(19)
(11)EP 2 632 023 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 11834146.0

(22)Date of filing:  20.09.2011
(51)International Patent Classification (IPC): 
H02K 1/16(2006.01)
(86)International application number:
PCT/JP2011/071299
(87)International publication number:
WO 2012/053304 (26.04.2012 Gazette  2012/17)

(54)

DYNAMO-ELECTRIC MACHINE AND ON-VEHICLE DYNAMO-ELECTRIC MACHINE SYSTEM

DYNAMOELEKTRISCHE MASCHINE UND FAHRZEUGMONTIERTES SYSTEM MIT DER DYNAMOELEKTRISCHEN MASCHINE

MACHINE DYNAMO-ÉLECTRIQUE ET SYSTÈME DE MACHINE DYNAMO-ÉLECTRIQUE EMBARQUÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.10.2010 JP 2010234765

(43)Date of publication of application:
28.08.2013 Bulletin 2013/35

(73)Proprietor: NISSAN MOTOR CO., LTD.
Yokohama-shi, Kanagawa 221-0023 (JP)

(72)Inventor:
  • FUKUSHIGE, Takashi
    Atsugi-shi, Kanagawa 243-0123, (JP)

(74)Representative: Grünecker Patent- und Rechtsanwälte PartG mbB 
Leopoldstraße 4
80802 München
80802 München (DE)


(56)References cited: : 
EP-A1- 2 034 607
EP-A2- 1 357 660
JP-A- 7 075 213
JP-A- 62 239 849
JP-A- 2000 278 868
JP-A- 2002 369 545
JP-A- 2010 051 144
US-A- 4 220 883
US-A1- 2004 263 099
EP-A2- 1 246 353
JP-A- 6 013 250
JP-A- 10 304 688
JP-A- 2000 061 360
JP-A- 2000 278 868
JP-A- 2005 073 500
JP-A- 2010 151 595
US-A1- 2004 004 410
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure relates to a rotary electric machine and an in-vehicle rotary electric machine system using the same.

    BACKGROUND ART



    [0002] As disclosed in JP-H09-233709-A, an electrical vehicle that travels using a battery or the like has a circuit for controlling of the driving of a rotary electric machine and an external power transfer circuit (generally, an electric charging circuit). US 2004/004410 A1 discloses a method for making a motor and auxiliary devices with a unified stator body comprises providing a piece of material having an area larger than a cross section of the stator, removing material from the piece of material to form a pattern for a cross section of a core for the stator, and removing material from the piece of material outside the cross section of the core of the stator to allow positioning of cores for supporting windings of least one additional electromagnetic device, such as a transformer in a dc-to-dc converter that provides a low voltage dc output. US 4,220,883 A discloses a stator core assembly for an electric motor, particularly such a motor in which operating characteristics of the motor is accomplished by means of a secondary coil, such as a choke coil. The stator core assembly comprises a plurality of laminations made of suitable magnetic material with the laminations assembled in a stack to form a core having a central bore extending longitudinally therethrough for the reception of a rotor of the electric motor and having a plurality of slots extending longitudinally through the core for receiving coils of wire which constitute the windings of the motors. Each of the laminations further has other openings therein so that upon the laminations being stacked in a core, the other openings form a receptacle for the reception of the above-mentioned secondary coil. EP 1 357 660 A2 discloses a multipolar magnetogenerator, which is operable under sufficient performance of its capability, permitting simultaneous extraction of various voltage outputs and is excellent in spatial efficiency, includes a magnet rotor as an outer rotor and a multipolar stator opposed to the radially inner surface of the magnet rotor to permit extraction of an output of generated power from output windings wound around the stator core. A transformer core has a primary winding and secondary windings wound therearound and is located adjacent the radially inner circumferential surface of the stator, which is remote from the magnet rotor, and the output windings are connected to the primary wiring such that transformed outputs are extracted from the secondary windings. EP 1 246 353 A2 discloses a multi-output power conversion circuit which drives a polyphase AC motor and another device but the polyphase AC motor using a DC power source, wherein a transformer is connected to the neutral point of the polyphase AC motor, an AC voltage at a zero-phase voltage frequency is obtained from the transformer, and the other device is loaded with the AC voltage. US 2004/0263099 A1 discloses a propulsion system for an electric vehicle, wherein the vehicles motor and generator electromagnetic circuits are isolated to give greater freedom to optimize. JP 2000-278868-A discloses a technique to immediately charge a battery just by inserting a power plug into a plug socket provided in a charger by mounting the charger at all times as a separate circuit on a vehicle for transportation mounted with a battery driving motor. A controller main circuit for driving a DC brushless motor comprises a battery as a driving power supply, a capacitor parallelly connected to the battery, and an inverter circuit constituted of bridge-connected semiconductor switches. Extension lines are branched from connection lines between the inverter circuit and stator coils. An inverter circuit for charging a battery comprises a rectifier circuit provided with an AC 100 V power plug, a parallel capacitor, an inverter constituted of bridge-connected semiconductor switches, and a high frequency transformer which insulates the high frequency power and transforms the voltage. A changeover switch is installed at the secondary side of the high frequency transformer 19. Due to this structure, the entire system can be reduced in size and a low-cost system can be built. EP 2 034 607 A1 discloses a motorized vehicle wherein, in a charge/discharge mode, an inverter performs power conversion between a power storage device and a commercial power supply electrically connected to a neutral point through a power line. In the charge/discharge mode, ECU sets a carrier frequency of the inverter to a frequency higher than in a running mode. Further, in the charge/discharge mode, a drive circuit drives the inverter using a gate resistance higher than in the running mode.

    SUMMARY



    [0003] However, these circuits have a large size, and a more compact size is desirable.

    [0004] The present disclosure has been made by focusing on such problems in the related art. It is therefore an object of this invention to provide a more compact rotary electric machine and an in-vehicle rotary electric machine system using the same.

    [0005] The present invention provides a rotary electric machine according to independent claim 1. Advantageous embodiments are set out in the dependent claims. According to an embodiment, there is provided a rotary electric machine including a rotor; a stator magnet core; a transformer primary coil wound around the stator magnet core
    in an insulation state and connected to a power circuit; a transformer secondary coil wound around the stator magnet core in an insulation state and connected to a battery by interposing a DC/AC converter.

    [0006] The foregoing and additional features and characteristics of this disclosure will become more apparent from the following detailed description considered with the reference to the accompanying drawings.

    BRIEF DESCRIPTION OF DRAWINGS



    [0007] 

    FIG. 1 is a cross-sectional view illustrating a schematic configuration of a rotary electric machine according to a first embodiment of the present invention.

    FIG. 2 is a perspective view illustrating main components of the rotary electric machine according to the first embodiment of the present invention.

    FIG. 3 is a diagram illustrating an in-vehicle rotary electric machine system using the rotary electric machine according to the present invention.

    FIG. 4 is a diagram illustrating installation of a reactor in an in-wheel type rotary electric machine.

    FIG. 5 is a perspective view illustrating main components of a rotary electric machine according to a second embodiment of the present invention.

    FIG. 6 is a cross-sectional view illustrating a rotary electric machine according to a third embodiment of the present invention.

    FIG. 7A is a diagram illustrating effects of the rotary electric machine according to the third embodiment of the present invention.

    FIG. 7B is a diagram illustrating effects of the rotary electric machine according to the third embodiment of the present invention

    FIG. 8 is a diagram illustrating an in-vehicle rotary electric machine system according to a second embodiment of the present invention.

    FIG. 9 is a diagram illustrating an in-vehicle rotary electric machine system according to a third embodiment of the present invention.

    FIG. 10 is a diagram illustrating an in-vehicle rotary electric machine system according to a fourth embodiment of the present invention.

    FIG. 11 is a diagram illustrating an in-vehicle rotary electric machine system according to a fifth embodiment of the present invention.

    FIG. 12 is a diagram illustrating an in-vehicle rotary electric machine system according to a sixth embodiment of the present invention.

    FIG. 13 is a diagram illustrating an in-vehicle rotary electric machine system according to a seventh embodiment of the present invention.

    FIG. 14 is a diagram illustrating an in-vehicle rotary electric machine system according to an eighth embodiment of the present invention.

    FIG. 15 is a diagram illustrating an in-vehicle rotary electric machine system according to a ninth embodiment of the present invention.


    EMBODIMENT


    (First Embodiment)


    <Structure of Rotary Electric Machine>



    [0008] FIG. 1 is a cross-sectional view illustrating a schematic configuration of a rotary electric machine according to a first embodiment of the present invention.

    [0009] Here, description will be made by exemplifying a permanent magnet type three-phase AC motor having 12 poles and 18 slots as the rotary electric machine 1. In order to clearly construe a concept of the invention, a summary of the invention will be first described in brief. An electrical vehicle traveling using a battery or the like has a circuit for driving and controlling the rotary electric machine and an external power transfer circuit (generally, an electric charging circuit). These circuits typically have a large size. For this reason, a more compact size is desirable in these circuits. In this regard, the inventors paid attention to a fact that the circuit for controlling of the driving of the rotary electric machine and the external power transfer circuit (generally, an electric charging circuit) are configured using a plurality of similar components, and they are not used at the same time, so that they may be shared. The embodiments will be described in more detail as follows.

    [0010] The rotary electric machine 1 includes a rotor 10 and a stator 20.

    [0011] The rotor 10 includes a shaft 11, a rotor magnet core 12, and a permanent magnet 13.

    [0012] The shaft 11 serves as a central axis of rotation of the rotor 10.

    [0013] The rotor magnet core 12 is installed around the shaft 11. The rotor magnet core 12 is formed by stacking a plurality of circular thin steel sheets. A hole is formed in an outer circumference of the rotor magnet core 12. A permanent magnet 13 is inserted into the hole.

    [0014] The permanent magnets 13 are provided to extend across nearly the entire length of the rotor 10. The permanent magnets 13 are arranged such that magnetic poles of the neighboring permanent magnets are different from each other.

    [0015] The stator 20 includes a stator magnet core 21 and a stator coil 22. The stator 20 is arranged in an outer circumference of the rotor 10.

    [0016] The stator magnet core 21 is formed by stacking a plurality of thin steel sheets. The inner circumference side of the stator magnet core 21 is provided with tooth 211. The stator coil 22 is wound around the tooth 211 by interposing an insulation layer.

    [0017] As an electric current flows through the stator coil 22, a magnetic flux is generated so that a repulsive/attractive force is generated in the permanent magnet 13. As a result, the rotor 10 is rotated with respect to the shaft 11.

    [0018] A hole 21a is formed in the stator magnet core 21. According to the present embodiment, a tab 212 is formed by protruding a part of the stator magnet core 21. The hole 21a is formed in this tab 212.

    [0019] FIG. 2 is a perspective view illustrating main components of the rotary electric machine according to the first embodiment of the present invention.

    [0020] A U-phase AC power line, a V-phase AC power line, and a W-phase AC power line are arranged along a back yoke 213 of the stator magnet core 21. In addition, an N-line as a neutral point is arranged. The stator coil 22 formed in the tooth 211 is connected to the N-line and any one of the AC power lines. The stator coil (U-phase coil) 22 formed in the left tooth 211 is connected to the N-line and the U-phase AC power line. The stator coil (V-phase coil) 22 formed in the center tooth 211 is connected to the N-line and the V-phase AC power line. The stator coil (W-phase coil) 22 formed in the right tooth 211 is connected to the N-line and the W-phase AC power line. It is noted that, although the left and right sides are not illustrated in FIG. 2, this structure is sequentially repeated.

    [0021] A primary coil 41 and a secondary coil 42 are wound around the outer side of the stator magnet core 21 through the hole 21a. As described below, the primary coil 41 is connected to the power circuit. One end of the secondary coil 42 is connected to the neutral point (N-line), and the other end is connected to a DC/AC converter 7 as described below.

    [0022] In this configuration, the primary coil 41, the secondary coil 42, and the stator magnet core 21 constitute a transformer. In this manner, since a transformer functionality can be obtained by sharing a part of the rotary electric machine 1, a size thereof is reduced as a whole, compared to a case where a transformer is provided using separate components.

    <In-vehicle Rotary Electric Machine System>



    [0023] FIG. 3 is a diagram illustrating an in-vehicle rotary electric machine system using the rotary electric machine according to the present invention.

    [0024] The in-vehicle rotary electric machine system S includes a rotary electric machine 1, a DC/AC converter 7, a battery 8, and a power circuit 9.

    [0025] The DC/AC converter 7 is provided between the rotary electric machine 1 and the battery 8. The DC/AC converter 7 has both an inverter functionality for converting DC power from the battery 8 to AC power and a converter functionality for converting AC power from the rotary electric machine 1 to DC power. The DC/AC converter 7 has a positive DC power line 71p, a negative DC power line 71n, a U-phase AC power line 72u, a V-phase AC power line 72v, and a W-phase AC power line 72w.

    [0026] The positive DC power line 71p is connected to a positive electrode of the battery 8. The negative DC power line 71n is connected to a negative electrode of the battery 8. A capacitor 75 is connected between the positive DC power line 71p and the negative DC power line 71n in parallel with the battery 8. The capacitor 75 performs smoothing of the DC power.

    [0027] The U-phase AC power line 72u is connected to the U-phase coil of the rotary electric machine 1. The V-phase AC power line 72v is connected to the V-phase coil of the rotary electric machine 1. The W-phase AC power line 72w is connected to the W-phase coil of the rotary electric machine 1.

    [0028] The DC/AC converter 7 has six IGBT modules between the DC power line and the AC power line (including a positive U-phase IGBT module, a negative U-phase IGBT module, a positive V-phase IGBT module, a negative V-phase IGBT module, a positive W-phase IGBT module, and a negative W-phase IGBT module).

    [0029] Each IGBT module (switching module) includes an insulated gate bipolar transistor (IGBT) as a switching element and a rectifying element (free wheeling diode: hereinafter, referred to as a FWD) connected to the IGBT inversely in parallel. Each IGBT module is turned on/off based on a pulse width modulation (PWM) signal from the controller 100.

    [0030] The primary coil 41 of the rotary electric machine 1 is connected to the power circuit 9 and is finally connected to an out-of-vehicle power supply through a power plug.

    [0031] One end of the secondary coil 42 of the rotary electric machine 1 is connected to the neutral point (N-line), and the other end is connected to the negative DC power line 71n through the reactor 51 and the switch 52.

    [0032] In such an in-vehicle rotary electric machine system, the switch 52 is turned off when a vehicle travels by driving the rotary electric machine 1. Then, the power of the battery 8 is converted to AC power using the DC/AC converter 7 and is supplied to the rotary electric machine 1 to drive the rotary electric machine 1. In addition, regenerative electric power of the rotary electric machine 1 is converted into DC power using the DC/AC converter 7 and is supplied to the battery 8 to charge the battery 8. In this manner, it is possible to cut off the electric current using the switch 52.

    [0033] When the battery 8 is charged using the out-of-vehicle power supply, the switch 52 is turned on, and the battery 8 is connected to the out-of-vehicle power supply. Then, the AC power of the out-of-vehicle power supply is transmitted to the primary coil 41. As described above, since the primary coil 41, the secondary coil 42, and the stator magnet core 21 constitute a transformer, power boosted to a suitable voltage is converted into DC power using the DC/AC converter 7 from the secondary coil 42, and the DC power is supplied to the battery 8 to charge the battery 8.

    [0034] In this manner, in the in-vehicle rotary electric machine system according to the present embodiment, the primary coil 41, the secondary coil 42, and the stator magnet core 21 constitute a transformer when electricity is charged using the out-of-vehicle power supply. As a result, insulation is provided between the battery 8 and the out-of-vehicle power supply. If there is no insulation, a high voltage of the battery 8 may be applied to a power terminal connected to the out-of-vehicle power supply when any malfunction occurs. On the contrary, if connection is made through a transformer as in the present embodiment, such a problem does not occur.

    [0035] According to the present embodiment, a transformer functionality is not separately provided, but it is built in the rotary electric machine 1. Therefore, compared to a case where the transformer is provided using separate components, it is possible to reduce a size as a whole and lower a manufacturing cost.

    [0036] As described above, according to the present embodiment, the DC/AC converter 7 typically used to drive the rotary electric machine 1 can also be used as an electric power converter between the secondary coil 42 and the battery 8. Therefore, the number of the DC/AC converters for charging can be reduced by 1, so that it is possible to achieve miniaturization.

    [0037] FIG. 4 is a diagram illustrating installation of the reactor in a case where an in-wheel type rotary electric machine is employed.

    [0038] An inductance (hereinafter, referred to as a "zero-phase inductance") between the neutral point of the rotary electric machine and the battery 8 is insignificant in a typical rotary electric machine. For this reason, an electric current ripple caused by pulse width modulation significantly increases, so that a loss and a radiation noise may increase. In order to address this problem, a reactor may be provided.

    [0039] However, a reactor which can absorb a variation in the charging power in synchronization with the PWM frequency of the charging electric current, in other words, a reactor having a certain level of energy storage capability has a large size.

    [0040] In a so-called in-wheel type rotary electric machine in which the rotary electric machine 1 is arranged in the inner circumference side of the load wheel, the reactor 51 illustrated in FIG. 3 may be provided in a motor room (engine room in a plug-in hybrid electric vehicle (PHEV)). However, since the size of the reactor 51 is large, a vehicle cabin room may be reduced.

    [0041] In the in-wheel type, as illustrated in FIG. 4, a brake 202 or a suspension member 203 is provided in the inner side of the load wheel 201. Therefore, there is necessarily a vacant space in an outer circumference portion of the rotary electric machine 1.

    [0042] In this regard, the inventors pay attention to a fact that the reactor 51 may be installed in this space. Then, it is possible to increase space efficiency of the in-wheel type rotary electric machine unit, so that it is not necessary to reduce a vehicle cabin room.

    (Rotary Electric Machine According to Second Embodiment)



    [0043] FIG. 5 is a perspective view illustrating main components of a rotary electric machine according to a second embodiment of the present invention.

    [0044] According to the present embodiment, a reactor functionality is obtained by sharing a part of the rotary electric machine 1. Specifically, a slit 21b is formed in the stator magnet core 21. According to the present embodiment, the slit 21b is formed, particularly, in the tab 212. In addition, the reactor coil 51a is formed to pass through the outer side of the stator magnet core 21 and the slit 21b. One end of the reactor coil 51a is connected to the secondary coil 42, and the other end is connected to the DC/AC converter 7.

    [0045] According to the present embodiment, the reactor coil 51a and the stator magnet core 21 constitute a reactor. In this manner, a reactor functionality can be obtained by sharing a part of the rotary electric machine 1. Therefore, compared to a case where a reactor is provided using separate components, it is possible to reduce a size as a whole and lower a manufacturing cost.

    (Rotary Electric Machine According to Third Embodiment)



    [0046] FIG. 6 is a cross-sectional view illustrating a rotary electric machine according to a third embodiment of the present invention.

    [0047] In the first embodiment, the primary coil 41 and the secondary coil 42 are formed to pass through the outer side of the stator magnet core 21 and the hole 21a to implement a transformer functionality. On the contrary, according to the present embodiment, the primary coil 41 and the secondary coil 42 are formed to face each other in the tooth 211 of the stator magnet core 21 with a predetermined population and a predetermined pitch to implement a transformer functionality.

    [0048] The primary coil 41 includes a first coil 411, a second coil 412, and a third coil 413. That is, the primary coil 41 includes three coils, so that the population is set to 3. In addition, the first coil 411, the second coil 412, and the third coil 413 are formed in every 6th tooth. That is, the pitch is set to 6.

    [0049] The secondary coil 42 is also similar to the primary coil 41. That is, the secondary coil 42 includes a first coil 421, a second coil 422, and a third coil 423. That is, the secondary coil 42 includes three coils, so that the population is set to 3. In addition, the first coil 421, the second coil 422, and the third coil 423 are formed in every 6th tooth. That is, the pitch is set to 6.

    [0050] Neither the primary coil 41 nor the secondary coil 42 is formed in the tooth 211a out of 18 teeth of the stator magnet core 21. The reason thereof will be described below.

    [0051] FIGS. 7A and 7B are diagrams illustrating the effects of the rotary electric machine according to the third embodiment of the present invention.

    [0052] According to the present embodiment, the primary coil 41 and the secondary coil 42 are formed in the tooth 211 of the stator magnet core 21 to face each other. In this manner, if an AC current flows through the primary coil 41, a magnetic flux is generated as indicated by the arrow of FIG. 7A, and the AC current also flows through the second coil 42 due to a mutual induction effect, so that it is possible to obtain a transformer functionality. That is, according to the present embodiment, the hole 21a provided in the first embodiment is not necessary, and the size is further miniaturized, compared to the first embodiment.

    [0053] According to the present embodiment, neither the primary coil 41 nor the secondary coil 42 is formed in the tooth 211a of the stator magnet core 21. In this manner, a leakage magnetic flux of the transformer is generated as indicated by the arrow of FIG. 7B, and a self-inductance of the transformer increases so as to generate a reactor effect. As a result, it is possible to compensate for a shortage of the zero-phase inductance of the rotary electric machine. Therefore, the reactor may become unnecessary, or a reactor having a small energy storage capability may be employed. As a result, it is possible to lower a manufacturing cost and reduce a size as a whole.

    [0054] According to the present embodiment, the pitch of the coil is set to an integer multiple of a value (3) obtained by dividing the number of slots (18) by the number of pole pairs (6). In addition, the population of the coil is set to an integer multiple of a value (3) obtained by dividing the number of slots (18) by the number of pole pairs (6).

    [0055] In this manner, the population and the pitch of the coil are set to a integer multiple of the pole arc so that a transformer magnetic flux uniformly flows through the N-pole and the S-pole of the magnet. Therefore, it is possible to suppress generation of a torque caused by this magnetic flux.

    [0056] That is, a coil winding factor can be obtained by multiplying a distribution factor and a short-pitch factor. That is, an equation is established as follows: (coil winding factor) = (short-pitch factor) × (distribution factor). If the coil winding factor is set to zero, no torque is generated even when an electric current flows through the coil. If the pitch of the coil is set to an integer multiple of a value obtained by dividing the number of slots by the number of pole pairs, the short-pitch factor becomes zero. In addition, if the population of the coil is set to an integer multiple of a value obtained by dividing the number of slots by the number pole pairs, the distribution factor becomes zero. In this regard, according to the present embodiment, it is possible to obtain a transformer functionality without generating a torque.

    (In-Vehicle Rotary Electric Machine System According to Second Embodiment)



    [0057] FIG. 8 is a diagram illustrating an in-vehicle rotary electric machine system according to a second embodiment of the present invention.

    [0058] In the first embodiment (FIG. 3), the reactor 51 and the negative DC power line 71n are connected by interposing the switch 52. However, according to the present embodiment, a capacitor 53 is employed instead of the switch 52 of FIG. 3.

    [0059] In such an in-vehicle rotary electric machine system, a voltage of the neutral point becomes a constant voltage corresponding to a half of the voltage of the battery 8 when a vehicle travels by driving the rotary electric machine 1. By nature, an AC current flows through a capacitor, but a DC current does not flow through a capacitor. Therefore, no electric current flows through the capacitor 53 when a vehicle travels by driving the rotary electric machine 1.

    [0060] The battery 8 is connected to the out-of-vehicle power supply when the battery 8 is charged using the out-of-vehicle power supply. Then, the AC power of the out-of-vehicle power supply is transmitted to the primary coil 41. As described above, since the primary coil 41, the secondary coil 42, and the stator magnet core 21 constitute a transformer, AC power boosted to a suitable voltage flows from the secondary coil 42. Since an AC current flows through the capacitor 53, the power thereof is transmitted to the DC/AC converter 7 and is converted to DC power using the DC/AC converter 7. The converted DC power is supplied to the battery 8 to charge the battery 8.

    [0061] In this manner, in the in-vehicle rotary electric machine system according to the present embodiment, the capacitor 53 is used instead of the switch 52 according to the first embodiment. Therefore, it is possible to obtain the same functionality as that of the first embodiment with a low cost.

    (In-vehicle Rotary Electric Machine System According to Third Embodiment)



    [0062] FIG. 9 is a diagram illustrating an in-vehicle rotary electric machine system according to a third embodiment of the present invention.

    [0063] In the present embodiment, the capacitors 751 and 752 connected in series are connected to the battery 8 in parallel. In addition, one end of the reactor 51 is connected to the secondary coil 42, and the other end is connected between the capacitors 751 and 752.

    [0064] In the configuration according to the present embodiment, the capacitor 752 also serves as the capacitor 53 of FIG. 8. Therefore, compared to the second embodiment, it is possible to lower a manufacturing cost. In addition, it is possible to reduce a size as a whole.

    (In-vehicle Rotary Electric Machine System According to Fourth Embodiment)



    [0065] FIG. 10 is a diagram illustrating an in-vehicle rotary electric machine system according to a fourth embodiment of the present invention.

    [0066] The power circuit 9 according to the present embodiment includes an AC/AC converter obtained by combining a diode bridge type full-wave rectifier, a power-factor improvement circuit, and a MOSFET type inverter.

    [0067] The power circuit 9 rectifies a frequency (50 to 60 Hz) of the out-of-vehicle power supply to a DC current and converts the DC current to an AC current having a sinusoidal waveform and the like of several hundreds Hz to several kHz using an inverter.

    [0068] In this configuration, it is possible to increase an operational frequency of the capacitor and the transformer. Therefore, an energy storage amount is reduced. As a result, it is possible to lower a manufacturing cost and reduce a size as a whole. Since it is possible to allow the electric current flowing through the rotary electric machine during the charging to have a high frequency, it is possible to attenuate vibration caused by a minute torque of the rotary electric machine. That is, it is possible to prevent generation of noise or vibration from the rotary electric machine during the charging even when the frequency of the out-of-vehicle power supply is set to 50 to 60 Hz

    [0069] In addition, according to the present embodiment, description has been made by assuming a case where a diode bridge type full-wave rectifier is employed. However, the present invention is not limited thereto. For example, a full bridge type full-wave rectifier including MOSFET and the like may be employed. This is especially effective when the electric power is returned to the out-of-vehicle power supply from a vehicle (so called electric power selling).

    (In-vehicle Rotary Electric Machine System According to Fifth Embodiment)



    [0070] FIG. 11 is a diagram illustrating an in-vehicle rotary electric machine system according to a fifth embodiment of the present invention.

    [0071] According to the present embodiment, the power-factor improvement circuit provided in the fourth embodiment is omitted, and the power-factor improvement is controlled using the DC/AC converter (inverter for driving the rotary electric machine) 7.

    [0072] The charging electric power supplied from the out-of-vehicle power supply is obtained by multiplying the transformer electric current by the transformer voltage. Since the transformer electric current can be controlled using the inverter 7 for driving the rotary electric machine, the electric power in the out-of-vehicle power supply side can be controlled. Specifically, in order to allow the electric current from the out-of-vehicle power supply side to have a sinusoidal waveform having a power factor of 1, the electric current of the transformer may be generated using the inverter 7 for driving the rotary electric machine such that electric power proportional to a square of the voltage Vs is generated to have a frequency component corresponding to a double of the frequency of the out-of-vehicle power supply of the electric power passing through the transformer. That is, the following equation is established:



    [0073] By performing control in this manner, a power-factor improvement circuit dedicated to the out-of-vehicle power supply side is not necessary. Therefore, it is possible to lower a manufacturing cost and reduce a size as a whole.

    (In-vehicle Rotary Electric Machine System According to Sixth Embodiment)



    [0074] FIG. 12 is a diagram illustrating an in-vehicle rotary electric machine system according to a sixth embodiment of the present invention.

    [0075] In the present embodiment, the embodiments described above are combined optimally.

    [0076] The rotary electric machine illustrated in FIG. 6 is employed. As a result, no reactor is necessary. In addition, one end of the secondary coil 42 is connected to the neutral point (N-line), and the other end is connected between the capacitors 751 and 752. Furthermore, without providing a power-factor improvement circuit, the power-factor improvement control is performed using the DC/AC converter (inverter for driving the rotary electric machine) 7.

    [0077] As a result, it is possible to remarkably reduce the number of components. Therefore, it is possible to lower a manufacturing cost and reduce a size as a whole.

    (In-vehicle Rotary Electric Machine System According to Seventh Embodiment)



    [0078] FIG. 13 is a diagram illustrating an in-vehicle rotary electric machine system according to a seventh embodiment of the present invention.

    [0079] The charging electric power supplied from the out-of-vehicle power supply is obtained by multiplying the transformer current and the transformer voltage. According to the present embodiment, the transformer current and the transformer voltage are controlled. The transformer current can be controlled using the inverter 7 for driving the rotary electric machine. The transformer voltage can be controlled using the AC/AC converter of the power circuit 9.

    [0080] According to the present embodiment, control is performed such that a phase of the transformer current controlled using the inverter 7 for driving the rotary electric machine matches a phase of the transformer voltage controlled by the AC/AC converter of the power circuit 9.

    [0081] If control is performed in this manner, the power factor of the transformer operation increases. As the power factor increases, it is possible to miniaturize a transformer and a coupling capacitor and lower a manufacturing cost.

    (In-vehicle Rotary Electric Machine System According to Eighth Embodiment)



    [0082] FIG. 14 is a diagram illustrating an in-vehicle rotary electric machine system according to the eighth embodiment of the present invention.

    [0083] The power circuit 9 according to the present embodiment forms a resonant circuit by connecting the capacitor 91 to the primary coil 41 in parallel.

    [0084] Similarly, in this configuration, the power factor of the transformer operation increases. As the power factor increases, it is possible to miniaturize the transformer and the coupling capacitor and lower a manufacturing cost. In addition, since it is possible to suppress a voltage of the inverter INV in the AC/AC converter of the power circuit 9, a small-sized inverter can be used.

    (In-vehicle Rotary Electric Machine System According to Ninth Embodiment)



    [0085] FIG. 15 is a diagram illustrating an in-vehicle rotary electric machine system according to a ninth embodiment of the present invention.

    [0086] In each embodiment described above, description has been made for a case where the battery 8 is charged with the electric power from the out-of-vehicle power supply by using a circuit that flows electric power from the out-of-vehicle power supply as the power circuit 9.

    [0087] The power circuit 9 according to the present embodiment is a circuit that flows an electric current to an accessory battery mounted on a vehicle to charge the accessory battery (voltage of 12 to 14 V) mounted on a vehicle.

    [0088] As illustrated in FIG. 15, configurations of the rotary electric machine 1, the transformer, and the like are similar to those of each embodiment described above. Similarly, it is possible to reduce a size of the apparatus as a whole and lower the cost

    [0089] While the invention has been described with reference to certain specific embodiments, the embodiments described above only exemplify a part of the applications of the invention, and are not intended to limit the invention.

    [0090] For example, although description has been exemplarily made for a case where the hole 21a is formed in the tab 212 obtained by protruding a part of the stator magnet core 21 in the aforementioned embodiments, the hole 21a may be formed in the stator magnet core 21 without forming the tab 212.

    [0091] Although description has been exemplarily made for a case where the battery 8 is charged using the out-of-vehicle power supply in the in-vehicle rotary electric machine system according to the first to eighth embodiments, the invention may be similarly applied to a system that transmits the electric power generated from a vehicle to the out-of-vehicle power supply.

    [0092] Although description has been exemplarily made for a radial gap motor in the embodiments described above, the invention may be similarly applied to an axial gap motor.

    [0093] The present application claims priority to Japanese Patent Application No. 2010-234765 filed in Japan Patent Office on October 19, 2010.


    Claims

    1. A rotary electric machine comprising:

    a rotor (10);

    a stator magnet core (21);

    a DC/AC converter (7) formed by connecting a DC power line (71p, 71n) to a battery (8) and connecting an AC power line (72u, 72v, 72w) to a stator coil (22) wound around a tooth (211) of the stator magnet coil (21) in an insulation state;

    a transformer primary coil (41) wound around the stator magnet core (21) in an insulation state and connected to a power circuit (9); and

    a transformer secondary coil (42) that is wound around the stator magnet core (21) in an insulation state and has one end connected to a neutral point of the rotary electric machine and the other end connected to the positive DC power line (71p) or the negative DC power line (71n) of the DC/AC converter (7), wherein

    the DC/AC converter (7) is configured to perform AC-DC conversion between the battery (8) and the secondary coil (42).


     
    2. The rotary electric machine according to claim 1, wherein:

    the stator magnet core (21) is arranged outside the rotor (10) and has a transformer formation hole (21a) penetrating in a rotor axis direction, and

    the transformer primary coil (41) and the transformer secondary coil (42) are wound around the stator magnet core (21) through the transformer formation hole (21a).


     
    3. The rotary electric machine according to claim 1, wherein:
    the transformer primary coil (41) and the transformer secondary coil (42) are wound around a tooth (211) of the stator magnet core (21) to face each other in symmetry with respect to an axis of the stator magnet core (21).
     
    4. The rotary electric machine according to claim 3, wherein:
    while the transformer primary coil (41) and the transformer secondary coil (42) are wound around teeth (211) of the stator magnet core (21) with a predetermined pitch and a predetermined population, the transformer primary coil (41) and the transformer secondary coil (42) are not wound around at least a pair of teeth (211a).
     
    5. The rotary electric machine according to claim 4, wherein:
    the predetermined pitch is set to an integer multiple of a value obtained by dividing the number of slots by the number of pole pairs.
     
    6. The rotary electric machine according to claim 4 or 5, wherein:
    the predetermined population is set to an integer multiple of a value obtained by dividing the number of slots by the number of pole pairs.
     
    7. The rotary electric machine according to any one of claims 1 to 6, wherein:

    the rotary electric machine is an in-wheel type rotary electric machine arranged in an inner circumference side of a load wheel (201), and

    the rotary electric machine further comprises a reactor (51) connected between the transformer secondary coil (42) and the DC/AC converter (7) and arranged in an outer circumference of a housing of the rotary electric machine.


     
    8. The rotary electric machine according to any one of claims 1 to 6, wherein:

    the stator magnet core (21) has a reactor formation hole (21b) penetrating in a rotor axis direction, and

    the rotary electric machine further comprises a reactor (51) that is connected between the transformer secondary coil (42) and the DC/AC converter (7) and includes a coil (51a) wound around the stator magnet core (21) through the reactor formation hole (21b).


     
    9. An in-vehicle rotary electric machine system comprising the rotary electric machine according to any one of claims 1 to 6, comprising:

    a power circuit (9) connected to the transformer primary coil (41);

    a DC/AC converter (7) connected to the transformer secondary coil (42) and the stator coil (22);

    a battery (8) connected to the DC/AC converter (7); and

    a current interrupter (52, 53, 752) connected to the transformer secondary coil (42) to cut off an electric current flowing through the transformer secondary coil (42) when the rotary electric machine outputs a torque.


     
    10. The in-vehicle rotary electric machine system according to claim 9, wherein:
    the current interrupter is a switch (52) arranged between the transformer secondary coil (42) and the DC/AC converter (7) and opened when the rotary electric machine outputs a torque.
     
    11. The in-vehicle rotary electric machine system according to claim 9, wherein:
    the current interrupter is a capacitor (53) arranged between the transformer secondary coil (42) and the DC/AC converter (7).
     
    12. An in-vehicle rotary electric machine system comprising the rotary electric machine according to claim 7 or 8, comprising:

    a power circuit (9) connected to the transformer primary coil (41);

    a DC/AC converter (7) connected to the reactor (51) and the stator coil (22);

    a battery (8) connected to the DC/AC converter (7); and

    a current interrupter (52, 53, 752) connected to the reactor (51) to cut off an electric current flowing through the reactor (51) when the rotary electric machine outputs a torque.


     
    13. The in-vehicle rotary electric machine system according to claim 12, wherein:
    the current interrupter is a switch (52) arranged between the reactor (51) and the DC/AC converter (7) and opened when the rotary electric machine outputs a torque.
     
    14. The in-vehicle rotary electric machine system according to claim 12, wherein:
    the current interrupter is a capacitor (53) arranged between the reactor (51) and the DC/AC converter (7).
     
    15. The in-vehicle rotary electric machine system according to claim 9 or 12, wherein:
    the current interrupter also serves as a capacitor (752) of the DC/AC converter (7).
     
    16. The in-vehicle rotary electric machine system according to any one of claims 9 to 15, wherein:
    the power circuit (9) includes a power-factor improvement circuit.
     
    17. The in-vehicle rotary electric machine system according to any one of claims 9 to 15, wherein:
    the DC/AC converter (7) performs power-factor improvement control based on an AC voltage and an AC electric current of the out-of-vehicle power supply side.
     
    18. The in-vehicle rotary electric machine system according to any one of claims 9 to 17, wherein:

    the power circuit (9) controls a voltage of the transformer primary coil (41),

    the DC/AC converter (7) controls an electric current of the transformer secondary coil (42), and

    the power circuit (9) and the DC/AC converter (7) perform control such that a phase of the voltage of the transformer primary coil (41) matches a phase of the electric current of the transformer secondary coil (42).


     
    19. The in-vehicle rotary electric machine system according to any one of claims 9 to 18, further comprising:
    a capacitor (91) connected to the transformer primary coil (41) in parallel.
     


    Ansprüche

    1. Elektrische Rotationsmaschine, umfassend:

    einen Rotor (10);

    einen Statormagnetkern (21);

    einen Gleichstrom-/Wechselstromwandler (7), der durch Verbinden einer Gleichstromleitung (71p, 71n) mit einer Batterie (8) und Verbinden einer Wechselstromleitung (72u, 72v, 72w) mit einer Statorspule (22) ausgebildet ist, die um einen Zahn (211) der Statormagnetspule (21) in einem Isolationszustand gewickelt ist;

    eine Transformator-Primärspule (41), die in einem Isolationszustand um den Statormagnetkern (21) gewickelt und mit einem Stromkreis (9) verbunden ist; und

    eine Transformator-Sekundärspule (42), die in einem isolierten Zustand um den Statormagnetkern (21) gewickelt ist und deren eines Ende mit einem Sternpunkt der elektrischen Rotationsmaschine und deren anderes Ende mit der positiven Gleichstromleitung (71p) oder der negativen Gleichstromleitung (71 n) des Gleichstrom-/Wechselstromwandlers (7) verbunden ist, wobei

    der Gleichstrom-/Wechselstromwandler (7) dazu eingerichtet ist, eine Wechselstrom-/Gleichstrom-Wandlung zwischen der Batterie (8) und der Sekundärspule (42) auszuführen.


     
    2. Elektrische Rotationsmaschine nach Anspruch 1, bei der:

    der Statormagnetkern (21) außerhalb des Rotors (10) angeordnet ist und ein Transformator-Ausbildungsloch (21a) aufweist, das in einer Rotorachsenrichtung durchlaufend ist, und

    die Transformator-Primärspule (41) sowie die Transformator-Sekundärspule (42) durch das Transformator-Ausbildungsloch (21a) um den Statormagnetkern (21) gewickelt sind.


     
    3. Elektrische Rotationsmaschine nach Anspruch 1, bei der:
    die Transformator-Primärspule (41) und die Transformator-Sekundärspule (42) derart um einen Zahn (211) des Statormagnetkerns (21) gewickelt sind, dass sie sich in Bezug auf eine Achse des Statormagnetkerns (21) symmetrisch gegenüberliegen.
     
    4. Elektrische Rotationsmaschine nach Anspruch 3, bei der:
    während die Transformator-Primärspule (41) und die Transformator-Sekundärspule (42) mit einem vorbestimmten Abstand und einer vorbestimmten Häufigkeit um Zähne (211) des Statormagnetkerns (21) gewickelt sind, die Transformator-Primärspule (41) und die Transformator-Sekundärspule (42) nicht um wenigstens ein Paar Zähne (211a) gewickelt sind.
     
    5. Elektrische Rotationsmaschine nach Anspruch 4, bei der:
    die vorbestimmte Teilung auf ein ganzzahliges Vielfaches eines Wertes eingestellt ist, den man durch Teilen der Anzahl der Schlitze durch die Anzahl der Polpaare erhält.
     
    6. Elektrische Rotationsmaschine nach Anspruch 4 oder 5, bei der:
    die vorbestimmte Häufigkeit auf ein ganzzahliges Vielfaches eines Wertes eingestellt ist, den man durch Teilen der Anzahl der Schlitze durch die Anzahl der Polpaare erhält.
     
    7. Elektrische Rotationsmaschine nach einem der Ansprüche 1 bis 6, wobei:

    die elektrische Rotationsmaschine eine elektrische Inrad-Rotationsmaschine ist, die an einer Innenumfangsseite eines Lastrades (201) angeordnet ist,

    und die elektrische Rotationsmaschine weiterhin eine Drossel (51) umfasst, die zwischen die Transformator-Sekundärspule (42) und den Gleichstrom-/Wechselstromwandler (7) geschaltet und in einem Außenumfang eines Gehäuses der elektrischen Rotationsmaschine angeordnet ist.


     
    8. Elektrische Rotationsmaschine nach einem der Ansprüche 1 bis 6, bei der:

    der Statormagnetkern (21) ein Drosselausbildungsloch (21b) aufweist, das in einer Rotorachsenrichtung durchlaufend ist, und

    die elektrische Rotationsmaschine weiterhin eine Drossel (51), die zwischen die Transformator-Sekundärspule (42) und den Gleichstrom-/Wechselstromwandler (7) geschaltet ist und eine Spule (51a) umfasst, die um den Stator-Magnetkern (21) durch das Drosselausbildungsloch (21b) gewickelt ist.


     
    9. Fahrzeugeigenes elektrisches Rotationsmaschinensystem, umfassend die elektrische Rotationsmaschine nach einem der Ansprüche 1 bis 6, umfassend:

    eine Leistungsschaltung (9), die mit der Transformator-Primärspule (41) verbunden ist;

    einen Gleichstrom-/Wechselstromwandler (7), der mit der Transformator-Sekundärspule (42) und der Statorspule (22) verbunden ist;

    eine Batterie (8), die mit dem Gleichstrom-/Wechselstromwandler (7) verbunden ist; und

    einen Stromunterbrecher (52, 53, 752), der mit der Transformator-Sekundärspule (42) verbunden ist, um einen elektrischen Strom, der durch die Transformator-Sekundärspule (42) fließt, abzuschalten, wenn die elektrische Rotationsmaschine ein Drehmoment abgibt.


     
    10. Fahrzeugeigenes elektrisches Rotationsmaschinensystem nach Anspruch 9, bei dem:
    der Stromunterbrecher ein Schalter (52) ist, der zwischen der Transformator-Sekundärspule (42) und dem Gleichstrom-/Wechselstromwandler (7) angeordnet und geöffnet ist, wenn die elektrische Rotationsmaschine ein Drehmoment abgibt.
     
    11. Fahrzeugeigenes elektrisches Rotationsmaschinensystem nach Anspruch 9, bei dem:
    der Stromunterbrecher ein Kondensator (53) ist, der zwischen der Transformator-Sekundärspule (42) und dem Gleichstrom-/Wechselstromwandler (7) angeordnet ist.
     
    12. Fahrzeugeigenes elektrisches Rotationsmaschinensystem, umfassend die elektrische Rotationsmaschine nach Anspruch 7 oder 8, umfassend:

    eine Leistungsschaltung (9), die mit der Transformator-Primärspule (41) verbunden ist;

    einen Gleichstrom-/Wechselstromwandler (7), der mit der Drossel (51) und der Statorspule (22) verbunden ist;

    eine Batterie (8), die mit dem Gleichstrom-/Wechselstromwandler (7) verbunden ist; und

    einen Stromunterbrecher (52, 53, 752), der mit der Drossel (51) verbunden ist, um einen elektrischen Strom, der durch die Drossel (51) fließt, abzuschalten, wenn die elektrische Rotationsmaschine ein Drehmoment abgibt.


     
    13. Fahrzeugeigenes Elektrisches Rotationsmaschinensystem nach Anspruch 12, bei dem:
    der Stromunterbrecher ein Schalter (52) ist, der zwischen der Drossel (51) und dem Gleichstrom-/Wechselstromwandler (7) angeordnet und geöffnet ist, wenn die elektrische Rotationsmaschine ein Drehmoment abgibt.
     
    14. Fahrzeugeigenes elektrisches Rotationsmaschinensystem nach Anspruch 12, bei dem:
    der Stromunterbrecher ein Kondensator (53) ist, der zwischen der Drossel (51) und dem Gleichstrom-/Wechselstromwandler (7) angeordnet ist.
     
    15. Fahrzeugeigenes elektrisches Rotationsmaschinensystem nach Anspruch 9 oder 12, bei dem:
    der Stromunterbrecher zudem als Kondensator (752) des Gleichstrom-/Wechselstromwandlers (7) dient.
     
    16. Fahrzeugeigenes elektrisches Rotationsmaschinensystem nach einem der Ansprüche 9 bis 15, bei dem:
    die Leistungsschaltung (9) eine Leistungsfaktorverbesserungsschaltung umfasst.
     
    17. Fahrzeugeigenes elektrisches Rotationsmaschinensystem nach einem der Ansprüche 9 bis 15, bei dem:
    Der Gleichstrom-/Wechselstromwandler (7) eine Leistungsfaktor-Verbesserungssteuerung auf der Grundlage einer Wechselspannung und eines elektrischen Wechselstroms auf der Seite der Stromversorgung außerhalb des Fahrzeugs ausführt.
     
    18. Fahrzeugeigenes elektrisches Rotationsmaschinensystem nach einem der Ansprüche 9 bis 17, bei dem:

    die Leistungsschaltung (9) eine Spannung der Transformator-Primärspule (41) steuert,

    der Gleichstrom-/Wechselstromwandler (7) einen elektrischen Strom der Transformator-Sekundärspule (42) steuert und

    die Leistungsschaltung (9) sowie der Gleichstrom-/Wechselstromwandler (7) eine Steuerung derart ausführen, dass eine Phase der Spannung der Transformator-Primärspule (41) mit einer Phase des elektrischen Stroms der Transformator-Sekundärspule (42) übereinstimmt.


     
    19. Fahrzeugeigenes elektrisches Rotationsmaschinensystem nach einem der Ansprüche 9 bis 18, weiterhin umfassend:
    einen Kondensator (91), der mit der Transformator-Primärspule (41) parallelgeschaltet ist.
     


    Revendications

    1. Machine électrique tournante comprenant :

    un rotor (10) ;

    un noyau magnétique de stator (21) ;

    un convertisseur de courant continu en courant alternatif CC/CA (7) formé en connectant une ligne CC (71p, 71n) à une batterie (8) et en connectant une ligne CA (72u, 72v, 72w) à une bobine de stator (22) enroulée autour d'une dent (211) de la bobine d'aimant du stator (21) dans un état isolé ;

    une bobine primaire de transformateur (41) qui est enroulée autour du noyau magnétique de stator (21) dans un état isolé et connectée à un circuit d'alimentation (9) ; et

    une bobine secondaire de transformateur (42) qui est enroulée autour du noyau magnétique de stator (21) dans un état isolé et dont une extrémité est connectée à un point neutre de la machine électrique tournante et l'autre extrémité est connectée à la ligne CC positive (71p) ou à la ligne CC négative (71n) du convertisseur CC/CA (7), dans laquelle

    le convertisseur CC/CA (7) est configuré pour mettre en oeuvre une conversion CA-CC entre la batterie (8) et la bobine secondaire (42).


     
    2. Machine électrique tournante selon la revendication 1, dans laquelle :

    le noyau magnétique de stator (21) est agencé à l'extérieur du rotor (10) et comporte un trou de formation de transformateur (21a) qui pénètre en direction de l'axe de rotor, et

    la bobine primaire du transformateur (41) et la bobine secondaire du transformateur (42) sont enroulées autour du noyau magnétique de stator (21) à travers le trou de formation de transformateur (21a).


     
    3. Machine électrique tournante selon la revendication 1, dans laquelle :
    la bobine primaire du transformateur (41) et la bobine secondaire du transformateur (42) sont enroulées autour d'une dent (211) du noyau magnétique de stator (21) pour se faire face symétriquement par rapport à l'axe du noyau magnétique de stator (21).
     
    4. Machine électrique tournante selon la revendication 3, dans laquelle :
    alors que la bobine primaire du transformateur (41) et la bobine secondaire du transformateur (42) sont enroulées autour de dents (211) du noyau magnétique de stator (21) avec un pas prédéterminé et une population prédéterminée, la bobine primaire du transformateur (41) et la bobine secondaire du transformateur (42) ne sont pas enroulées autour d'au moins une paire de dents (211a).
     
    5. Machine électrique tournante selon la revendication 4, dans laquelle :
    le pas prédéterminé est configuré comme un multiple entier d'une valeur obtenue en divisant le nombre d'encoches par le nombre de paires de pôles.
     
    6. Machine électrique tournante selon la revendication 4 ou 5, dans laquelle :
    la population prédéterminée est configurée comme un multiple entier d'une valeur obtenue en divisant le nombre d'encoches par le nombre de paires de pôles.
     
    7. Machine électrique tournante selon l'une quelconque des revendications 1 à 6, dans laquelle :

    la machine électrique tournante est une machine électrique tournante de type intégré dans une roue, agencée du côté circonférentiel interne d'une roue de charge (201), et

    la machine électrique tournante comprend en outre un réacteur (51) connecté entre la bobine secondaire du transformateur (42) et le convertisseur CC/CA (7) et agencé dans la circonférence externe d'un boîtier de la machine électrique tournante.


     
    8. Machine électrique tournante selon l'une quelconque des revendications 1 à 6, dans laquelle :

    le noyau magnétique de stator (21) comporte un trou de formation de réacteur (21b) qui pénètre en direction de l'axe de rotor, et

    la machine électrique tournante comprend en outre un réacteur (51) connecté entre la bobine secondaire du transformateur (42) et le convertisseur CC/CA (7) et comprend une bobine (51a) enroulée autour du noyau magnétique de stator (21) à travers le trou de formation de réacteur (21b).


     
    9. Système de machine électrique tournante embarqué dans un véhicule et comprenant la machine électrique tournante selon l'une quelconque des revendications 1 à 6, comprenant :

    un circuit d'alimentation (9) connecté à la bobine primaire du transformateur (41) ;

    un convertisseur CC/CA (7) connecté à la bobine secondaire du transformateur (42) et à la bobine de stator (22) ;

    une batterie (8) connectée au convertisseur CC/CA (7) ; et

    un interrupteur de courant (52, 53, 752) connecté à la bobine secondaire du transformateur (42) pour couper le courant électrique qui traverse la bobine secondaire du transformateur (42) quand la machine électrique tournante délivre un couple.


     
    10. Système de machine électrique tournante embarqué dans un véhicule selon la revendication 9, dans lequel :
    l'interrupteur de courant est un contacteur (52) agencé entre la bobine secondaire du transformateur (42) et le convertisseur CC/CA (7) et qui est ouvert quand la machine électrique tournante délivre un couple.
     
    11. Système de machine électrique tournante embarqué dans un véhicule selon la revendication 9, dans lequel :
    l'interrupteur de courant est un condensateur (53) agencé entre la bobine secondaire du transformateur (42) et le convertisseur CC/CA (7).
     
    12. Système de machine électrique tournante embarqué dans un véhicule et comprenant la machine électrique tournante selon la revendication 7 ou 8, comprenant :

    un circuit d'alimentation (9) connecté à la bobine primaire du transformateur (41) ;

    un convertisseur CC/CA (7) connecté au réacteur (51) et à la bobine de stator (22) ;

    une batterie (8) connectée au convertisseur CC/CA (7) ; et

    un interrupteur de courant (52, 53, 752) connecté au réacteur (51) pour couper le courant électrique qui traverse le réacteur (51) quand la machine électrique tournante délivre un couple.


     
    13. Système de machine électrique tournante embarqué dans un véhicule selon la revendication 12, dans lequel :
    l'interrupteur de courant est un contacteur (52) agencé entre le réacteur (51) et le convertisseur CC/CA (7) et qui est ouvert quand la machine électrique tournante délivre un couple.
     
    14. Système de machine électrique tournante embarqué dans un véhicule selon la revendication 12, dans lequel :
    l'interrupteur de courant est un condensateur (53) agencé entre le réacteur (51) et le convertisseur CC/CA (7) .
     
    15. Système de machine électrique tournante embarqué dans un véhicule selon la revendication 9 ou 12, dans lequel :
    l'interrupteur de courant sert également de condensateur (752) du convertisseur CC/CA (7).
     
    16. Système de machine électrique tournante embarqué dans un véhicule selon l'une quelconque des revendications 9 à 15, dans lequel :
    le circuit d'alimentation (9) comprend un circuit d'amélioration du facteur de puissance.
     
    17. Système de machine électrique tournante embarqué dans un véhicule selon l'une quelconque des revendications 9 à 15, dans lequel :
    le convertisseur CC/CA (7) met en oeuvre un contrôle d'amélioration du facteur de puissance sur base d'une tension CA et d'un courant CA du côté alimentation externe au véhicule.
     
    18. Système de machine électrique tournante embarqué dans un véhicule selon l'une quelconque des revendications 9 à 17, dans lequel :

    le circuit d'alimentation (9) contrôle la tension de la bobine primaire du transformateur (41),

    le convertisseur CC/CA (7) contrôle le courant de la bobine secondaire du transformateur (42), et

    le circuit d'alimentation (9) et le convertisseur CC/CA (7) mettent en oeuvre un contrôle tel qu'une phase de la tension de la bobine primaire du transformateur (41) correspond à une phase du courant de la bobine secondaire du transformateur (42).


     
    19. Système de machine électrique tournante embarqué dans un véhicule selon l'une quelconque des revendications 9 à 18, comprenant en outre :
    un condensateur (91) connecté en parallèle à la bobine primaire du transformateur (41).
     




    Drawing





















































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description