicle-side connector 2 as discussed above. AC electric energy is supplied to feeder connector 3 from feeding section 50, which is connected to a commercial power source. A typical example of charging stand 5 is an EV charging stand installed solely for that purpose, but its installation location is not limited in any way.

    [0075] By way of example, in addition to dedicated EV charging stands, it may be installed at ordinary houses, at housing complexes (e.g., condominiums), shops (e.g., convenience stores), gas stations, and/or the like.

    [0076] FIG. 5 depicts a state where battery 41 of vehicle 4 is being charged from charging stand 5. Vehicle-side connector 2 and feeder connector 3 are connected with each other. At this point, controller section 42 has electromagnet 24 turned on (a magnetic field is generated).

    [0077] Because of vehicle-side permanent magnet 23 and feeder-side permanent magnet 37, there is generated between feeder connector 3 and vehicle-side connector 2 a repulsion force with a repelling directionality. This repulsion force, as viewed in relation to vehicle 4, is represented by arrow E in FIG. 5. With respect to this repulsion force, as electromagnet 24 is turned on, there is generated a force that attracts, as viewed in relation to vehicle 4, feeder connector 3 in the direction of arrow F, which is in the opposite direction to arrow E. By having arrow E and arrow F cancel each other out, it is possible to smoothly connect feeder connector 3 and vehicle-side connector 2.

    [0078] Furthermore, as shown in FIG. 6, if vehicle-side connector 2 and feeder connector 3 break off from each other due to an abnormal state, such as vehicle 4 starting to move during charging, and/or the like, controller section 42 turns electromagnet 24 off (no magnetic field is generated).

    [0079] Thus, the repulsion force occurring between vehicle-side permanent magnet 23 and feeder-side permanent magnet 37 is released, and feeder connector 3 breaks off forcefully. The force at this point, as viewed in relation to vehicle 4, is represented by arrow G in FIG. 6. In conjunction with this break off, shielding section 38 shields feeder-side electrode 30.

    [0080] With respect to an electric vehicle charging apparatus thus configured, a processing operation thereof is described with reference to FIG. 8. FIG. 8 is a chart illustrating an operation of an electric vehicle charging apparatus (an operation of controller section 42) with respect to Embodiment 2 of the present invention.

    [0081] Upon beginning processing, controller section 42 determines, based on an output from vehicle information collection section 43, whether or not lid section 22 is open (S01). If lid section 22 is not open (NO at S01), controller section 42 terminates processing since charging will never be initiated as such.

    [0082] On the other hand, if lid section 22 is open (YES at S01), controller section 42 controls electromagnet 24 so as to turn it on (S02). Following S02, controller section 42 determines whether or not charging from charging stand 5 is possible (S03). If charger 40 is accepting power, that information is sent to controller section 42. At this point, controller section 42 makes a determination that charging is possible. If charging is not possible (NO at S03), controller section 42 executes S06, which is described hereinbelow.

    [0083] When lid section 22 is detached, controller section 42 turns electromagnet 24 on. Since charging is never initiated when lid section 22 is attached, turning electromagnet 24 on results in electric energy being consumed. As such, by turning electromagnet 24 on once lid section 22 is detached (i.e., when it is likely that charging will take place), there is produced an advantageous effect where it is possible to minimize the current passed through electromagnet 24.

    [0084] If charging is possible (YES at S03), the charging of battery 41 begins via charger 40. While this charging is taking place, controller section 42 monitors for anomalies (S04).

    [0085] If no anomaly is occurring (NO at S04), controller section 42 acquires from charger 40 information as to whether or not battery 41 is fully charged (S05). If it is not fully charged (NO at S05), controller section 42 returns the process to S04, and continues to monitor for anomalies.

    [0086] Once battery 41 becomes fully charged (YES at S05), controller section 42 terminates the process. At this point, electromagnet 24 is turned on. However, as shown in FIG. 5, since the repelling force between vehicle-side permanent magnet 23 and feeder-side permanent magnet 37 is cancelled out by the magnetic field of electromagnet 24, the user is able to cause disengagement with ease by pulling on feeder connector 3.

    [0087] It is also possible to have the magnetic field of electromagnet 24 be slightly stronger than the repelling force between vehicle-side permanent magnet 23 and feeder-side permanent magnet 37 (i.e., stronger in the direction that causes feeder-side permanent magnet 37 to be pulled towards the vehicle). Thus, when inserting feeder connector 3 into vehicle-side connector 2, feeding connector 3 is attracted towards the vehicle, thereby producing an advantageous effect where insertion by the user is made easier.

    [0088] If an anomaly occurs during charging (YES at S04), controller section 42 turns electromagnet 24 off (S06). Thus, the repelling force occurring between vehicle-side permanent magnet 23 and feeder-side permanent magnet 37 is released, and feeder connector 3 breaks off forcefully.

    [0089] The term "anomaly" as used above refers to, for example, a case where the vehicle starts moving during charging. If the travel speed detected by vehicle information collection section 43 changes from 0 km/h to a value other than 0 km/h, controller section 42 is able to determine that the vehicle has started moving. Thus, when the travel speed changes from zero to a positive speed, controller section 42 detects disengagement between feeder connector 3 and vehicle-side connector 2, and effects control in such a manner as to stop the electromagnetic force generated by electromagnet 24.

    [0090] After terminating the process, controller 42 once again returns the process to Start.

    (Variation)



    [0091] With the present embodiment, it has been described that vehicle-side connector 2 includes vehicle-side permanent magnet 23 and electromagnet 24. However, the present invention is by no means limited as such. Vehicle-side connector 2 may instead include just electromagnet 24, and be without vehicle-side permanent magnet 23.

    [0092] FIG 9 is a chart showing an operation of an electric vehicle charging apparatus with respect to a variation of Embodiment 2 of the present invention. When the arrangement above is adopted, controller section 42 does not perform S02 in FIG. 8. This is because, since vehicle-side connector 2 does not include vehicle-side permanent magnet 23, there is no need to generate a magnetic field to cancel out the repelling force between vehicle-side permanent magnet 23 and feeder-side permanent magnet 37.

    [0093] If an anomaly occurs during charging (YES at S04), controller section 42 turns electromagnet 24 on (S07) in this variation, in contrast to how it turned electromagnet 24 off at S06 in FIG. 8. At this point, the magnetic field generated by electromagnet 24 is made to be such that it has the opposite pole to the pole that would cause feeder-side permanent magnet 37 to be attracted towards vehicle-side connector 2. Due to this magnetic field generated by electromagnet 24, electromagnet 24 and feeder-side permanent magnet 37 repel each other, thus causing vehicle-side connector 2 and feeder connector 3 to break off from each other. In other words, with this variation, electromagnet 24 and feeder-side permanent magnet 37 correspond to a repulsion force generation section.

    [0094] Thus, with an electric vehicle charging apparatus of Embodiment 2, a repulsion force with such a directionality as to cause feeder connector 3 and vehicle-side connector 2 to break off from each other is generated by means of a magnetic repulsion force, thereby causing feeder connector 3 and vehicle-side connector 2 to break off from each other forcefully. Such an arrangement produces an advantageous effect where it is possible to prevent the occurrence of an arc discharge.

    [0095] With the present embodiment, at S03, an anomaly determination is made when the travel speed detected by vehicle information collection section 43 changes from 0 km/h to a value other than 0 km/h. However, it is conceivable that the travel speed detected by vehicle information collection section 43 may sometimes become inaccurate. By way of example, a case where a very low speed value other than 0 km/h is indicated even though the vehicle is stationary in reality is conceivable. In this case, if the connectors were to be disengaged by turning electromagnet 24 off, when in fact the vehicle is stationary, it could pose a threat if there are any people nearby.

    [0096] As such, when the travel speed detected by vehicle information collection section 43 is at or below a predetermined value (preferably a very low speed value), even if it is a value other than 0 km/h, it is preferable that an anomaly determination not be made if at least one of the following conditions are met

    [0097] The conditions mentioned above include such conditions as, for example, the activation key of the drive motor not being turned, the absence of a shift maneuver (the gear being in neutral or park), the parking brake not being released, and so forth. These are detected by vehicle information collection section 43. By further adding such conditions, an advantageous effect is produced where it is possible to prevent erroneous anomaly occurrence determinations.

    Industrial Applicability



    [0098] The present invention is effective as, for example, an electric vehicle charging apparatus including a vehicle-side connector for battery charging, and a feeder connector that supplies electric energy from outside of a vehicle.

    Reference Signs List



    [0099] 
    1
    Electric vehicle charging apparatus
    2
    Vehicle-side connector
    20
    Vehicle-side electrode
    21
    Hole part
    22
    Lid section
    23
    Vehicle-side permanent magnet
    24
    Electromagnet
    3
    Feeder connector
    30
    Feeder-side electrode
    300
    Shielding section
    31
    Charging cable
    32
    Latch section
    320
    Hole
    321
    Latch stop
    322
    Latch stop
    323
    Protrusion
    33
    Protruding section
    330
    Hole
    331
    Support section
    34
    Spring
    35
    Base section
    36
    Feeder connector housing
    360
    Protrusion
    361
    Latch release section
    37
    Feeder-side permanent magnet
    38
    Shielding section
    4
    Vehicle
    40
    Charger
    41
    Battery
    42
    Controller section
    43
    Vehicle information collection section
    5
    Charging stand
    50
    Feeding section



    Claims

    1. An electric vehicle charging apparatus (1) comprising:

    a feeder connector (3) that connects with a vehicle-side connector (2) of an electric vehicle (4) from outside of the electric vehicle (4) and supplies electric energy;

    a repulsion force generation section (34) that generates a repulsion force with such a directionality as to cause the feeder connector (3) and the vehicle-side connector (2) to break off from each other;

    a protruding section (33) for causing the feeder connector (3) and the vehicle-side connector (2) to break off from each other by using the repulsion force;

    a restraining mechanism (32, 331, 360) for storing the repulsion force generated by the repulsion force generation section (34) without releasing the generated repulsion force;

    a latch release section (361) that detaches the feeder connector (3) from the vehicle-side connector (2) by being pressed;

    a disengagement detection mechanism (32, 331) that detects that the feeder connector (3) is disengaged from the vehicle-side connector (2) while the latch release section (361) is not in a pressed state; and

    a feeder connector housing (36) of the feeder connector (3) that houses the repulsion force generation section (34), the protruding section (33), the restraining mechanism (32, 331, 360), the latch release section (361), and the disengagement detection mechanism (32, 331);

    wherein, when the disengagement detection mechanism (32, 331) detects that the feeder connector (3) is disengaged from the vehicle-side connector (2), the restraining mechanism (32, 331, 360) releases the repulsion force, thereby causing the feeder connector (3) and the vehicle-side connector (2) to break off from each other by the repulsion force;

    wherein, when the latch release section (361) is not in a pressed state, the restraining mechanism (32, 331, 360) prevents the repulsion force from being released;

    wherein the repulsion force generation section (34) comprises a spring, the spring is secured to a base section (35) of the feeder connector housing (36) at one end, and the spring is in contact with the protruding section (33) at the opposite end;

    wherein the disengagement detection mechanism (32, 331) comprises a latch section (32) having a first latch stop (321), a second latch stop (322), a first hole (320) and a first protrusion (323), the first latch stop (321) is engaged with a first hole shaped engaged part (21) formed in the vehicle-side connector (2), the second latch stop (322) is engaged with a second hole shaped engaged part (330) formed in the protruding section (33), and the disengagement detection mechanism (32, 331) detects the disengagement of the feeder connector (3) from the vehicle-side connector (2) based on a release of the engagement by the latch section (32);

    wherein the feeder connector housing (36) has a second protrusion (360) engaged with the first protrusion (323) of the latch section (32), and the restraining mechanism (32, 331, 360) comprises the engagement between the second protrusion (360) of the feeder connector housing (36) and the first protrusion (323) of the latch section (32);

    wherein the protruding section (33) has a support section (331) with a second hole, the second hole is located so as to be concentric with the first hole (320) of the latch section (32), the second hole is linked to the first hole (320) by means of a shaft provided along the center axes thereof, and the shaft is so structured that when a force of a predetermined magnitude or greater is applied thereto, the alignment between the first hole (320) and the second hole becomes undone; and

    wherein, when the vehicle-side connector (2) disengages from the feeder connector (3), a force is exerted on the first latch stop (321) due to a displacement of the first engaged part (21), then the alignment between the first hole (320) and the second hole becomes undone due to the force being transmitted to the shaft, then the latch section (32) becomes disengaged from the protruding section (33), then the engagement between the first protrusion (323) of the latch section (32) and the second protrusion (360) of the feeder connector housing (36) becomes undone, and then the protruding section (33) protrudes forcefully towards the vehicle-side connector (2) from the side of the feeder connector (3) by using the repulsion force of the repulsion force generation section (34).


     
    2. The electric vehicle charging apparatus (1) according to claim 1, wherein the repulsion force generation section (34) generates the repulsion force by means of a spring force.
     
    3. An electric vehicle charging apparatus (1) comprising:

    a feeder connector (3) that connects with a vehicle-side connector (2) of an electric vehicle (4) from outside of the electric vehicle (4) and supplies electric energy;

    a repulsion force generation section (23, 37) that generates a magnetic repulsion force with such a directionality as to cause the feeder connector (3)and the vehicle-side connector (2) to break off from each other;

    a magnetic force generation section (24) that generates a magnetic force with such a directionality as to cause the feeder connector (3) and the vehicle-side connector (2) to attract each other; and

    a control section (42) that controls the magnetic force generation section (24) and detects an anomaly during the supply of the electric energy, characterized in that

    the control section (42) causes the magnetic force generation section (24) to generate the magnetic force in the attracting direction to cancel out the repulsion force when the anomaly during the supply of the electric energy is not detected, and causes the feeder connector (3) and the vehicle-side connector (2) to break off from each other by the repulsion force, without causing the magnetic force generation section (24) to generate the magnetic force in the attracting direction, when the anomaly during the supply of the electric energy has been detected.


     
    4. The electric vehicle charging apparatus (1) according to claim 3, wherein the repulsion force generation section (23, 37) comprises permanent magnets provided with the feeder connector (3) and the vehicle-side connector (2); and
    the magnetic force generation section (24) comprises an electromagnet provided with the vehicle-side connector (2).
     
    5. The electric vehicle charging apparatus (1) according to claim 4, wherein the control section (42) controls the magnetic force generation section (24) based on vehicle information of the electric vehicle (4).
     
    6. The electric vehicle charging apparatus (1) according to claim 5, wherein the control section (42) acquires a travel speed of the electric vehicle (4) as the vehicle information, and detects the anomaly during the supply of the electric energy when the travel speed has changed from zero to a positive speed.
     
    7. The electric vehicle charging apparatus (1) according to claim 1 or 4, further comprising a shielding section (300; 38) that shields a feeder-side electrode (30) of the feeder connector (3) such that the feeder-side electrode (30) of the feeder connector (3) is not exposed after the feeder connector (3) and the vehicle-side connector (2) have broken off from each other due to the repulsion force of the repulsion force generation section (34; 23, 37).
     


    Ansprüche

    1. Ladevorrichtung von Elektrofahrzeugen (1), umfassend:

    einen Zufuhrverbinder (3), der einen fahrzeugseitigen Verbinder (2) eines Elektrofahrzeugs (4) von außerhalb des Elektrofahrzeugs (4) verbindet und elektrische Energie zuführt;

    einen Abstoßkrafterzeugungsabschnitt (34), der eine Abstoßkraft mit einer solchen Richtwirkung erzeugt, um zu veranlassen, dass sich der Zufuhrverbinder (3) und der fahrzeugseitige Verbinder (2) voneinander lösen;

    einen vorstehenden Abschnitt (33) zum Veranlassen, dass sich der Zufuhrverbinder (3) und der fahrzeugseitige Verbinder (2) unter Verwendung der Abstoßkraft voneinander lösen;

    einen Rückhaltemechanismus (32, 331, 360) zum Speichern der Abstoßkraft, die durch den Abstoßkrafterzeugungsabschnitt (34) erzeugt wird, ohne die erzeugte Abstoßkraft freizusetzen;

    einen Entriegelungsabschnitt (361), der den Zufuhrverbinder (3) von dem fahrzeugseitigen Verbinder (2) abtrennt, indem er gedrückt wird;

    einen Ausrückerfassungsmechanismus (32, 331), der erfasst, dass der Zufuhrverbinder (3) von dem fahrzeugseitigen Verbinder (2) ausgerückt ist, während der Entriegelungsabschnitt (361) nicht in einem gedrückten Zustand ist; und

    ein Zufuhrverbindergehäuse (36) des Zufuhrverbinders (3), der den Abstoßkrafterzeugungsabschnitt (34), den vorstehenden Abschnitt (33), den Rückhaltemechanismus (32, 331, 360), den Entriegelungsabschnitt (361) und den Ausrückerfassungsmechanismus (32, 331) unterbringt;

    wobei, wenn der Ausrückerfassungsmechanismus (32, 331) erfasst, dass der Zufuhrverbinder (3) von dem fahrzeugseitigen Verbinder (2) ausgerückt ist, der Rückhaltemechanismus (32, 331, 360) die Abstoßkraft freisetzt, wodurch veranlasst wird, dass sich der Zufuhrverbinder (3) und der fahrzeugseitige Verbinder (2) durch die Abstoßkraft voneinander lösen;

    wobei, wenn der Entriegelungsabschnitt (361) nicht in einem gedrückten Zustand ist, der Rückhaltemechanismus (32, 331, 360) verhindert, dass die Abstoßkraft freigesetzt wird;

    wobei der Abstoßkrafterzeugungsabschnitt (34) eine Feder umfasst, die Feder an einem Basisabschnitt (35) des Zufuhrverbindergehäuses (36) an einem Ende befestigt ist und die Feder in Kontakt mit dem vorstehenden Abschnitt (33) am gegenüberliegenden Ende gebracht ist;

    wobei der Ausrückerfassungsmechanismus (32, 331) einen Verriegelungsabschnitt (32) umfasst, der einen ersten Verriegelungsanschlag (321), einen zweiten Verriegelungsanschlag (322), ein erstes Loch (320) und einen ersten Vorsprung (323) aufweist, der erste Verriegelungsanschlag (321) mit einem ersten lochförmigen Eingriffsteil (21) in Eingriff ist, das im fahrzeugseitigen Verbinder (2) gebildet ist, der zweite Verriegelungsanschlag (322) mit einem zweiten lochförmigen Eingriffsteil (330) in Eingriff ist, das im vorstehenden Abschnitt (33) gebildet ist, und der Ausrückerfassungsmechanismus (32, 331) das Ausrücken des Zufuhrverbinders (3) von dem fahrzeugseitigen Verbinder (2) basierend auf einem Lösen des Eingriffs durch den Verriegelungsabschnitt (32) erfasst;

    wobei das Zufuhrverbindergehäuse (36) einen zweiten Vorsprung (360) aufweist, der mit dem ersten Vorsprung (323) des Verriegelungsabschnitts (32) in Eingriff ist, und der Rückhaltemechanismus (32, 331, 360) den Eingriff zwischen dem zweiten Vorsprung (360) des Zufuhrverbindergehäuses (36) und dem ersten Vorsprung (323) des Verriegelungsabschnitts (32) umfasst;

    wobei der vorstehenden Abschnitt (33) einen Trägerabschnitt (331) mit einem zweiten Loch aufweist, das zweite Loch platziert ist, um konzentrisch mit dem ersten Loch (320) des Verriegelungsabschnitts (32) zu sein, das zweite Loch mit dem ersten Loch (320) mittels einer Welle verbunden ist, die entlang der Mittelachsen davon bereitgestellt ist, und die Welle so aufgebaut ist, dass, wenn eine Kraft einer vorbestimmte Stärke oder größer darauf ausgeübt wird, die Ausrichtung zwischen dem ersten Loch (320) und dem zweiten Loch rückgängig gemacht wird; und

    wobei, wenn der fahrzeugseitige Verbinder (2) von dem Zufuhrverbinder (3) ausrückt, eine Kraft auf den ersten Verriegelungsanschlag (321) aufgrund einer Verschiebung des ersten Eingriffsteils (21) ausgeübt wird, dann die Ausrichtung zwischen dem ersten Loch (320) und dem zweiten Loch rückgängig gemacht wird, aufgrund dessen dass die Kraft auf die Welle übertragen wird, dann der Verriegelungsabschnitt (32) von dem vorstehenden Abschnitt (33) ausgerückt wird, dann der Eingriff zwischen dem ersten Vorsprung (323) des Verriegelungsabschnitts (32) und dem zweiten Vorsprung (360) des Zufuhrverbindergehäuses (36) rückgängig gemacht wird und dann der vorstehende Abschnitt (33) stark zum fahrzeugseitigen Verbinder (2) von der Seite des Zufuhrverbinders (3) unter Verwendung der Abstoßkraft des Abstoßkrafterzeugungsabschnitts (34) vorsteht.


     
    2. Ladevorrichtung von Elektrofahrzeugen (1) nach Anspruch 1, wobei der Abstoßkrafterzeugungsabschnitt (34) die Abstoßkraft mittels einer Federkraft erzeugt.
     
    3. Ladevorrichtung von Elektrofahrzeugen (1), umfassend:

    einen Zufuhrverbinder (3), der sich mit einem fahrzeugseitigen Verbinder (2) eines Elektrofahrzeugs (4) von außerhalb des Elektrofahrzeugs (4) verbindet und elektrische Energie zuführt;

    einen Abstoßkrafterzeugungsabschnitt (23, 37), der eine magnetische Abstoßkraft mit einer solchen Richtwirkung erzeugt, um zu veranlassen, dass sich der Zufuhrverbinder (3) und der fahrzeugseitige Verbinder (2) voneinander lösen;

    einen Magnetkrafterzeugungsabschnitt (24), der eine Magnetkraft mit einer solchen Richtwirkung erzeugt, um zu veranlassen, dass der Zufuhrverbinder (3) und der fahrzeugseitige Verbinder (2) einander anziehen; und

    einen Steuerabschnitt (42), der den Magnetkrafterzeugungsabschnitt (24) steuert und eine Anomalie während der Zuführung der elektrischen Energie erfasst, dadurch gekennzeichnet, dass

    der Steuerabschnitt (42) veranlasst, dass der Magnetkrafterzeugungsabschnitt (24) die Magnetkraft in der Anziehungsrichtung erzeugt, um die Abstoßkraft zu neutralisieren, wenn die Anomalie während der Zuführung der elektrischen Energie nicht erfasst wird, und veranlasst, dass sich der Zufuhrverbinder (3) und der fahrzeugseitige Verbinder (2) durch die Abstoßkraft voneinander lösen, ohne zu veranlassen, dass der Magnetkrafterzeugungsabschnitt (24) die Magnetkraft in der Anziehungsrichtung erzeugt, wenn die Anomalie während der Zuführung der elektrischen Energie erfasst wurde.


     
    4. Ladevorrichtung von Elektrofahrzeugen (1) nach Anspruch 3, wobei der Abstoßkrafterzeugungsabschnitt (23, 37) Permanentmagneten umfasst, die mit dem Zufuhrverbinder (3) und dem fahrzeugseitigen Verbinder (2) bereitgestellt sind; und
    der Magnetkrafterzeugungsabschnitt (24) einen Elektromagneten umfasst, der mit dem fahrzeugseitigen Verbinder (2) bereitgestellt ist.
     
    5. Ladevorrichtung von Elektrofahrzeugen (1) nach Anspruch 4, wobei der Steuerabschnitt (42) den Magnetkrafterzeugungsabschnitt (24) basierend auf Fahrzeuginformationen des Elektrofahrzeugs (4) steuert.
     
    6. Ladevorrichtung von Elektrofahrzeugen (1) nach Anspruch 5, wobei der Steuerabschnitt (42) eine Fahrgeschwindigkeit des Elektrofahrzeugs (4) als die Fahrzeuginformation ermittelt und die Anomalie während der Zuführung der elektrischen Energie erfasst, wenn die Fahrgeschwindigkeit von null zu einer positiven Geschwindigkeit geändert wurde.
     
    7. Ladevorrichtung von Elektrofahrzeugen (1) nach Anspruch 1 oder 4, ferner umfassend einen Abschirmungsabschnitt (300; 38), der eine zufuhrseitige Elektrode (30) des Zufuhrverbinders (3) abschirmt, sodass die zufuhrseitige Elektrode (30) des Zufuhrverbinders (3) nicht freiliegt, nachdem sich der Zufuhrverbinder (3) und der fahrzeugseitige Verbinder (2) aufgrund der Abstoßkraft des Abstoßkrafterzeugungsabschnitts (34; 23, 37) voneinander gelöst haben.
     


    Revendications

    1. Appareil de charge pour véhicule électrique (1) comprenant :

    un connecteur de câble d'alimentation (3) qui se connecte à un connecteur côté véhicule (2) d'un véhicule électrique (4) depuis l'extérieur du véhicule électrique (4) et fournit l'énergie électrique ;

    une section de génération de force de répulsion (34) qui génère une force de répulsion avec une directivité de manière à amener le connecteur de câble d'alimentation (3) et le connecteur côté véhicule (2) à se détacher l'un de l'autre ;

    une partie saillante (33) permettant d'amener le connecteur de câble d'alimentation (3) et le connecteur côté véhicule (2) à se détacher l'un de l'autre au moyen de la force de répulsion ;

    un mécanisme de retenue (32, 331, 360) destiné à stocker la force de répulsion générée par la section de génération de force de répulsion (34) sans libérer la force de répulsion générée ;

    une section de libération de verrou (361) qui détache le connecteur de câble d'alimentation (3) du connecteur côté véhicule (2) en étant comprimé ;

    un mécanisme de détection de dégagement (32, 331) qui détecte que le connecteur de câble d'alimentation (3) est dégagé du connecteur côté véhicule (2) tandis que la section de libération de verrou (361) n'est pas dans un état comprimé ; et

    un boîtier de connecteur de câble d'alimentation (36) du connecteur de câble d'alimentation (3) qui loge la section de génération de force de répulsion (34), la section saillante (33), le mécanisme de retenue (32, 331, 360), la section de libération de verrou (361) et le mécanisme de détection de dégagement (32, 331) ;

    lorsque le mécanisme de détection de dégagement (32, 331) détecte que le connecteur de câble d'alimentation (3) est dégagé du connecteur côté véhicule (2), le mécanisme de retenue (32, 331, 360) libérant la force de répulsion, amenant ainsi le connecteur de câble d'alimentation (3) et le connecteur côté véhicule (2) à se détacher l'un de l'autre par la force de répulsion ;

    lorsque la section de libération de verrou (361) n'est pas dans un état comprimé, le mécanisme de retenue (32, 331, 360) empêchant la force de répulsion d'être libérée ;

    la section de génération de force de répulsion (34) comprenant un ressort, le ressort étant fixé à une section de base (35) du boîtier de connecteur de câble d'alimentation (36) à une extrémité, et le ressort étant en contact avec la section saillante (33) à l'extrémité opposée ;

    le mécanisme de détection de dégagement (32, 331) comprenant une section de verrou (32) présentant une première butée de verrou (321), une deuxième butée de verrou (322), un premier orifice (320) et une première saillie (323), la première butée de verrou (321) étant en prise avec une première partie de mise en prise en forme d'orifice (21) formée dans le connecteur côté véhicule (2), la deuxième butée de verrou (322) étant en prise avec une deuxième partie de mise en prise en forme d'orifice (330) formée dans la section saillante (33) et le mécanisme de détection de dégagement (32, 331) détecte que le dégagement du connecteur de câble d'alimentation (3) par rapport au connecteur côté véhicule (2) en fonction d'une libération de la mise en prise par la section de verrou (32) ;

    le boîtier de connecteur de câble d'alimentation (36) présentant une deuxième saillie (360) en prise avec la première saillie (323) de la section de verrou (32) et le mécanisme de retenue (32, 331, 360) comprenant la mise en prise avec la deuxième saillie (360) du boîtier de connecteur de câble d'alimentation (36) et la première saillie (323) de la section de verrou (32) ;

    la section saillante (33) comportant une section de support (331) avec un deuxième orifice, le deuxième orifice étant situé de manière à être concentrique par rapport au premier orifice (320) de la section de verrou (32), le deuxième orifice étant relié au premier orifice (320) au moyen d'un arbre disposé le long des axes centraux de celui-ci, et l'arbre étant structuré de manière que lorsqu'une force d'une magnitude prédéterminée ou supérieure est appliquée à celui-ci, l'alignement entre le premier orifice (320) et le deuxième orifice devient défait ; et

    lorsque le connecteur côté véhicule (2) se détache du connecteur de câble d'alimentation (3), une force étant exercée sur la première butée de verrou (321) en raison d'un déplacement de la première partie en prise (21), alors l'alignement entre le premier orifice (320) et le deuxième orifice se défaisant en raison de la force étant transmise à l'arbre, alors la section de verrou (32) se séparant de la section saillante (33), alors la mise en prise entre la première saillie (323) de la section de verrou (32) et la deuxième saillie (360) du boîtier de connecteur de câble d'alimentation (36) se défaisant, et alors la section saillante (33) faisant saillie avec force vers le connecteur côté véhicule (2) du côté du connecteur de câble d'alimentation (3) au moyen de la force de répulsion de la section de génération de force de répulsion (34).


     
    2. Appareil de charge pour véhicule électrique (1) selon la revendication 1, la section de génération de force de répulsion (34) générant la force de répulsion au moyen d'une force élastique.
     
    3. Appareil de charge pour véhicule électrique (1) comprenant :

    un connecteur de câble d'alimentation (3) qui se connecte à un connecteur côté véhicule (2) d'un véhicule électrique (4) depuis l'extérieur du véhicule électrique (4) et fournit l'énergie électrique ;

    une section de génération de force de répulsion (23, 37) qui génère une force de répulsion magnétique avec une directivité de manière à amener le connecteur de câble d'alimentation (3) et le connecteur côté véhicule (2) à se détacher l'un de l'autre ;

    une section de génération de force magnétique (24) qui génère une force magnétique avec une directivité de manière à amener le connecteur de câble d'alimentation (3) et le connecteur côté véhicule (2) à s'attirer l'un l'autre ; et

    une section de commande (42) qui commande la section de génération de force magnétique (24) et détecte une anomalie pendant la fourniture de l'énergie électrique, caractérisé en ce que

    la section de commande (42) amène la section de génération de force magnétique (24) à générer la force magnétique dans la direction d'attraction pour annuler la force de répulsion lorsque l'anomalie pendant la fourniture de l'énergie électrique n'est pas détectée, et amène le connecteur de câble d'alimentation (3) et le connecteur côté véhicule (2) à se détacher l'un de l'autre par la force de répulsion, sans amener la section de génération de force magnétique (24) à générer la force magnétique dans la direction d'attraction, lorsque l'anomalie pendant la fourniture de l'énergie électrique a été détectée.


     
    4. Appareil de charge pour véhicule électrique (1) selon la revendication 3, dans lequel la section de génération de force de répulsion (23, 37) comprend des aimants permanents dotés du connecteur de câble d'alimentation (3) et du connecteur côté véhicule (2) ; et
    la section de génération de force magnétique (24) comprend un électroaimant doté du connecteur côté véhicule (2).
     
    5. Appareil de charge pour véhicule électrique (1) selon la revendication 4, dans lequel la section de commande (42) commande la section de génération de force magnétique (24) en fonction d'informations de véhicule du véhicule électrique (4).
     
    6. Appareil de charge pour véhicule électrique (1) selon la revendication 5, dans lequel la section de commande (42) acquiert une vitesse de déplacement du véhicule électrique (4) en tant qu'informations de véhicule, et détecte l'anomalie pendant la fourniture de l'énergie électrique lorsque la vitesse de déplacement a changé de zéro à une vitesse positive.
     
    7. Appareil de charge pour véhicule électrique (1) selon la revendication 1 ou 4, comprenant en outre une section de protection (300 ; 38) qui protège une électrode côté câble d'alimentation (30) du connecteur de câble d'alimentation (3) de manière que l'électrode côté câble d'alimentation (30) du connecteur de câble d'alimentation (3) n'est pas exposée après que le connecteur de câble d'alimentation (3) et le connecteur côté véhicule (2) se sont détachés l'un de l'autre en raison de la force de répulsion de la section de génération de force de répulsion (34 ; 23, 37).
     




    Drawing






























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description