(19)
(11)EP 2 634 239 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 11836314.2

(22)Date of filing:  26.10.2011
(51)International Patent Classification (IPC): 
C10M 169/00(2006.01)
C10M 101/02(2006.01)
C10M 103/06(2006.01)
C10M 113/02(2006.01)
C10M 125/10(2006.01)
C10M 133/40(2006.01)
F16C 33/66(2006.01)
C10N 10/12(2006.01)
C10N 20/02(2006.01)
B23Q 11/12(2006.01)
C10M 103/02(2006.01)
C10M 105/70(2006.01)
C10M 119/22(2006.01)
C10M 133/18(2006.01)
C10M 171/02(2006.01)
C10N 10/02(2006.01)
C10N 20/00(2006.01)
C10N 50/10(2006.01)
(86)International application number:
PCT/JP2011/074624
(87)International publication number:
WO 2012/057181 (03.05.2012 Gazette  2012/18)

(54)

LUBRICATING GREASE COMPOSITION

SCHMIERFETTZUSAMMENSETZUNG

COMPOSITION DE GRAISSE LUBRIFIANTE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 27.10.2010 JP 2010240575

(43)Date of publication of application:
04.09.2013 Bulletin 2013/36

(73)Proprietors:
  • Lube Corporation
    Shinjuku-ku, Tokyo 169-0051 (JP)
  • Kyodo Yushi Co., Ltd.
    Kanagawa 251-8588 (JP)

(72)Inventors:
  • ARIYASU Takayuki
    Sakuragawa-shi, Ibaraki 309-1222 (JP)
  • DONG Daming
    Fujisawa-shi, Kanagawa 251-8588 (JP)
  • OZEKI Hiroshi
    Fujisawa-shi, Kanagawa 251-8588 (JP)
  • NAMIKI Minoru
    Fujisawa-shi, Kanagawa 251-8588 (JP)
  • YOSHINARI Terasu
    Fujisawa-shi, Kanagawa 251-8588 (JP)

(74)Representative: Vossius & Partner Patentanwälte Rechtsanwälte mbB 
Siebertstrasse 3
81675 München
81675 München (DE)


(56)References cited: : 
WO-A1-2010/097778
JP-A- 2005 308 053
JP-A- 2008 231 293
US-A1- 2004 224 859
US-A1- 2005 205 341
US-A1- 2009 283 353
JP-A- 2004 059 814
JP-A- 2007 231 207
US-A- 2 514 286
US-A1- 2004 235 679
US-A1- 2009 176 668
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    [Technical Field]



    [0001] The present invention relates to the use of a lubricating grease composition used for machine tools equipped with an automatic grease lubricator, more particularly, used for a sliding surface portion of the machine tools to be lubricated. The lubricating grease composition used in the invention can also be advantageously used for rolling portions to be lubricated, such as ball screws, linear guides and the like.

    [Background Art]



    [0002] Lubricating oils have been conventionally used as the lubricating agent for machine tools having a sliding surface portion to be lubricated, and almost no grease has been used for those machine tools. That is because the grease, which is in a semi-solid state shows inferior flowing performance toward the sliding surface than the lubricating oil (in a liquid form), thereby frequently leading to the problem of poor lubrication. In addition, the semi-solid state grease has another disadvantage that it is difficult or impossible for an automatic lubricator to pump the grease.

    [0003] The lubricating oil can be pumped, but an excess amount of lubricating oil is released while in use. Therefore, large quantities of lubricating oil are used, which produces the problem of increase in consumption cost of the lubricating oil. Further, the lubricating oil causes the problems that scattering of lubricating oil will impair the environment, atmosphere and machine itself, and a mist of lubricating oil will make the working environment worse. WO 2010/097778 A1 and US 2009/176668 A1 discloses grease compositions that may be used for lubricating tool machines.

    [0004] In light of the above, there is an increasing demand for a grease that can be pumped with no waste to reduce the consumption, and minimum scattering.

    [0005] The sliding surfaces of the machine tool can cause a spontaneous jerking motion, which is called a stick-slip phenomenon when the operation is started. The stick-slip has an effect on the processing precision. When the machine tool is started, the static friction becomes large because of the absence of a lubricating oil film, thereby inducing the stick-slip phenomenon. Theoretically, the thickness of the oil film reaches zero while the sliding surfaces are not operated. Therefore, the above-mentioned stick-slip phenomenon can occur when the operation is started.

    [0006] The lubricating oil does not readily cause the stick-slip. This is because the lubricating oil has such excellent flowability to the sliding surfaces that the oil film can be formed immediately after the operation is started.

    [0007] On the other hand, the grease cannot promptly form an oil film because of the poor flowability to the sliding surfaces. Improvement in the stick-slip resistance has been a serious topic in the grease.

    [Summary of Invention]


    [Technical Problem]



    [0008] An object of the invention is to provide the use of a lubricating grease composition that can be pumped by the automatic lubricator attached to a machine tool, and reduce the occurrence of stick-slip effect on the sliding surface portion of the machine tool to be lubricated.

    [Solution to Problem]



    [0009] To solve the above-mentioned problems, the inventors of the present invention tried to adjust the consistency of a lubricating grease composition by using a base oil having a particular kinematic viscosity and adding to the base oil solid particles insoluble in the base oil. Namely, the invention provides the following lubricating grease composition:
    1. 1. Use of a lubricating grease composition with a worked penetration of 400 to 500 comprising:

      a base oil having a kinematic viscosity at 40°C of 10 to 200 mm2/s; determined in accordance with JIS K2283, a urea type thickener, and

      0.1 to 10 mass% of solid particles insoluble in the base oil. wherein the solid particles are those of at least one selected from the group consisting of organic molybdenum, polytetrafluoroethylene, melamine cyanurate, molybdenum disulfide, graphite and metal salts of dialkyldithiocarbamate, for lubrication in a machine tool equipped with an automatic lubricator

    2. 2. The use described in the above-mentioned item 1 wherein the base oil has a kinematic viscosity at 40°C of 30 to 150 mm2/s.
    3. 3. The use described in the above-mentioned item 1 or 2, wherein the machine tool has a sliding surface to be lubricated.
    4. 4. The use described in any one of the above items 1 to 3, wherein the urea type thickener is selected from diurea thickeners and polyurea thickeners.

    Advantageous [Effects of Invention]



    [0010] According to the invention, lubrication can be carried out using an automatic lubricator attached to the machine tool, and the sliding surface of the machine tool to be lubricated can be prevented from causing the stick-slip phenomenon. By using the lubricating grease composition according to the invention, the processing precision can be therefore improved. Owing to minimum leakage, the lubricating grease composition of the invention can advantageously be used for the rolling parts attached to the machine tools, such as ball screws, linear guides and the like.

    [Description of Embodiments]


    < Base oil with a kinematic viscosity at 40°C of 10 to 200 mm2/s>



    [0011] The base oil is required to have a kinematic viscosity at 40°C of 10 to 200 mm2/s. This range of kinematic viscosity is classified as a lower kinematic viscosity grade for the base oil of grease. When the kinematic viscosity at 40°C exceeds 200 mm2/s, the apparent viscosity of the grease becomes too high to smoothly pump the lubricating grease using the automatic lubricator. When the kinematic viscosity at 40°C is less than 10 mm2/s, it is impossible to form the effective oil film as the lubricating oil. For the same reasons as mentioned above, the kinematic viscosity at 40°C of the base oil may preferably be 30 to 150 mm2/s.

    [0012] As far as the kinematic viscosity is within the above-mentioned range, any kinds of mineral oils and synthetic oils for the base oil of grease can be used alone or in combination. The mineral oils are preferable.

    [0013] With respect to the mineral oils, both of paraffinic oils and naphthenic oils can be used. The paraffinic oils are preferable.

    [0014] Examples of the synthetic oils include ester type synthetic oils such as diester oils, polyol ester oils and the like; synthetic hydrocarbon oils such as poly-α-olefin, polybutene, and the like; ether type synthetic oils such as alkyldiphenyl ethers, polypropylene glycol, and the like; and fluorine-containing synthetic oils such as perfluoroalkyl polyether oils and the like.

    <Solid particles insoluble in base oil>



    [0015] The particles are those of at least one selected from the group consisting of organic molybdenum, polytetrafluoroethylene (PTFE), melamine cyanurate (MCA), molybdenum disulfide, graphite and metal salts of dialkyldithiocarbamate. The organic molybdenum, PTFE and MCA are more preferably. In contrast to yellow particles of organic molybdenum, white particles of PTFE and MCA, and brown particles of metal salts of dialkyldithiocarbamate, for example, molybdenum disulfide and graphite are less preferable because those are black particles, which will lead to stain of the surrounding environment.

    [0016] Desirably, the above-mentioned solid particles are contained in an amount of 0.1 to 10 mass% based on the total mass of the composition according to the invention. When the content is less than 0.1%, little effect is produced. Even if the above-mentioned content exceeds 10%, the resultant effect will be saturated. For the same reasons as mentioned above, the content of the solid particles may preferably be in the range of 0.2 to 5%.

    [0017] Without wishing to be bound by any theory, the solid particles insoluble in the base oil are present between the sliding surfaces and can prevent the sliding surfaces from coming in direct contact while the machine tool is not operated. The grease (oily matter) can therefore stay between the sliding surfaces, which can improve insufficient thickness of the oil film when the processing operation is started to move the sliding surfaces. That may be the reason why the stick-slip phenomenon can be prevented.

    <Worked penetration of 400 to 500>



    [0018] The grease having a worked penetration of 400 to 500 is classified as a semi-liquid grease with considerable softness. With the worked penetration being within the above-mentioned range, the lubricating grease composition used in the invention can be pumped using the automatic lubricator.

    [0019] The worked penetration of less than 400 may unfavorably result in plugging by the grease. The worked penetration of more than 500 means an extremely soft grease in a nearly liquid form, so that it is meaningless to change from the lubricating oil to the grease because the advantages of grease, that is, reduction of consumption cost of lubricating oil, less stain of the environment, the atmosphere and the machine, and improvement over deterioration of the operating environment by a mist of lubricating oil cannot be attained.

    [0020] In light of the above, the worked penetration is 400 to 500, preferably 400 to 470.

    <Thickener>



    [0021] The lubricating grease composition used in the invention may be prepared by adding a urea type thickener to the base oil

    [0022] Examples of the thickener include diurea, polyurea and the like;

    <Other additives>



    [0023] When necessary, general additives used in the conventional lubricating oils and grease compositions may be added.

    [0024] More specifically, a load carrying additive, an antioxidant, a rust preventive, a metallic corrosion inhibitor and the like can be used.

    [0025] Examples of the load carrying additive soluble in base oil include a phosphorus-containing load carrying additive such as phosphate ester or the like; a sulfur-containing load carrying additive such as polysulfide, sulfurized oils and fats, or the like; a phosphorus-sulfur containing load carrying additive such as phosphorothionate or the like; an organic metal salt type load carrying additive such as thiocarbamate containing organic molybdenum in a liquid form, thiophosphate, e.g., ZnDTP, or the like; and an organic amine salt type load carrying additive. The above-mentioned additive may typically be contained in an amount of 0.01 to 10 mass%.

    <Machine tool with automatic lubricator>



    [0026] The machine tool equipped with an automatic lubricator used in the invention may have such a configuration as shown in Fig. 3 in JP 2005-233240 A, for example.

    Example 1


    <Sample Lubricating Greases>



    [0027] The components used for preparation of lubricating grease compositions according to Examples and Comparative Examples are shown below.
    Base oil: Paraffinic mineral oils (having kinematic viscosities at 40°C as shown in Table 1 and Table 2)
    Solid particles insoluble in base oil:

    Organic molybdenum A: Adeka Sakura-Lube 600 (made by ADEKA Corporation)

    Organic molybdenum B: Molyvan A (made by R.T. Vanderbilt Company, Inc.)

    PTFE: LUBRON L5F (made by DAIKIN Industries, Ltd.)

    MCA: commercially available MCA of general grade

    Copper carbamate (Copper alkyldithiocarbamate): Nocceler TTCU (made by Ouchi Shinko Chemical Industrial Co., Ltd.)

    Molybdenum disulfide: commercially available molybdenum disulfide of general grade

    Graphite: commercially available graphite of general grade

    Organic molybdenum for comparison (liquid): Molyvan 822 (made by R.T. Vanderbilt Company, Inc.)

    Thickener: aliphatic diurea (compound prepared from diphenylmethane-4,4'-diisocyanate and octylamine)



    [0028] A given amount of diphenylmethane-4,4'-diisocyanate was reacted with a given amount of octylamine at a ratio by mole of 1:2 in the base oil as shown in Tables 1 and 2. The predetermined amount of solid particles insoluble in the base oil was added to the base oil and the resultant mixture was adjusted to have a specified consistency using a three roll mill. The kinematic viscosity of the base oil at 40°C was determined in accordance with JIS K 2283. The term "mass%" in Tables 1 and 2 is based on the total mass of the sample grease.

    <Test Methods>



    [0029] 
    • Appearance: visual inspection
    • Pumpability: evaluated by determining the apparent viscosity under the following conditions using a rheometer.

    (Test conditions)



    [0030] Temperature: 25°C
    Shearing modulus: 100 s-1

    (Evaluation criteria)



    [0031] 1.5 Pa·s or less: acceptable (o)
    More than 1.5 Pa·s: unacceptable (x)
    • Scattering properties: evaluated by conducting a dropping test under the following conditions.

    (Test method)



    [0032] About 0.4 g of each sample grease was applied to the surface of a SPCC-SD stainless steel plate, and the plate was tilted at 45°. After a lapse of 5 seconds, the scattering properties were evaluated by checking whether the grease dropped (moved) or not.

    (Test conditions)



    [0033] Temperature: 25°C

    (Evaluation criteria)



    [0034] No dropping: acceptable (o)
    Dropping was found: unacceptable (x)
    • Stick-slip: evaluated by conducting a friction test under the following conditions and checking occurrence of the stick-slip phenomenon during the third reciprocating motion.

    (Tester) Bowden stick-slip tester



    [0035] (Test conditions) plane-to-plane contact: a plate (SPCC-SD stainless steel plate of 15 mm x 160 mm) and a stainless steel cylinder (with a diameter of 12 mm)

    Load: 4 kgf (contact pressure: 343 kPa)

    Sliding speed: 30 mm/m

    Sliding distance: 20 mm

    Sample grease: about 0.5 g

    Temperature: 25°C


    (Evaluation criteria)



    [0036] Absence of stick-slip: acceptable (o)
    Occurrence of stick-slip: unacceptable (x)

    [0037] The results are shown in Tables 1 and 2.

    [Table 2]
     Comparative Examples
     12345
    Worked Penetration 370 530 460 460 415
    Kinematic Viscosity of Base Oil (mm2/s) 115 115 250 115 30
    Additive Organic molybdenum A (solid particles) Organic molybdenum A (solid particles) Organic molybdenum A (solid particles) -- Organic molybdenum (liquid)
    mass% 1.0 1.0 1.0 -- 3.0
    Thickener (mass%) 5.0 2.5 3.3 3.5 4.6
    Appearance Yellow Yellow Yellow Yellow Brown
    Pumpability x x
    Scattering x
    Stick-slip x x



    Claims

    1. Use of a lubricating grease composition with a worked penetration of 400 to 500, comprising:

    a base oil having a kinematic viscosity at 40°C of 10 to 200 mm2/s, determined in accordance with JIS K2283,

    a urea type thickener, and

    0.1 to 10 mass% of solid particles insoluble in the base oil, wherein the solid particles are those of at least one selected from the group consisting of organic molybdenum, polytetrafluoroethylene, melamine cyanurate, molybdenum disulfide, graphite and metal salts of dialkyldithiocarbamate,

    for lubrication in a machine tool equipped with an automatic lubricator.


     
    2. The use of claim 1, wherein the base oil has a kinematic viscosity at 40°C of 30 to 150 mm2/s.
     
    3. The use of claim 1 or 2, wherein the machine tool has a sliding surface to be lubricated.
     
    4. The use of claims 1 to 3, wherein the urea type thickener is selected from diurea thickeners and polyurea thickeners.
     


    Ansprüche

    1. Verwendung einer Schmierfettzusammensetzung mit einer Walkpenetration von 400 bis 500, umfassend:

    ein Grundöl mit einer kinematischen Viskosität bei 40 °C von 10 bis 200 mm2/s, bestimmt gemäß JIS K2283,

    ein Verdickungsmittel vom Harnstofftyp und

    0,1 bis 10 Massen-% feste Teilchen, die im Grundöl unlöslich sind, wobei die festen Teilchen solche von mindestens einer Art sind, ausgewählt aus der Gruppe bestehend aus organischem Molybdän, Polytetrafluorethylen, Melamincyanurat, Molybdändisulfid, Graphit und Metallsalzen von Dialkyldithiocarbamat,

    zum Schmieren in einer Werkzeugmaschine, die mit einer automatischen Schmiervorrichtung ausgestattet ist.


     
    2. Die Verwendung nach Anspruch 1, wobei das Grundöl eine kinematische Viskosität bei 40 °C von 30 bis 150 mm2/s aufweist.
     
    3. Die Verwendung nach Anspruch 1 oder 2, wobei die Werkzeugmaschine eine zu schmierende Gleitfläche aufweist.
     
    4. Die Verwendung nach Anspruch 1 bis 3, wobei das Verdickungsmittel vom Harnstofftyp ausgewählt ist aus Diharnstoff-Verdickungsmitteln und Polyharnstoff-Verdickungsmitteln.
     


    Revendications

    1. Utilisation d'une composition de graisse lubrifiante avec une pénétration travaillée de 400 à 500, comprenant :

    une huile de base présentant une viscosité cinématique à 40°C de 10 à 200 mm2/s, déterminée selon JIS K2283,

    un épaississant de type urée, et

    de 0,1 à 10 % en masse de particules solides insolubles dans l'huile de base, dans laquelle les particules solides sont celles d'au moins un choisi dans le groupe consistant en molybdène organique, polytétrafluoroéthylène, cyanurate de mélamine, disulfure de molybdène, graphite et sels de métaux de dialkyldithiocarbamate,

    pour une lubrification dans un outil de machine équipé d'un lubrificateur automatique.


     
    2. Utilisation selon la revendication 1, dans laquelle l'huile de base présente une viscosité cinématique à 40°C de 30 à 150 mm2/s.
     
    3. Utilisation selon la revendication 1 ou 2, dans laquelle l'outil de machine présente une surface coulissante à lubrifier.
     
    4. Utilisation selon les revendications 1 à 3, dans laquelle l'épaississant de type urée est choisi parmi des épaississants de diurée et des épaississants de polyurée.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description