(19)
(11)EP 2 642 587 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 13425040.6

(22)Date of filing:  15.03.2013
(51)International Patent Classification (IPC): 
H01Q 1/02(2006.01)
H01Q 23/00(2006.01)
H01Q 21/00(2006.01)

(54)

Modular active radiating device for electronically scanned array aerials

Modulare, aktive Strahlungsvorrichtung für Gruppenantennen mit elektronischer Strahlschwenkung

Dispositif rayonnant actif modulaire pour antennes réseau balayées électroniquement


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 21.03.2012 IT RM20120104

(43)Date of publication of application:
25.09.2013 Bulletin 2013/39

(73)Proprietor: LEONARDO S.p.A.
00195 Roma (IT)

(72)Inventors:
  • Infante, Leopoldo
    000187 Roma (IT)
  • Teglia, Mario
    000187 Roma (IT)
  • Ciattaglia, Armando
    000187 Roma (IT)

(74)Representative: Santi, Filippo et al
Barzanò & Zanardo Roma S.p.A. Via Piemonte 26
00187 Roma
00187 Roma (IT)


(56)References cited: : 
GB-A- 2 440 426
US-A1- 2003 218 566
US-A1- 2010 245 179
US-A1- 2003 112 184
US-A1- 2005 151 215
  
  • INFANTE L ET AL: "Low-profile ultra-wide band antenna array element suitable for wide scan angle and modular subarray architecture", PHASED ARRAY SYSTEMS AND TECHNOLOGY (ARRAY), 2010 IEEE INTERNATIONAL SYMPOSIUM ON, IEEE, PISCATAWAY, NJ, USA, 12 October 2010 (2010-10-12), pages 157-163, XP031828683, ISBN: 978-1-4244-5127-2
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention concerns a modular active radiating device for electronically scanned array antennas.

[0002] More precisely, the present invention places itself in the domain of AESA ("Active Electronically Scanned Array") system of new generation which are today required for e.g. Radar multifunctional systems with communication capabilities and electronic/analysis countermeasures, providing a constructive element for the realization of modular active radiating panels, which are economic and scalable depending on the system needs, to be used on multi-roles and multi-domains platforms. The architecture according to the invention presents a so-called "tile" architecture and uses a multilayer configuration incorporating the radiating elements, the control and supply controls, the transmitting/receiving (T/R) modules, the cooling system by using vertical interconnections, having a low cost and high integration. This architectural choice opposes to the so-called "brick" architecture with lower integration wherein the single elements are connected to each other by cables or adapters with high increase of costs, weights and reduction of performances.

[0003] The systems for AESA antennas in the known art are based at least partially on a patent made by Raytheon. Such approaches are highly technological and based on high investments and so-called "3D module" solutions, i.e. the circuits of the T/R module (receiving amplifier, transmitting amplifier, control logic board, power supply board, etc.) are disposed on more superimposed layers.

[0004] So-called "Integrated Tile Module" architectures are being developed by Anglo-Saxon subjects: someone utilizes approaches for the active 3D module wherein this is arranged on various layers instead of an only plane, others propose the use of packageless components (each transmitting/receiving module is without isolation box) realizable only with technologies that can be developed with high investment costs. It remains therefore the need of a solution that re-uses at best the existing devices combining them in accordance to a new and inventive technical concept, obtaining as an added value an optimization of weight, compactness and a reduction of costs both for the radiating part and the control and energy supply part.

[0005] US 2003/112184 A1 discloses a wide band GaAs microwave monolithic integrated circuit (MMIC) transmit chip that is capable of transmitting linearly or circularly polarized signals when connected to a pair of orthogonal cross-polarized antennas. In an active phased-array antenna environment, this transmit chip is capable of transmitting signals with different scan angles. This invention also contains a digital serial to parallel converter that uses TTL signal to control the phase shifter and attenuator circuits that are required for controlling the polarization and scan angle of the transmitted signal.

[0006] However, US 2003/112184 A1 presents a topological structure of the modular active element.

[0007] Furthermore, US 2003/218566 discloses a radar system with a phase-controlled antenna array. Further prior art is disclosed in US2010/0245179 A1, US2005/0151215 A1, GB2440426 A and in the article Infante L. et al: "Low-profile ultra-wide band antenna array element suitable for wide angle and modular subarray architecture", Phased array systems and technology (array), 2010 IEEE international symposium on, IEEE, Piscataway, NJ, USA, 12 October 2010, pages 157-163, ISBN: 978-1-4244-5127-2.

[0008] It is object of the present invention to provide a tile which solves the problems and overcomes the drawbacks of the prior art.

[0009] It is further specific object of the present invention to provide a complete radiating planar antenna realized by the juxtaposition of more tiles (which can be placed side-by-side on the four sides without altering the geometry of the lattice of the overall radiating aperture) which solves the problems and overcomes the drawbacks of the prior art architectures.

[0010] Subject-matter of the present invention is a modular active radiating device for electronically scanned array antennas, comprising the following sets of components:
  • a first set including active radiating elements comprised of T/R modules, radio-frequency switching devices and radiating elements;
  • a second set including a thermal stabilization system;
  • a third set including a supply and control system;
said first, second and third sets are disposed on different separable planes united by reversible fixing means to form a multi-layer structure, the device further comprising vertical interconnections connecting elements of said third set to elements of said first set going across said second set; the device further comprising:
  • said first set comprising:
    ∘ one multi-layer printed circuit board including the following layers in the order:

    ▪ radiating elements layers;

    ▪ first power distribution means layers;

    ▪ first control signal means layers;

    ▪ beamforming network layers;

    the different layers being suitably interconnected by via-holes; as well as the following elements soldered on the beamforming network layers:

    ∘ the T/R modules, each including a phase shifter, welded on the one multi-layers printed circuit board,

    ∘ the radio-frequency switching devices welded on the multi-layer printed circuit board;

    ∘ first support electronic components welded on the one multi-layers printed circuit board;

  • said multi-layer printed circuit board being formed by a plurality of contiguous modules termed flowers, each flower being formed by two or more quadrangular elementary portions placed side-by-side and termed petals, each petal constituting a single phase center and comprising:

    ∘ an only active radiating element, comprised of one or two T/R modules, a radio-frequency switching device and radiating elements, and radiating elements, where said T/R modules are within a BGA face-down housing, and

    ∘ contacts for said vertical interconnections, arranged in the proximity of only one side of said petal starting from a vertex of the side located at the center of the flower along a portion of the only one side, or arranged in the proximity of two sides forming an angle, starting from a common vertex of the two sides located at the center of the flower along a portion of each side

in such a way that:
  • said vertical interconnections can cross said second set and connect said first set to said third set without jeopardizing the continuity of the thermal stabilization system;
  • the petals which are opposed on the diagonal of the four-petals flower are equal but rotated of 180° with respect to the axis perpendicular to the plane of the petal and coinciding with the axis of polarization of the radiating elements, the shift of the phase due to this rotation being compensated, in use, by said phase shifter; said radio-frequency switching device being said circulator.


[0011] In US 2003/112184 A1, the unit cell is not an elementary radiating element, because four of them are needed to have a phase center with double polarization. In the invention case, the phase center is the single petal center. This is important because each center is guided by a dedicated electronics.

[0012] In other words, an active radiating element is based on a single patch. In the case of US 2003/112184 A1 the single patch is not associated to an only phase center, therefore the contacts cannot pass between two invention petals, but only between groups of four patches.

[0013] According to an aspect of the invention, said vertical interconnections are solderless push connectors for carrying low-frequency signals, to allow an easy assembling and disassembling of said first, second and third sets.

[0014] According to an aspect of the invention, said third set comprises a further printed circuit board with second power distribution means layers and second control signal means layers, connected by the vertical interconnections to the corresponding first power distribution means layers and first control signal means layers, so that the vertical connections are minimized in number.

[0015] According to an alternative of the invention, said contacts are arranged in the proximity of only a side of said petals.

[0016] According to an alternative of the invention, said contacts extend in the proximity of said an only side starting from a vertex of the side along a portion thereof, so that a vertical interconnection relevant to said contacts can connect two side-by-side petals.

[0017] According to an alternative of the invention, said contacts are arranged in the proximity of two sides forming an angle.

[0018] According to an alternative of the invention, said contacts extend in the proximity of said two sides forming an angle, in particular starting from the common vertex of the two sides along a portion of each side, so that a vertical interconnection relevant to said contacts can interconnect side-by-side petals, possibly belonging to two different modules.

[0019] According to the invention, the T/R modules (141) are within a BGA face-down housing.

[0020] According to an aspect of the invention, each of the active radiating elements comprises a feedline in balanced microstrip, a patch and a slot circuit which guarantees the coupling between said feedline and said patch.

[0021] According to the invention, said radio-frequency switching elements are circulators.

[0022] According to an aspect of the invention, an only T/R module is welded to said an only active radiating element.

[0023] It is further subject-matter of the present invention an electronically scanned array antenna, comprising a plurality of modular active radiating devices, characterized in that the modular active radiating devices are constituted by two or more devices constructed in accordance with the invention.

[0024] The invention will be now described by way of illustration but not by way of limitation, with particular reference to the figures of the annexed drawings, wherein:
  • figure 1 depicts a 3D sketch of the active radiating tile integrating the radiating board 140, the cooling board 130 and the power and control signal board 120.
  • figure 2 shows a sectional view of the tile device according to the invention;
  • figure 3 shows the layout of an embodiment of the tile device according to the invention in the format 8x8;
  • figure 4 shows a portion of the tile of figure 2 in greater detail, where objects laying on different layers can be seen in transparency.


[0025] Figure 1 depicts the stack-up of the invention tile by emphasizing the position of the radiating and beamforming layers, power layers and control signal layers constituting the motherboard 140. RF orthogonal via-holes 183, represented by black arrows, provide the connection among the different layers, giving the main priority to the RF path considered among the antenna elements layer 142 and the switching 164 and the TRM 141 and the beamforming network layer 145. It is important to note that the beamforming network layer 145 is embedded to the motherboard 140 constituted by layers 142,180,181 and 145.

[0026] Usually the active devices such as the TRM (141) need:
  • power supply to provide the bias voltage for all active components such as high-power amplifier (TX mode), low-noise amplifier (RX mode) and core-processor such as variable phase shifters and variable attenuators used for beam steering and amplitude taper;
  • control signals used for the setting of the states of the variable components included in the core-processor essentially setting the bit states for the variable phase shifters and variable attenuators.


[0027] In the present embodiment the power signals and the control signal are located on the motherboard at the bottom layers identified by 180 and 181, respectively as showed in Fig.1.

[0028] A further set of orthogonal vias-holes 182, similar to RF vias, and depicted by dashed arrows in Fig.1, provides the connection among all the active devices, such as TRM, support electronic components, welded on the top of the motherboard 140 and the power supply board 180 and control signal board 181, respectively.

[0029] The description given before solve the connection problem at the sub-grid 161 (Fig. 3 and Fig. 4) grouping 2x2 radiating elements constituting four petals.

[0030] At this stage, by using a proper disposition of the radiating elements (rotating 180° one column with respect to the other) a clearance is obtained at the center of the 2x2 sub-grid 161.

[0031] The 180° rotation of the even columns is recovered by the phase-shifter and it is usually realize in common phased array architecture.

[0032] The center clearance in 161 is used for an interposer connectors that provide connection among the layers 180 and 181 and the power and control logic board 120.

[0033] Since the tile is working without metallic backplane properly soldered on the radiating board, the rigidity of the overall structure is provided by the retaining mechanism provided by supporting screws mounted on one side at 140, crossing 130 and holding the layer 120.

[0034] The board 120 includes all the resultant support electronic equipment needs for power and logic signals that could not be welded on 140 for the lack of space.

[0035] Moreover 120 includes FPGA, line driver, bulky booster capacitors for bias voltage regulations that
  • require space and can be expanded along the depth dimension opposite to the radiating side
  • require a thermal stabilization that can be provided by the cooling plate 130 mounted on the bottom.


[0036] This solution explicit the dual-use of the cooling plate 130 providing thermal stabilization for the active devices welded on 140 and 120.

[0037] The RF path is following a different path from the power and control signals previously described.

[0038] By following the black arrow in Fig.1, the RF signals coming from/to the TRM 141 remain embedded in the layers 145. In 145 a suitable set of corporate beam-forming network realized by Wilkinson power dividers ending at one single input connector identified by 167 in Fig.3 soldered on the motherboard 140. To avoid conflicts with the cooling plate a clearance is left on 130 to allow the access to the only single RF connector.

[0039] The cooling metallic plate thus provides the support for the whole tile and it may be fixed to a back structure that collects several tiles juxtaposed to form a large planar aperture. This latter solution provides an easy mechanism to disassemble the tile for maintenance and logistic operations and it is preferable when the antenna is mounted on an a mast and it is not accessible from the outside cover but only from the back side.

[0040] Making reference to figure 2, one describes an embodiment of the tile device 100 according to the invention.

[0041] A plurality of separable layers 120,130,140 are present and united together by fixing means 151,152:
  • a first layer 120 is a layer of supply and control;
  • a second layer 130 is a cooling layer ("cold plate");
  • a third layer 140 is a RF transmission and reception layer including a radiating element.


[0042] The various layers are electrically connected by vertical interconnections 110 which cross the second layer and connect to the first and third layer in correspondence of suitable connectors 111, 112.

[0043] The approach of the invention utilizes T/R modules with BGA ("Ball Grid Array") package 141 disposed on a single level. One exploits a particular disposition of the BGA 141 with respect to the radiating element 142 (not shown in detail in figure 2). This particular disposition of the modules T/R and relevant radiating elements with utilization of an active overall level 145, internal to the layer 140, allow to obtain space in the above-mentioned level, which is then utilized to insert contacts for connectors relevant to the supply and control signals needed for the functioning of the active modules included in the RF-board 140 and for the connection of the latter to the upper circuit relevant to the layer 120. In such a way, orthogonal transitions are used to allow low losses and high integration interconnections between power sources and control logic and the T/R modules.

[0044] According to the embodiment illustrated in figures 3 and 4, the active tile here proposed is constituted by laminate multi-layer circuits (figure2) where T/R modules and relevant circuitry is placed on.

[0045] The first layer "RF Board" houses a matrix of 8 x 8 modules. Each module 160 is constituted by 4 elements or "petals" 161 including as many T/R modules for radar in C band (or other bands in other embodiments), housed in packages of the BGA "Face down" type 162, integrated in an only printed circuit with the radiating elements 142 of the type "Aperture Coupled Stacked Patch" and a first stage of beam forming (not shown), developed inside the layer 145, which collects the 64 RF outputs of the T/R modules and provides an only RF connector 167 in figure 3.

[0046] The third layer of supply and control houses the supply and control circuits (not shown) with the optical transceiver for the fiber connection to the remaining part of the system, having high immunity to electromagnetic disturbances, wide band and low weight/dimensions.

[0047] The dimensions of the tile according to the invention will be a function of the working frequency and the number of radiating elements and T/R modules that will be possible to integrate considering the limits of dissipation of the cooling circuit. The number of radiating elements of the overall phased array aperture will be given by the total number of juxtaposed tiles. The tile is considered a sub-array, identified by an only RF connector 167 (figure 3) which can be integrated with a layer integrating the receiving chain otherwise external (conveniently realized in multi-layer technology).

[0048] The radiating element is constituted by a patch 169 suitably shaped and inserted into a lattice such that it guarantees a good impedance adaptation of the antenna in the operation band for wide scanning angles of the beam. The capacitive coupling between the patch 169 and the feedline in balanced microstrip is made by a slot 168 (which finds itself between the feed-line 163 and the external patch 169) with a form of hourglass 168 suitably shaped to satisfy the requisites of adaptation in wide frequency band.

[0049] Thanks to an advanced technological solution of vertical interconnection, the two printed circuits placed on the two faces of the liquid cooler plate (or "cold plate" 130 in figures 1 and 2) are connected to each other, for the functions of supply and control signals, by means of elastic solderless connectors which cross them. Thanks to the structure in accordance with the invention, the two above-mentioned circuits present immediate accessibility for possible maintenance.

[0050] The architectural solution of the tile provides for the juxtaposition of a plurality of intermediate modules or "flowers" each formed by four elementary modules or "petals" (cf.figure 3 and 4). The petals which are opposed on the diagonal of the four-petals flower are equal but rotated of 180° with respect to the axis perpendicular to the plane of the petal (i.e. the axis of polarization of the antenna, in this case vertical), the equality is here established with respect to the dimensions due to the most bulky components, i.e. the disposition of the BGA, the circulator 164, the contacts 165 for the connector 110 and the radiating element). On one of the four petals, a hole 166 for fixing the upper plate is made.

[0051] This disposition creates a central free zone on cells of 2x2 periodicity, which allows the passage of the above-mentioned supply and digital interconnections as well as an easy disposition of the circulator and the T/R module. The rotation of 180° of the radiating element is recovered by the phase shifter which is present in the T/R module and presents remarkable advantages in terms of reduction of the cross-polar component of the antenna.

[0052] In a preferred embodiment, 4x4 flowers are arranged to form a tile of 64 petals (cf.figure 3). Naturally, one can juxtapose the flowers also with other planar pattern which are not e.g. rectangular, but are irregular of the L-shaped tile or polyomini type (to the end of integrating the radiating surfaces into non-planar supporting structures, such as naval towers and the like also called conforming surfaces).

[0053] The configuration with the rotated petals as above is only one of the possible embodiments. Indeed, the petals can be printed directly with the necessary space for the contacts directly in the desired areas and the other elements in the remaining space, directly printing four different petals.

[0054] The tile according to the invention represents a solution totally original and innovative utilizing however single prior art components, since it allows to have in an only scalable panel all the main functions of an active antenna: radiating elements, T/R modules, beam combination network, cooling, supply and control. Such panels, preferably of 64 elements, disposed in a 8x8 matrix, are designed to be easily combined to form planar and non-planar antennas, allowing a high scalability at the system level.

[0055] The cost reduction estimate is higher than 50% for the reduction of the interconnections and connectors, reduction of costs of integration due to utilization of multilayer technology, low-cost realization techniques for networks and radiating elements.

[0056] The used package allows to minimize the microwaves path through the T/R module towards the antenna, so as to reduce its RF losses: in particular the BGA face-down solution permits the use of layers for the control circuit with SMT ("Surface Mounted Technology") placed on the top of the MMIC ("Macrowave Multichip Integrated Device") components thanks to the dense vertical connection, and allows at the same time to obtain an efficient thermal exchange of the power generation part with the cooling plate.

[0057] The layers structure of the device according to the invention, held together by simple fixing means such as screws, makes it easier the production and maintenance. The solution offers clear advantages for compactness and lightness of the assembly: the structure is frequency scalable (because one can easily vary the dimensions) and this allows to cover the other segments of RF band. The active tile allows the realization of a new family if radar sensors which are ultra-compact, low energy consuming and scalable with respect to platforms, domains and scenarios.

[0058] The competitive advantage comes from having at disposal an integrated solution of arrays of high-technology active modules with which radiating systems can be realized having variable dimensions and configuration for various typologies of radar systems and communications both military and civil presenting a time-to-market extremely reduced due to reuse and reduction of development times. The modularity of the solution allows a considerable application flexibility: with the same building-block, the adaptation of the tile is possible as depending on the needs and requirements, for the realization of different radiating systems comprised of the cooling, control and supply parts.

[0059] The scalability supported by the device according to the invention is a key value point for the utilization in operative scenarios needing AESA ("Active Electronically Scanning Array") systems both in naval, terrestrial and avionic environment. The solution according to the invention, thanks to its compactness and lower losses with respect to the traditional approach, presents lower energetic consumptions with reduction of environmental impacts.

[0060] The solution according to the invention operates on a wide frequency band and therefore offers the possibility of being used in multi-band and multifunctional radar systems. The solution lends itself well also to the use for systems that are compact and easily deployable so that they can be organized into a network, as for example in the domestic security applications for the radars that "see" through the walls, or in applications wherein it is necessary to guarantee greater robustness to interferences or having the ability of diversify the transmission band in case of adverse weather conditions. Other fields of use can be referred to radio bridges, Imaging Radar systems and finally in those applications wherein the antenna itself, although respecting the compactness and inexpensiveness requirements, must serve for multiple functions. An application example can be for the radiating part of a multifunction radar.

[0061] The solution adopted here provide an high level of integration device (the active radiating tile) that can be used as building block to create a large planar aperture antenna for radar systems.

[0062] In order to reduce the project risks and the production costs, the radio-frequency (RF) path that groups all elementary antennas composing the tile has been realized and optimized by a manufacturing process based on dedicated layers connected each other by means of via-holes.

[0063] In this way the number of RF connectors is further reduced and the radiating board can be manufactured by mixing high performance laminates (Teflon-based) dedicated to the RF parts (such as antenna elements and beamforming network) and commercial laminates (as the one used for cpu motherboard) used for the low frequency parts such as power and control logic board.


Claims

1. Modular active radiating device (100) for electronically scanned array antennas, comprising the following sets of components:

- a first set (170) including active radiating elements (163,164,141,142) comprised of T/R modules (141), radio-frequency switching devices (164) and radiating elements (142);

- a second set (130) including a thermal stabilization system;

- a third set (120) including a supply and control system;

said first (170), second (130) and third (120) sets are disposed on different separable planes united by reversible fixing means (151) to form a multi-layer structure, the device further comprising vertical interconnections (110) connecting elements of said third set (120) to elements of said first set (170) going across said second set (130);
the device further comprising:

- said first set (170) comprising:
∘ one multi-layer printed circuit board (140) including the following layers in the order:

▪ radiating elements (142) layers;

▪ first power distribution means layers (180);

▪ first control signal means layers (181);

▪ beamforming network layers (145);

the different layers being suitably interconnected by via-holes (182);
as well as the following elements soldered on the beamforming network layers (145):

∘ the T/R modules (141), each including a phase shifter;

∘ the radio-frequency switching devices (164) ;

∘ first support electronic components;

- said multi-layer printed circuit board being formed by a plurality of contiguous modules (160) termed flowers, each flower being formed by four quadrangular elementary portions (161) placed side-by-side and termed petals, each petal constituting a single phase center and comprising:

o an only active radiating element (163,164,141,142), comprised of, one or two T/R modules (141), a radio-frequency switching device (164) and radiating elements (142), where said T/R modules (141) are within a BGA face-down housing (162), and

∘ contacts (165) for said vertical interconnections (110), arranged in the proximity of only one side of said petal starting from a vertex of the side located at the center of the flower (160) along a portion of the only one side, or arranged in the proximity of two sides forming an angle, starting from a common vertex of the two sides located at the center of the flower along a portion of each side

in such a way that:

- said vertical interconnections (110) can cross said second set (130) and connect said first set (170) to said third set (120) without jeopardizing the continuity of the thermal stabilization system;

- the petals (161) which are opposed on the diagonal of the four-petals flower (160) are equal but rotated of 180° with respect to the axis perpendicular to the plane of the petal (161) and coinciding with the axis of polarization of the radiating elements (142), the equality being established with respect to the disposition of said BGA, a circulator, said contacts (165) and said radiating elements (142), the shift of the phase due to this rotation being compensated, in use, by said phase shifter; said radio-frequency switching device (164) being said circulator.


 
2. Device according to claim 1, characterized in that said vertical interconnections (110) are solderless push connectors for carrying low-frequency signals, to allow an easy assembling and disassembling of said first, second and third sets.
 
3. Device according to claim 1 or 2, characterized in that said third set comprises a further printed circuit board with second power distribution means layers and second control signal means layers, connected by the vertical interconnections to the corresponding first power distribution means layers and first control signal means layers, so that the vertical connections are minimized in number.
 
4. Device according to any claim 1 to 3, characterized in that each of the active radiating elements comprises a feedline in balanced microstrip (163), a patch (169) and a slot circuit (168) which guarantees the coupling between said feedline (163) and said patch (169).
 
5. Device according to claim 1 to 4, characterized in that an only T/R module is welded to said an only active radiating element (163,164,141).
 
6. Device according to any claim 1 to 5, characterized in that the thermal stabilization system is a back plane cold plate.
 
7. Electronically scanned array antenna, comprising a plurality of modular active radiating devices (100), characterized in that the modular active radiating devices (100) are constituted by two or more devices (160) constructed in accordance with any claim 1 to 6.
 


Ansprüche

1. Modulare aktive Strahlungsvorrichtung (100) für Gruppenantennen mit elektronischer Strahlschwenkung, umfassend folgende Komponentensätze:

- einen ersten Satz (170), der aktive Strahlungselemente (163, 164, 141, 142) umfasst, die aus T/R-Modulen (141), Funkfrequenzschaltvorrichtungen (164) und Strahlungselementen (142) bestehen;

- einen zweiten Satz (130), der ein thermisches Stabilisierungssystem umfasst;

- einen dritten Satz (120), der ein Versorgungs- und Steuerungssystem umfasst;

wobei die ersten (170), zweiten (130) und dritten (120) Sätze auf verschiedenen trennbaren Ebenen angeordnet sind, die durch umkehrbare Befestigungsmittel (151) zusammengefügt sind, um eine mehrschichtige Struktur zu bilden, wobei die Vorrichtung ferner senkrechte Zusammenschaltungen (110) umfasst, die Elemente des dritten Satzes (120) mit Elementen des ersten Satzes (170) über den zweiten Satz (130) gehend verbindet;
wobei die Vorrichtung ferner Folgendes umfasst:

- den ersten Satz (170), umfassend:
∘ eine mehrschichtige Leiterplatte (140), die der Reihe nach folgende Schichten umfasst:

▪ Schichten mit Strahlungselementen (142);

▪ erste Schichten mit Energieverteilungsmitteln (180);

▪ erste Schichten mit Steuersignalmitteln (181);

▪ Schichten mit strahlformenden Netzwerken (145);

wobei die verschiedenen Schichten durch Durchgangslöcher (182) geeignet verbunden sind;
sowie die folgenden Elemente, die auf den Schichten mit strahlformenden Netzwerken (145) angelötet sind:

∘ die T/R-Module (141), die jeweils einen Phasenschieber umfassen;

∘ die Funkfrequenzschaltvorrichtungen (164);

∘ erste elektronische Unterstützungskomponenten;

- wobei die mehrschichtige Leiterplatte durch eine Vielzahl von benachbarten Modulen (160) gebildet ist, die als Blüten bezeichnet werden, wobei jede Blüte durch vier viereckige elementare Abschnitte (161) gebildet ist, die nebeneinander angeordnet sind und als Blütenblätter bezeichnet werden, wobei jedes Blütenblatt einen einphasigen Mittelpunkt bildet und Folgendes umfasst:

o nur ein aktives Strahlungselement (163, 164, 141, 142), das aus einem oder zwei T/R-Modulen (141), einer Funkfrequenzschaltvorrichtung (164) und Strahlungselementen (142) besteht, wobei sich die T/R-Module (141) in einem BGA-Face-Down-Gehäuse (162) befinden; und

∘ Kontakte (165) für die senkrechten Zusammenschaltungen (110), die in der Nähe nur einer Seite des Blütenblattes ausgehend von einer Spitze der Seite, die sich in der Mitte der Blüte (160) befindet, an einem Abschnitt der nur einen Seite entlang angeordnet sind, oder in der Nähe von zwei Seiten, die einen Winkel bilden, ausgehend von einer gemeinsamen Spitze der beiden Seiten, die sich in der Mitte der Blüte befindet, an einem Abschnitt jeder Seite entlang angeordnet sind, so dass:

- die senkrechten Zusammenschaltungen (110) den zweiten Satz (130) überqueren können und den ersten Satz (170) mit dem dritten Satz (120) verbinden können, ohne die Kontinuität des thermischen Stabilisierungssystems in Frage zu stellen;

- die Blütenblätter (161), die sich auf der Diagonale der vierblättrigen Blüte (160) gegenüberliegen, gleich sind, jedoch im Verhältnis zu der Achse, die zu der Ebene des Blütenblatts (161) rechtwinklig ist und mit der Polarisationsachse der Strahlungselemente (142) zusammenfällt, um 180° gedreht sind, wobei die Gleichheit im Verhältnis zu der Anordnung des BGA, eines Zirkulators, der Kontakte (165) und der Strahlungselemente (142) hergestellt ist, wobei die Verschiebung der Phase auf Grund dieser Drehung im Gebrauch durch den Phasenschieber ausgeglichen wird; wobei die Funkfrequenzschaltvorrichtung (164) der Zirkulator ist.


 
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die senkrechten Zusammenschaltungen (110) lötlose Steckverbinder zum Tragen niederfrequenter Signale sind, um einen einfachen Ein- und Ausbau der ersten, zweiten und dritten Sätze zu ermöglichen.
 
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der dritte Satz eine weitere Leiterplatte mit zweiten Schichten mit Energieverteilungsmitteln und zweiten Schichten mit Steuersignalmitteln umfasst, die durch die senkrechten Zusammenschaltungen mit den entsprechenden ersten Schichten mit Energieverteilungsmitteln und den ersten Schichten mit Steuersignalmitteln verbunden sind, so dass die Anzahl der senkrechten Verbindungen minimiert wird.
 
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass jedes der aktiven Strahlungselemente eine Zuleitung in einem symmetrischen Mikrostreifen (163), ein Feld (169) und eine Schlitzschaltung (168), welche die Kopplung zwischen der Zuleitung (163) und dem Feld (169) gewährleistet, umfasst.
 
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass nur ein T/R-Modul an das nur eine aktive Strahlungselement (163, 164, 141) geschweißt ist.
 
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das thermische Stabilisierungssystem eine rückseitige Kühlplatte ist.
 
7. Gruppenantenne mit elektronischer Strahlschwenkung, umfassend eine Vielzahl von modularen aktiven Strahlungsvorrichtungen (100), dadurch gekennzeichnet, dass die modularen aktiven Strahlungsvorrichtungen (100) aus zwei oder mehreren Vorrichtungen (160) bestehen, die nach einem der Ansprüche 1 bis 6 aufgebaut sind.
 


Revendications

1. Dispositif rayonnant actif modulaire (100) pour des antennes en réseau à balayage électronique, comprenant les ensembles suivants de composants :

- un premier ensemble (170) comportant des éléments rayonnants actifs (163, 164, 141, 142) composés de modules T/R (141), de dispositifs de commutation radiofréquence (164) et d'éléments rayonnants (142) ;

- un deuxième ensemble (130) comportant un système de stabilisation thermique ;

- un troisième ensemble (120) comportant un système d'alimentation et de commande ;

lesdits premier (170), deuxième (130) et troisième (120) ensembles sont disposés sur des plans séparables différents unis par des moyens de fixation réversibles (151) pour former une structure multicouche, le dispositif comprenant en outre des interconnexions verticales (110) connectant des éléments dudit troisième ensemble (120) à des éléments dudit premier ensemble (170) en traversant ledit deuxième ensemble (130) ;
le dispositif comprenant en outre :

- ledit premier ensemble (170) comprenant :
∘ une carte de circuit imprimé multicouche (140) comportant les couches suivantes dans l'ordre :

▪ des couches d'éléments rayonnants (142) ;

▪ des premières couches de moyens de distribution de puissance (180) ;

▪ des premières couches de moyens de signal de commande (181) ;

▪ des couches de réseau de formation de faisceau (145) ;

les différentes couches étant interconnectées de façon appropriée par des trous d'interconnexion (182) ;
ainsi que les éléments suivants brasés sur les couches de réseau de formation de faisceau (145) :

∘ les modules T/R (141), chacun comportant un déphaseur ;

∘ les dispositifs de commutation radiofréquence (164) ;

∘ des premiers composants électroniques de support ;

- ladite carte de circuit imprimé multicouche étant formée par une pluralité de modules contigus (160) dénommés fleurs, chaque fleur étant formée par quatre portions élémentaires quadrangulaires (161) placées côte à côte et dénommées pétales, chaque pétale constituant un centre monophase et comprenant :

∘ un élément rayonnant actif unique (163, 164, 141, 142), composé d'un ou de deux modules T/R (141), d'un dispositif de commutation radiofréquence (164) et d'éléments rayonnants (142), où lesdits modules T/R (141) se trouvent dans un boîtier face vers le bas BGA (162), et

∘ des contacts (165) pour lesdites interconnexions verticales (110), agencés à proximité d'un seul côté dudit pétale à partir d'un sommet du côté situé au centre de la fleur (160) le long d'une portion de l'un seul côté, ou agencés à proximité de deux côtés formant un angle, à partir d'un sommet commun des deux côtés situés au centre de la fleur le long d'une portion de chaque côté

de telle sorte que :

- lesdites interconnexions verticales (110) peuvent traverser ledit deuxième ensemble (130) et connecter ledit premier ensemble (170) audit troisième ensemble (120) sans mettre en péril la continuité du système de stabilisation thermique ;

- les pétales (161) qui sont opposés sur la diagonale de la fleur à quatre pétales (160) sont égaux mais tournés à 180° vis-à-vis de l'axe perpendiculaire au plan du pétale (161) et coïncidant avec l'axe de polarisation des éléments rayonnants (142), l'égalité étant établie vis-à-vis de la disposition dudit BGA, d'un circulateur, desdits contacts (165) et desdits éléments rayonnants (142), le déphasage dû à cette rotation étant compensé, en utilisation, par ledit déphaseur; ledit dispositif de commutation radiofréquence (164) étant ledit circulateur.


 
2. Dispositif selon la revendication 1, caractérisé en ce que lesdites interconnexions verticales (110) sont des connecteurs de poussée sans brasure pour transporter des signaux basse fréquence, afin de permettre un assemblage et un démontage faciles desdits premier, deuxième et troisième ensembles.
 
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que ledit troisième ensemble comprend une carte de circuit imprimé supplémentaire avec des secondes couches de moyens de distribution de puissance et des secondes couches de moyens de signal de commande, connectées par les interconnexions verticales aux premières couches de moyens de distribution de puissance et aux premières couches de moyens de signal de commande correspondantes, de sorte que les connexions verticales soient minimisées en nombre.
 
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que chacun des éléments rayonnants actifs comprend une ligne d'alimentation en microbande équilibrée (163), une rapièce (169) et un circuit à fentes (168) qui garantit le couplage entre ladite ligne d'alimentation (163) et ladite rapièce (169).
 
5. Dispositif selon les revendications 1 à 4, caractérisé en ce que seul un module T/R est soudé audit élément rayonnant actif unique (163, 164, 141).
 
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le système de stabilisation thermique est une plaque froide d'arrière-plan.
 
7. Antenne en réseau à balayage électronique, comprenant une pluralité de dispositifs rayonnants actifs modulaires (100), caractérisée en ce que les dispositifs rayonnants actifs modulaires (100) sont constitués par deux dispositifs (160) ou plus construits en conformité avec l'une quelconque des revendications 1 à 6.
 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description